NTC热敏电阻原理及应用资料

合集下载

NTC热敏电阻的作用

NTC热敏电阻的作用

NTC热敏电阻的作用
一、NTC热敏电阻的基本原理
1.温度测量
2.温度补偿和控制
NTC热敏电阻可以用于测量和控制电子设备中的温度。

当电子设备受到外部环境温度的影响时,电阻的变化可以用来补偿电路的工作点。

这样可以使电子设备能够在不同的温度条件下保持稳定的工作状态。

NTC热敏电阻也可以用于通过改变电路的工作状态来实现温度控制。

3.温度保护
4.温度补偿
在一些应用中,温度的变化会影响电路元件的性能,例如晶体振荡器的频率受温度变化的影响。

通过使用NTC热敏电阻进行温度补偿,可以对电路进行校准,以提高性能稳定性。

5.环境监测
三、NTC热敏电阻的应用领域
1.家电领域
2.汽车领域
汽车领域是NTC热敏电阻的重要应用领域之一、它可以用于测量车内外的温度、发动机温度等。

通过对温度的检测和控制,可以保证车辆的安全性能和可靠性。

3.工业控制
4.医疗设备
医疗设备中的一些关键参数,如体温、血液温度等,需要用到温度测量和控制。

NTC热敏电阻可以用于这些应用,以确保医疗设备的准确性和安全性。

总结:
NTC热敏电阻具有温度敏感性和负温度系数的特性,广泛应用于温度测量、控制和保护等领域。

它在各个行业中发挥着重要的作用,提高了设备的性能稳定性和安全性能。

随着科技的发展,NTC热敏电阻的应用领域还将不断扩大和深化。

ntc热敏电阻原理和应用

ntc热敏电阻原理和应用

•ntc热敏电阻原理和应用我记得第一次接触NTC热敏电阻的时候,真的是懵逼了好一阵子。

我在学电路基础,一看这个名字,脑袋就装满了问号:“NTC?热敏电阻?这个不是一堆听起来特别‘高大上’的词吗?”不过,后来慢慢地搞懂了,发现其实它的工作原理和我们生活中的一些小常识差不多,挺有趣的。

••先简单说一下NTC热敏电阻到底是什么。

NTC其实是“负温度系数”的缩写,就是说,这种电阻的阻值在温度升高的时候会下降。

简单地说,当你把NTC热敏电阻放在一个热乎乎的地方,它的“抵抗”会变小,就像你如果对一个人说了点好话,他可能就会“变软”了一样,变得容易“接受”了。

过来,温度降下来,它的阻力值又会变大。

这种特性皮肤简单,其实挺有用的。

••举个例子,你应该见过电子设备里面有些电路板上有微处理器温控元件。

记得我上次修电脑的时候,拆开机箱主板上有个NTC热敏电阻,它是被设计成的能够在开机时帮助电流的流动更加平稳。

具体来说,刚开机时电流大,电阻值小,这样可以让电流停止地缓慢通过,避免电流过大烧坏元件。

地,温度上升,电阻变大,电流就会被“自动调节”一下,不至于让电流失活••如果你没有遇到过这种情况,也可以想象一下你自己做饭的时候,炉子一开始加热的时候火力可能很大,但随着锅底的温度慢慢升高,火力被调节成适当的火候,避免锅底过热。

NTC热敏电阻的原理就有点类似,帮忙调整“热量”或者“电流”的大小,让一切变得稀疏••技术除了用在电子产品上,实际上还有应用。

比如在电池的温度管理系统里,也有NTC热敏电阻的很多形状。

你可能想不通,为什么电池要监测温度?其实电池充电这个时候,温度升高会影响其使用寿命,甚至可能导致电池膨胀或者漏液。

所以,很多电池管理系统都会采用NTC热敏电阻来实时监控温度,温度一旦超过安全范围,电路就会自动切断电流,防止••还有一个应用你一定经常遇到,那就是空调的温控系统。

空调的工作原理大家都知道,主要就是制冷或者制热。

NTC热敏电阻特性参数基本知识

NTC热敏电阻特性参数基本知识

NTC热敏电阻特性参数基本知识NTC热敏电阻(Negative Temperature Coefficient Thermistor)是一种温度敏感的电阻器件,其电阻值随温度的升高而下降。

它具有快速响应、高精度、可靠性高等特点,被广泛应用于温度测量、温度补偿、过热保护等领域。

一、NTC热敏电阻的结构与原理NTC热敏电阻由导电粒子均匀分布在陶瓷或聚合物基底中组成。

当温度升高时,导电粒子随之受热膨胀,导致电阻器的电阻值下降;反之,当温度下降时,导电粒子缩小,电阻值则上升。

这种负温度系数的特性使得NTC热敏电阻可以作为温度变化的传感器使用。

二、NTC热敏电阻的温度特性1. 热敏特性(Temperature Coefficient of Resistance,TCR):TCR是NTC热敏电阻电阻值随温度变化的斜率,通常以ppm/℃或%/℃来表示。

TCR越大,NTC热敏电阻对温度变化的灵敏度越高。

2. 零点电阻(Zero Power Resistance):零点电阻指NTC热敏电阻在零功率状态下的电阻值。

NTC热敏电阻的零点电阻通常在室温(25℃)下测量。

3. B值(B Value):B值是NTC热敏电阻数据表的一个重要参数,用于描述NTC热敏电阻电阻值与温度之间的关系。

B值越大,NTC热敏电阻对温度变化的响应越快。

三、NTC热敏电阻的封装形式与特点1.芯片型:芯片型NTC热敏电阻封装小巧,适合高密度集成电路板焊接使用。

常见的封装形式有0402、0603、0805等。

2.线材型:线材型NTC热敏电阻采用线材引出,方便直接连接电路。

常见的线材型NTC热敏电阻有带头、带露点、带保护套等。

3.壳体型:壳体型NTC热敏电阻采用外壳封装,结构较为坚固,适用于恶劣环境下的温度检测和控制。

常见的壳体型NTC热敏电阻有玻璃封装、金属封装等。

四、NTC热敏电阻的应用1.温度测量:NTC热敏电阻可以通过测量其电阻值来获取温度信息,广泛应用于温度计、恒温器、温度传感器等领域。

ntc在电路中的应用

ntc在电路中的应用

ntc在电路中的应用
摘要:
一、NTC 热敏电阻的基本概念
二、NTC 热敏电阻在电路中的应用
1.温度测量
2.电路保护
三、NTC 热敏电阻的优点及应用范围
正文:
一、NTC 热敏电阻的基本概念
TC(Negative Temperature Coefficient)热敏电阻,又称为负温度系数热敏电阻,是一种半导体材料。

它的特性是电阻值随温度的升高而减小,这种现象称为负温度系数。

NTC 热敏电阻广泛应用于各种电子产品中,例如温度传感器、可复式保险丝和自动调节的加热器等。

二、NTC 热敏电阻在电路中的应用
1.温度测量
TC 热敏电阻可以用于测量环境温度,其工作原理是通过测量热敏电阻的电阻值变化来反映环境温度的变化。

在电路中,NTC 热敏电阻的电阻值会随着温度的升高而减小,通过测量其电阻值的变化,可以精确地测量环境温度。

NTC 热敏电阻具有高灵敏度和高精度,使其成为温度测量的理想选择。

2.电路保护
TC 热敏电阻还可以用于电路保护。

当电路中的电流过大时,NTC 热敏电
阻的温度会升高,从而降低其电阻值。

这种现象可以用来保护电路免受过载的损害。

例如,在市电输入端串联NTC 热敏电阻,可以限制启动后端设备或电路时的瞬间电流冲击,减少对后端电路和市电的影响。

三、NTC 热敏电阻的优点及应用范围
TC 热敏电阻具有许多优点,例如响应速度快、可靠性高、体积小、安装简便等。

这些优点使其成为各种电子产品中理想的温度传感器和电路保护元件。

ntc热敏电阻与温度的关系

ntc热敏电阻与温度的关系

ntc热敏电阻与温度的关系NTC热敏电阻是一种温度传感器,其电阻值随温度的变化而变化。

本文将探讨NTC热敏电阻与温度的关系,并分析其工作原理和应用领域。

一、NTC热敏电阻的工作原理NTC热敏电阻是一种负温度系数热敏电阻,即其电阻值随温度的升高而下降。

其工作原理基于热敏效应,即材料的电阻随温度的变化而变化。

NTC热敏电阻的材料通常是氧化物,如氧化镍、氧化锡等,这些材料具有较高的电阻温度系数。

当温度升高时,材料的电导增加,电阻减小;反之,当温度降低时,材料的电导减小,电阻增加。

二、NTC热敏电阻与温度的关系NTC热敏电阻的电阻值与温度之间存在着一种非线性的关系。

通常情况下,NTC热敏电阻的电阻值在室温(25摄氏度)时最大,随着温度的升高,其电阻值逐渐减小。

然而,不同型号和材料的NTC热敏电阻具有不同的电阻温度特性曲线。

一般来说,NTC热敏电阻的电阻温度特性曲线可以通过温度系数和额定电阻值来描述。

三、NTC热敏电阻的应用领域由于NTC热敏电阻具有温度敏感性强、体积小、响应速度快等特点,因此在许多领域得到广泛应用。

1. 温度测量与控制:NTC热敏电阻可用于温度测量和控制。

通过测量NTC热敏电阻的电阻值,可以推算出所测量的温度。

常见的应用场景包括温度计、恒温控制器、温度补偿等。

2. 温度补偿:许多电子元器件的性能受温度影响较大,为了保证其工作稳定性,常需要进行温度补偿。

NTC热敏电阻可以作为温度补偿元件,通过监测环境温度的变化,对其他元件的电路进行补偿,提高系统的稳定性和精度。

3. 温度保护:在一些电子设备中,NTC热敏电阻可用于温度保护。

当设备运行过程中温度超过设定的阈值时,NTC热敏电阻的电阻值会发生明显变化,从而触发保护电路,切断电源或采取其他措施,以防止设备过热损坏。

4. 环境监测:由于NTC热敏电阻对温度变化非常敏感,因此可用于环境温度的监测。

在气象、农业、仓储等领域,可以利用NTC热敏电阻构建温度监测系统,实时监测环境的温度变化,为决策提供参考依据。

单片机 ntc热敏电阻连接方法

单片机 ntc热敏电阻连接方法

单片机 ntc热敏电阻连接方法单片机是一种集成电路,可以实现各种控制和处理功能。

而NTC热敏电阻则是一种能随着温度的变化而改变电阻值的电子元器件。

在实际应用中,单片机和NTC热敏电阻常常结合在一起使用。

本文将介绍单片机和NTC热敏电阻的连接方法及其应用。

一、单片机和NTC热敏电阻的基本原理NTC热敏电阻是一种温度传感器,其电阻值随温度的变化而变化。

当温度升高时,电阻值减小;当温度降低时,电阻值增大。

而单片机则可以通过测量电阻值的变化来获取温度信息,并进行相应的控制和处理。

二、连接方法1. 连接电路图在连接单片机和NTC热敏电阻时,可以采用以下电路图:(这里不输出图片链接,请读者自行搜索“单片机 NTC热敏电阻连接电路图”)2. 连接步骤(这里不输出具体步骤,请读者自行搜索“单片机 NTC热敏电阻连接步骤”)三、应用举例单片机和NTC热敏电阻的连接方法可以应用于各种温度检测和控制的场景。

下面以一个温度监控系统为例,介绍其应用过程。

1. 系统组成该温度监控系统由单片机、NTC热敏电阻、LCD液晶显示器和蜂鸣器组成。

单片机通过连接NTC热敏电阻来获取温度信息,并将温度值显示在LCD屏幕上,同时当温度超过设定阈值时,蜂鸣器会发出报警信号。

2. 系统工作原理当NTC热敏电阻与单片机连接后,单片机通过模拟输入引脚读取NTC热敏电阻的电阻值。

然后,通过一定的算法将电阻值转换为温度值。

单片机将温度值显示在LCD屏幕上,并与预设的阈值进行比较。

当温度超过阈值时,单片机控制蜂鸣器发出报警信号。

3. 系统优势该温度监控系统具有以下优势:(1)准确性高:通过NTC热敏电阻可以准确地获取温度信息,单片机的算法可以精确地将电阻值转换为温度值。

(2)灵活性强:单片机可以根据实际需求进行温度设定和报警阈值调整,具有较高的灵活性。

(3)可靠性好:使用单片机控制温度监控系统,可以实现稳定可靠的温度检测和控制功能。

四、总结通过单片机和NTC热敏电阻的连接方法,可以实现温度检测和控制的功能。

ntc热敏电阻原理

ntc热敏电阻原理

ntc热敏电阻原理
NTC热敏电阻原理
热敏电阻是一种基于温度变化而改变电阻值的电子元件。

NTC (Negative Temperature Coefficient)热敏电阻指的是随着温度
升高,其电阻值下降。

这种特性使得NTC热敏电阻在温度测量、温度补偿和温度控制等应用中得到广泛的应用。

NTC热敏电阻的工作原理是基于半导体材料的特性。

NTC热
敏电阻一般由氧化物粉末和粘结剂混合后制成。

当温度升高时,氧化物粉末中的电荷载流子增多,电阻值随之下降。

这是因为在半导体材料中,温度升高会导致晶体中的原子和电子的能量增加,使得载流子的浓度增加,电阻值减小。

NTC热敏电阻的温度特性可以通过材料的选择和控制来调节。

通常情况下,材料的配比和加工工艺决定了NTC热敏电阻的
特性曲线。

例如,可以通过控制粉末中的添加物的浓度来改变电阻值的变化率,从而获得不同的温度特性。

NTC热敏电阻的工作温度范围通常在-55℃至200℃之间,不
同型号的NTC热敏电阻在不同的温度范围内具有不同的温度
特性曲线。

为了更好地应用NTC热敏电阻,需要选择适合应
用环境和要求的型号,并根据实际需求进行测试和校准。

总之,NTC热敏电阻利用半导体材料的温度特性实现了温度
测量和控制功能。

通过选择合适的材料和加工工艺,可以调节其温度特性以满足不同应用的需求。

名词解释ntc

名词解释ntc

NTC 热敏电阻的特性与应用
一、NTC 热敏电阻的定义
NTC(Negative Temperature Coefficient) 热敏电阻,也叫做负温度系数热敏电阻,是一种半导体材料制作的电阻器件,其电阻值随着温度的升高而减小,反之亦然。

二、NTC 热敏电阻的特性
NTC 热敏电阻的主要特性是其电阻值与温度之间的关系,即它的电阻值随温度的变化而变化。

当温度升高时,NTC 热敏电阻的电阻值会减小,而当温度降低时,其电阻值会增加。

这种特性使得 NTC 热敏电阻在电路中有着广泛的应用。

三、NTC 热敏电阻的工作原理
NTC 热敏电阻的工作原理是基于半导体材料的特性。

NTC 热敏电阻材料中的载流子浓度随着温度的升高而增加,从而导致电阻值的减小。

反之,当温度降低时,载流子浓度减少,电阻值增加。

四、NTC 热敏电阻的应用
NTC 热敏电阻在电子电路中有着广泛的应用,下面列举几个常见的应用:
1. 温度传感器:NTC 热敏电阻可以作为温度传感器,将其连接到一个电路中,通过测量其电阻值可以推断出当时的温度。

2. 热保护器:由于 NTC 热敏电阻的电阻值随着温度的升高而减小,因此可以将其用作热保护器,当电路中的温度升高到一定程度时,NTC 热敏电阻的电阻值会减小到一定程度,从而切断电路,保护电路
不受过热的损坏。

3. 恒温控制器:通过将 NTC 热敏电阻与一个加热器和一个控制器相连,可以制作一个恒温控制器。

当温度升高时,NTC 热敏电阻的电阻值减小,控制器会切断加热器的电源,从而使温度保持恒定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 NTC热敏电阻原理及应用 NTC热敏电阻是指具有负温度系数的热敏电阻。是使用单一高纯度材料、具有 接近理论密度结构的高性能陶瓷。因此,在实现小型化的同时,还具有电阻值、 温度特性波动小、对各种温度变化响应快的特点,可进行高灵敏度、高精度的 检测。本公司提供各种形状、特性的小型、高可靠性产品,可满足广大客户的 应用需求。 NTC负温度系数热敏电阻工作原理

NTC是Negative Temperature Coefficient 的缩写,意思是负的温度系数,泛指负温度系数很大的半导体材料或元器件,所谓NTC热敏电阻器就是负温度系数热敏电阻器。它是以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成的。这些金属氧化物材料都具有半导体性质,因为在导电方式上完全类似锗、硅等半导体材料。温度低时,这些氧化物材料的载流子(电子和孔穴)数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。NTC热敏电阻器在室温下的变化范围在10O~1000000欧姆,温度系数-2%~-6.5%。NTC热敏电阻器可广泛应用于温度测量、温度补偿、抑制浪涌电流等场合。

NTC负温度系数热敏电阻专业术语 1,零功率电阻值 RT(Ω) RT指在规定温度 T 时,采用引起电阻值变化相对于总的测量误差来说可以忽略不计的测量功率测得的电阻值。

2,电阻值和温度变化的关系式为: RT = RN expB(1/T – 1/TN) RT :在温度 T ( K )时的 NTC 热敏电阻阻值。 RN :在额定温度 TN ( K )时的 NTC 热敏电阻阻值。 T :规定温度( K )。 B : NTC 热敏电阻的材料常数,又叫热敏指数。 exp :以自然数 e 为底的指数( e = 2.71828 …)。

该关系式是经验公式,只在额定温度 TN 或额定电阻阻值 RN 的有限范围内才具有一定的精确度,因为材料常数 B 本身也是温度 T 的函数。

3,额定零功率电阻值 R25 (Ω) 根据国标规定,额定零功率电阻值是 NTC 热敏电阻在基准温度 25 ℃ 时测得的电阻值 R25,这个电阻值就是 NTC 热敏电阻的标称电阻值。通常所说 NTC 热敏电阻多少阻值,亦指该值。

4,材料常数(热敏指数) B 值( K ) B 值被定义为: 2

RT1 :温度 T1 ( K )时的零功率电阻值。 RT2 :温度 T2 ( K )时的零功率电阻值。 T1, T2 :两个被指定的温度( K )。

对于常用的 NTC 热敏电阻, B 值范围一般在 2000K ~ 6000K 之间。 5,零功率电阻温度系数(αT ) 在规定温度下, NTC 热敏电阻零动功率电阻值的相对变化与引起该变化的温度变化值之比值。

αT :温度 T ( K )时的零功率电阻温度系数。 RT :温度 T ( K )时的零功率电阻值。 T :温度( T )。 B :材料常数。

6,耗散系数(δ) 在规定环境温度下, NTC 热敏电阻耗散系数是电阻中耗散的功率变化与电阻体相应的温度变化之比值。

δ: NTC 热敏电阻耗散系数,( mW/ K )。 △ P : NTC 热敏电阻消耗的功率( mW )。 △ T : NTC 热敏电阻消耗功率△ P 时,电阻体相应的温度变化( K )。

7,热时间常数(τ) 在零功率条件下,当温度突变时,热敏电阻的温度变化了始未两个温度差的 63.2% 时所需的时间,热时间常数与 NTC 热敏电阻的热容量成正比,与其耗散系数成反比。 3

τ:热时间常数( S )。 C: NTC 热敏电阻的热容量。 δ: NTC 热敏电阻的耗散系数。

8,额定功率Pn 在规定的技术条件下,热敏电阻器长期连续工作所允许消耗的功率。在此功率下,电阻体自身温度不超过其最高工作温度。

9.最高工作温度Tmax 在规定的技术条件下,热敏电阻器能长期连续工作所允许的最高温度。即:

T0-环境温度。 10,测量功率Pm 热敏电阻在规定的环境温度下, 阻体受测量电流加热引起的阻值变化相对于总的测量误差来说可以忽略不计时所消耗的功率。 一般要求阻值变化大于0.1%,则这时的测量功率Pm为:

11,电阻温度特性 NTC热敏电阻的温度特性可用下式近似表示: 式中: RT:温度T时零功率电阻值。 A:与热敏电阻器材料物理特性及几何尺寸有关的系数。 B:B值。 4

T:温度(k)。 更精确的表达式为:

式中:RT:热敏电阻器在温度T时的零功率电阻值。 T:为绝对温度值,K; A、B、C、D:为特定的常数。

热敏电阻的基本特性 电阻-温度特性 热敏电阻的电阻-温度特性可近似地用式1表示。 (式1) R=Ro exp {B(I/T-I/To)}

R : 温度T(K)时的电阻值 Ro : 温度T0(K)时的电阻值 B : B 值 *T(K)= t(ºC)+273.15

但实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 (式2) BT=CT2+DT+E上式中,C、D、E为常数。 另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D 不变。因此,在探讨B值的波动量时,只需考虑常数E即可。 • 常数C、D、E的计算 常数C、D、E可由4点的(温度、电阻值)数据 (T0, R0). (T1, R1). (T2, R2) and (T3, R3),通过式3~6计算。 首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 5

• 电阻值计算例 试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。

• 步 骤 (1) 根据电阻-温度特性表,求常数C、D、E。 To=25+273.15 T1=10+273.15 T2=20+273.15 T3=30+273.15 (2) 代入BT=CT2+DT+E+50,求BT。 (3) 将数值代入R=5exp {(BTI/T-I/298.15)},求R。 *T : 10+273.15~30+273.15 6

• 电阻-温度特性图如图1所示 电阻温度系数 所谓电阻温度系数(α),是指在任意温度下温度变化1°C(K)时的零负载电阻变化率。电阻温度系数(α)与B值的关系,可将式1微分得到。

这里α前的负号(-),表示当温度上升时零负载电阻降低。 散热系数 (JIS-C2570) 散热系数(δ)是指在热平衡状态下,热敏电阻元件通过自身发热使其温度上升1°C时所需的功率。 在热平衡状态下,热敏电阻的温度T1、环境温度T2及消耗功率P之间关系如下式所示。

产品目录记载值为下列测定条件下的典型值。 7

(1) 25°C静止空气中。 (2) 轴向引脚、经向引脚型在出厂状态下测定。

额定功率(JIS-C2570) 在额定环境温度下,可连续负载运行的功率最大值。 产品目录记载值是以25°C为额定环境温度、由下式计算出的值。

(式) 额定功率=散热系数×(最高使用温度-25) 最大运行功率 最大运行功率=t×散热系数 … (3.3) 这是使用热敏电阻进行温度检测或温度补偿时,自身发热产生的温度上升容许值所对应功率。(JIS中未定义。)容许温度上升t°C时,最大运行功率可由下式计算。

应环境温度变化的热响应时间常数(JIS-C2570) 指在零负载状态下,当热敏电阻的环境温度发生急剧变化时,热敏电阻元件产生最初温度与最终温度两者温度差的63.2%的温度变化所需的时间。

热敏电阻的环境温度从T1变为T2时,经过时间t与热敏电阻的温度T之间存在以下关系。

T= (T1-T2)exp(-t/τ)+T2......(3.1) (T2-T1){1-exp(-t/τ)}+T1.....(3.2) 常数τ称热响应时间常数。 上式中,若令t=τ时,则(T-T1)/(T2-T1)=0.632。 换言之,如上面的定义所述,热敏电阻产生初始温度差63.2%的温度变化所需的时间即为热响应时间常数。经过时间与热敏电阻温度变化率的关系如下表所示。 8

产品目录记录值为下列测定条件下的典型值。 (1) 静止空气中环境温度从50°C至25°C变化时,热敏电阻的温度变化至34.2°C所需时间。 (2) 轴向引脚、径向引脚型在出厂状态下测定。

另外应注意,散热系数、热响应时间常数随环境温度、组装条件而变化。

NTC负温度系数热敏电阻R-T特性 9

B 值相同, 阻值不同的 R-T 特性曲线示意图 相同阻值,不同B值的NTC热敏电阻R-T特性曲线示意图 温度测量、控制用NTC热敏电阻器 外形结构

相关文档
最新文档