信号细分与辩向电路

合集下载

辨向与细分电路

辨向与细分电路

辨向与细分电路
1.辨向电路无论测量直线位移还是测量角位移,都必须能够根据传感
器的输出信号判别移动的方向,即判断是正向移动还是反向移动,是顺时针旋转还是逆时针旋转。

但是,仅有一个光电元件的输出无法判别光栅的移动方向,因为在一点观察时,不论主光栅向哪个方向运动,莫尔条纹均作明暗交替变化。

为了辨别方向,通常采用在相隔1/4 莫尔条纹间距B 的位置上安放两个光电元件,获得相位差为90º的两个信号,然后送到如图12.1.5 所示的辨向电路进行处理。

图12.1.5 辨向电路
假设当主光栅向左移动时,莫尔条纹向上移动,两个光电元件分别输出电压信号U1 和U2,如图12.1.6(a),经过放大、整形,得到两个相位差为的方波信号和。

经反相后得到,、经过微分电路后得到两组电脉冲、,分别输入到与门、。

对于与门Y1,由于处于高电平时,总是为低电平,故脉冲被阻塞,Y1 输出为零;对于与门Y2,处于高电平时,也为高电平,故允许脉冲通过,并
触发加减控制触发器使之置1,可逆计数器对与门Y`输出的脉冲进行加法计数。

同理,当标尺光栅向右移动时,输出信号波形如图12.1.6(b)所示,与门Y2 被阻塞,Y1 输出脉冲信号使触发器置0,可逆计数器对与门Y2 输出的脉冲进行减法计数。

主光栅每移动一个栅距,辨向电路只输出一个脉冲。

计数器所计的脉冲个数即代表光栅的位移。

2.细分电路光栅数字传感器的测量分辨率等于一个栅距。

但是,在精密检测中常常需要测量比栅距更小的位移量,为了提高分辨率,可以采用两种方法实现:1)增加刻线密度来减小栅距,但是这
种方法受光栅刻线工艺的限制。

2)采用细分技术,使光栅每移动一个栅距时。

测控电路课后答案(张国雄 第四版)第七章

测控电路课后答案(张国雄 第四版)第七章

Uj 滞后 Ud 时(图 7-14c) ,只有 DG2 有可能输出低电平 , Ud′是 Ud 的延时信号,也可起门槛
作用。调节电阻 R 和电容 C 可改变门槛的大小。 7-6 请说明图 7-19 中用 sinAα+cosAαtgBβ代替 sinθd=sin(Aα+Bβ), 用 cosAα-sinAαtgBβ代 替 cosθd=cos(Aα+Bβ),为什么不会带来显著误差? 图 7-19 中把 180 °的相位角先按 α=18 °等分为 10 份,再把 18°按 β=1.8°等分为 10 份, 则 θd= Aα+ Bβ。 A、 B 为 0~9 的整数。可写出 sin θd=sin( Aα+Bβ)=cos Bβ(sin Aα+cos AαtgBβ) cos θd=cos( Aα+Bβ)=cos Bβ(cos Aα-sin AαtgBβ) 因为 Bβ=(0~9)×1.8°=0°~16.2 °,cosBβ=1~0.963。正余弦激磁电压同时增大不影响平 衡位置,故可近似取 sinθd≈sinAα+cos AαtgBβ, cosθd≈cosAα-sin AαtgBβ 。
第七章
7-1
信号细分与辨向电路
图 7-31 为一单稳辨向电路,输入信号 A、B 为相位差 90°的方波信号,分析其辨向原 理,并分别就 A 导前 B 90°、B 导前 A 90°的情况,画出 A′、Uo1、Uo2 的波形。
A1Biblioteka &RDG1
A′ C
DG2
DG4
&
Uo1
1
DG3
&
B
题 7-1 图
Uo2
DG5
7-7 请比较相位跟踪细分、幅值跟踪细分和脉冲调宽型幅值跟踪细分的优缺点。 相位跟踪细分常用于感应同步器和光栅的细分,由于在一个载波周期仅有一次比 相,因此对测量速度有一定的限制。相位跟踪细分电路较简单。 幅值跟踪细分主要应用于鉴幅型感应同步器仪器。 感应同步器是闭环系统的组成部 分,因而幅值跟踪系统实现了全闭环,而相位跟踪系统只实现半闭环(感应同步器在环 外) , 这使幅值跟踪系统具有更高的精度和更好的抗干扰性能。 电路中函数变压器受温度、 湿度影响小、不易老化,稳定性好,但工艺复杂,技术要求高,体积重量大,也可采用 集成电路的乘法型 D/A 转换器代替函数变压器。 幅值跟踪细分比相位跟踪系统允许更高 的移动速度。但电路较复杂。 脉冲调宽型幅值跟踪细分也是一种幅值跟踪细分系统, 只是用数字式可调脉宽函数发 生器代替上一系统中的函数变压器和切换计数器。因此保留了幅值跟踪系统的优点,系 统有高精度和高抗干扰能力。数字式脉宽函数发生器体积小、重量轻、易于生产,有高 的细分数,且有高的跟踪能力。数字电路可以灵活地根据测速改变跟踪速度。军用的高 速动态测量系统多采用具有高速数字跟踪能力的脉冲调宽方案,它有位置、速度甚至加 速度跟踪能力。当然,电路相当复杂。

信号细讲义分与辩向电路

信号细讲义分与辩向电路

u1
R1
u1
ER 2 R1 R2
不同相的输出电压信号经电压比较器整形为方波,然后经
逻辑电路处理即可实现细分。
测控电路
改变输入信号可改变象限:
Ⅰ: u1=Esin t,u2=Ecos t Ⅱ: u1=Ecos t ,u2=-Esin t Ⅲ: u1=-Esin t,u2=-Ecos t Ⅳ: u1=-Ecos t ,u2=Esin t
细分原理:对两路方波的突变沿进行处理(一个周期有两个突变沿),
提取四个突变沿,实现四细分。
辨向原理:根据两路方波相位的相对超前和滞后的关系作为判别依据。
Y B
O
VA’
VB
VB’
VA
W
BW
VA
VA
VB
VB
返回
上一页
下一页
测控电路
1 A
DG1
1 B
DG6
DG3 & A
R1
C1
A
& A
R2
C2 DG4
1
A
DG2
DG8
& B
R3
C3
ቤተ መጻሕፍቲ ባይዱ
B
& B
C4 DG9 R4
1
B
DG7
B & ≥1 A B & A A & B A & B DG5
A & ≥1 B B & A A & B
& A B
DG10
-
UO1 图 7 2 单 稳 四 细 分 辨 向 电
UO2 路
测控电路
原理:利用单稳提取两路方波信号的边沿实现四细分
下一页

测控的电路-信号细分和辩向第七章第一部分

测控的电路-信号细分和辩向第七章第一部分

细分电路的应用范围?
面向光栅, 感应同步器, 磁栅,容栅和激光干涉仪等 设备输出的周期信号
细分电路的分类?
•按工作原理分:直传式和平衡补偿式细分
•按处理信号分:调制信号和非调制信号细分
2
什么是辨向?为什么要辨向?
辨向:辨别机构的移动方向
A
B C D
E
位移传感器一般允许在正、反两个方向移动;
A'
B'
B'
Uo1 Uo2
Uo1 Uo2
正向运动(A超前B)
反向运动( B超前A ) 8
HCTL-20XX系列四细分辨向电路
• 该系列芯片具有细分与辨向功能; • 具有抗干扰设计; • 将可逆计数器设计在芯片上,芯片的集 成度高; • 简化外围电路的设计。
9
CLK
HCTL-2020具有的功能 CK 细分脉冲 计数方向 U/D 级联脉冲 CNT CAS CNTDECR
54o
= 1
3
33kΩ
24kΩ
18kΩ
56kΩ
72o
13 12
= 1
-Esinω t 144o
11
126o
10
UR
12
3+ 13
11+ 11’
13
电阻链分相细分优缺点
优点: 具有良好的动态特性,应用广泛 缺点: 细分数越高所需的元器件数目也成比例地 增加,使电路变得复杂,因此电阻链细分 主要用于细分数不高的场合。
1 2 3 4 5 6 7 8
19
微机量化细分的优缺点
优点:利用判别卦限和查表实现细分,相对 来说减少了计算机运算时间,若直接算反函 u1 / u2 )或 arc cot(u1 / u2 ) 要化更多的时 数arctan( 间;通过修改程序和正切表,很容易实现高 的细分数。 缺点:需要进行软件查表,细分速度慢,主 要用于输入信号频率不高或静态测量中。

测控电路 第7章 信号细分与辨向电路

测控电路 第7章 信号细分与辨向电路
7第 章
信号细分与辨向电路
7.1 直传式细分电路 7.2 平衡补偿式细分
信号细分与辨向电路
为什么要细分? 提高分辨力
信号细分电路又称插补器,是采用电路手段对周期性的增量码信号进行插值 提高仪器分辨力的一种方法。细分的基本原理是:根据周期性测量信号的波 形、幅值或者相位的变化规律,在一个周期内进行插补,从而获得优于一个 信号周期的更高的分辨力。 高分辨力是高精度的必要条件。
第7章 信号细分与辨向电路
19
7.2.4频率跟踪细分——锁相倍频细分
锁相式数字频率合成技术:用来实现测量信号的n倍频,以实现n细分
鉴相器 fi
fo/n
环路滤波器 Uc 压控振荡器 fo
n分频器
优点:结构较简单,细分数高的,对信号失真度无严格要求。 缺点:为有差系统,对输入信号的角频率的稳定性要求高,不能辨向。 主要用于电气倍频和回转部件的角度与传动比等的测量,这时比较容易保持fi接近恒定。
i
也可为幅值,相位,频率等
x -x
比较器
iF
K
s
x
F

+
-
N
xo
• xo为系统输出量,是数字代码,代码
F
多是脉冲数
• 计数器具有积分作用
• Ks为前馈环节的灵敏度 • F为反馈环节的灵敏度
细分数为
KF
xo xi
1 F
第7章 信号细分与辨向电路
16
7.2.1 相位跟踪细分
原理
umsin(t+j)
放大 整形
A A B
第7章 信号细分与辨向电路
DG2 &
1
A
AHale Waihona Puke RCDG1

测控电路第七章习题

测控电路第七章习题

第七章 信号细分与辨向电路
7-1
图7-31为一单稳辨向电路,输入信号A 、B 为相位差90︒的方波信号,分析其辨向原理,并分别就A 导前B 90︒、B 导前A 90︒的情况,画出A '、
U o1、U o2的波形。

7-2
参照图7-6电阻链五倍频细分电路的原理,设计一电阻链二倍频细分电路。

7-3 若测得待细分的正余弦信号某时刻值为u 1=2.65V, u 2=-1.33V ,采用微机对信号进行200细分,
请判别其所属卦限,并求出对应的θ值和k 值。

7-4 在图7-9所示只读存储器256细分电路中,请计算第A000(十六进制)单元的存储值。

图7-9
7-5 在图7-14a 所示鉴相电路中为什么要设置门
槛,门槛电路是如何工作的?
7-6 请说明图7-19中用sin A α+cos A αtg B β代替
sin θd =sin(A α+B β),用cos A α-sin A αtg B β代替cos θd =cos(A α+B β),为什么不会带来显著误差?
G5U o1
U o2
题7-1图
A sin θA cos θD 0
6 7 8 9 . . . . . . F X
X
图7-19
7-7 请比较相位跟踪细分、幅值跟踪细分和脉冲调宽型幅值跟踪细分的优缺点。

cosθsinθ d
N
1
N
2
E cos
-E
图7-6。

测控电路信号细分和辩向电路60页PPT

测控电路信号细分和辩向电路60页PPT
测控电路信号细分和辩向电路
11、获得的成功越大,就越令人高兴 。野心 是使人 勤奋的 原因, 节制使 人枯萎 。 12、不问收获,只问耕耘。如同种树 ,先有 根茎, 再有枝 叶,尔 后花实 ,好好 劳动, 不要想 太多, 那样只 会使人 胆孝懒 惰,因 为不实 践,甚 至不接 触社会 ,难道 你是野 人。(名 言网) 13、不怕,不悔(虽然只有四个字,但 常看常 新。 14、我在心里默默地为每一个人祝福 。我爱 自己, 我用清 洁与节 制来珍 惜我的 身体, 我用智 慧知 识充实 我的头 脑。 15、这世上的一切都借希望而完成。 农夫不 会播下 一粒玉 米,如 果他不 曾希望 它长成 种籽; 单身汉 不会娶 妻,如 果他不 曾希望 有小孩 ;商人 或手艺 人不会 工作, 如果他 不曾希 望因此 而有收 益。-- 马钉路 德。

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

测控电路第七章信号细分与辨向电路

测控电路第七章信号细分与辨向电路
中国计量学院
第七章 信号细分与辨向电路
计量测试工程学院 朱维斌
信号细分电路概念: 信号细分电路又称插补器,是采用电路的手段对周期性的测量信号进行插值 提高仪器分辨力。 信号的共同特点: 信号具有周期性,信号每变化一个周期就对应着空间上一个固定位移量。 电路细分原因: 测量电路通常采用对信号周期进行计数的方法实现对位移的测量,若单纯对 信号的周期进行计数, 则仪器的分辨力就是一个信号周期所对应的位移量。为了 提高仪器的分辨力,就需要使用细分电路。 细分的基本原理: 根据周期性测量信号的波形、振幅或者相位的变化规律,在一个周期内进行插 值,从而获得优于一个信号周期的更高的分辨力。
计量测试工程学院 朱维斌
参照图7-6电阻链五倍频细分电路的原理,设计一电阻链二倍频细分电路。
12kΩ Esinω t 12kΩ 45o 12kΩ 12kΩ Ecosω t 12kΩ 135o ∞ + 90o ∞ + 0o ∞ + 1 3
=1
A
+ N
∞ + 2 4
=1
B
+ N
+ N
12kΩ -Esinω t UR
-Esinωt
R1=0 KΩ,R2=12 KΩ
1 30°: arctanR2 30
R
R1 R2 12K
180° ~270° 移相 270° ~360° 移相
-Ecosωt
R1=4.39 KΩ,R2=7.61 KΩ
1 60°: arctan R2 60
R
R1 R2 12K
稳态 暂态
计量测试工程学院 朱维斌
典型的积分式单稳触发器
A′ B′
正 向 运 动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u2 R2 uo
E R1 R1 R2
u2
uo
arctan( R1 / R2 )
输出电压的幅值与相位都与R1 u1 和R2的比值有关。
R1

ER2 R1 R 2
u1
不同相的输出电压信号经电压比较器整形为方波,然后经 逻辑电路处理即可实现细分。
测控电路
改变输入信号可改变象限:
Ⅰ: Ⅱ: Ⅲ: Ⅳ: u1=Esin t,u2=Ecos t u1=Ecos t ,u2=-Esin t u1=-Esin t,u2=-Ecos t u1=-Ecos t ,u2=Esin t Ecos t φ=0 ° ~90 ° φ=90 ° ~180 ° φ=180 °~270° φ=270 ° ~360 °
72o
13 12
=
1
11
144o
126o
9 8
=
1
10
UR
图7-6
下一页


上一页
测控电路
Esint
1 2 3 13 11 13 12 11 3 5 6 4
8
10 9 8 10
五 倍 频 细 分 电 路 的 波 形
4
测控电路
优点: 具有良好的动态特性,应用广泛 缺点: 细分数越高所需的元器件数目也成比例地增加,使电 路变得复杂,因此电阻链细分主要用于细分数不高的场 合。


上一页
下一页
测控电路
细分的基本原理:
根据周期性测量信号的波形、振幅或者相位的变
化规律,在一个周期内进行插值,从而获得优于
一个信号周期的更高的分辨力。又称插补器。 信号的共同特点:
信号具有周期性,信号每变化一个周期就对应着空间 上一个固定位移量。


上一页
下一页
测控电路
辨向:
由于位移传感器一般允许在正、反两个方向移动, 在进行计数和细分电路的设计时往往要综合考虑辨 向的问题。


上一页
下一页
测控电路
第一节
四细分辨向电路
输入信号:具有一定相位差(通常为90)的两路方波信号。
细分原理:对两路方波的突变沿进行处理(一个周期有两个突变沿),
提取四个突变沿,实现四细分。
辨向原理:根据两路方波相位的相对超前和滞后的关系作为判别依据。

Y
VA’
B O W VB

VA
VB’
B
W
VA VB


上一页
下一页
测控电路
第三节 微型计算机细分
输入信号:原始正余弦信号u1=Asin和u2=Acos
过零 比较器
u
辨向 电路 可逆 计数器
u1
u2
Asin Acos
∩/#
∩/#
数字 计算机
1 2 3 4 5
6 7
8 t
显示电路
a) 电路原理图
b) 卦限图
图7-8 微型计算机8细分
返 回 上一页 下一页
=
1
11
162o 18k 24k 56k 33k Ω Ω Ω Ω Ecosω t 2 4 k 3 3 k 5 6 k1 8 k Ω Ω Ω Ω
∞ + + N
∞ + + N ∞ + + N ∞ + + N ∞ + + N ∞ + + N
=
1
10
12kΩ
90o
=
1
4
54o
=
1
3
33k 24k 18k 56k Ω Ω Ω Ω -Esinω t
-
DG2
R3 1
A & ≥1 B
B & A A & B A B & DG10 UO2
B
DG6
B
测控电路
原理:利用单稳提取两路方波信号的边沿实现四细分
A A B B 单稳 单稳 单稳 单稳 A’ A’ 异或
四细分输出
B’
B’
0 1 1-0
DG3 &
0 1-0
A
A
0 1
1
1 0
0-1
R1
DG1
VA VB
下一页

测控电路


上一页
DG3 & A R1 1 C1 A & A R2 1 C2 DG4 A DG8 & B C3 B & B R4 1 DG7 C4 DG9
B & ≥1 A B & A A & B A & B DG5 UO1
A
DG1
图 7 2 单 稳 四 细 分 辨 向 电 路


上一页
下一页
测控电路
原理:
设电阻链由电阻R1和R2串联而成,电阻链两端加有交流电 压u1、u2,其中,u1=Esint,u2=Ecost 。
uo E sin tR2 /( R1 R2 ) E costR1 /(R1 R2 )
U om E
2 R1 2 R2
/( R1 R2 )
辨向原理:
正向:Uo1有4细分脉冲输出,Uo2始终为高电平 反向:Uo1始终为高电平,Uo2有4细分脉冲输出
Uo1
Uo2
+ 可 逆 计 数 — 器
实际位移情况


上一页
下一页
测控电路
第二节
电阻链分相细分
输入信号:两路正余弦交流信号。
(频率相同但相位不同)
工作原理:将正余弦信号施加在电阻链两端,在电阻链的各接 点上得到幅值和相位各不相同的电信号, 经处理后(整形 、脉冲形成、逻辑组合电路),在一个周期内获得若干计 数脉冲,实现细分。
C1


上一页
下一页
测控电路
B
& ≥1 & & & DG5 UO1
B
Hale Waihona Puke & ≥1 & & & DG10 UO2
A
B A A B A B
A
B A A B A B
A B A' B' A' B’ Uo1 Uo2
返 回
A B A' B' A' B’ Uo1 正向时
上一页
Uo2
下一页
反向时
测控电路
第七章 信号细分与辨向电路
第一节
第二节
四细分辨向电路
电阻链分相细分
第三节
第四节
微型计算机细分
只读存储器细分
第五节
思考题
平衡补偿式细分电路


上一页
下一页
测控电路
电路细分原因:
测量电路通常采用对信号周期进行计数的方法实现 对位移的测量,若单纯对信号的周期进行计数, 则仪器的分辨力就是一个信号周期所对应的位移 量。为了提高仪器的分辨力,就需要使用细分电 路。
-Esin t
Esin t


上一页
-Ecos t
电阻细分桥(12细分)
测控电路
下一页
36o
电阻链五倍频 细分电路
12kΩ
Esinω t 56k 33k 18k 24k Ω Ω Ω Ω
∞ + + N ∞ + + N ∞ + + N ∞ + + N 1 2
=
1
108o
3
18o
5 6
=
1
4
0o
13 12 9 8 6 5 1 2
测控电路
卦限
1 2 3 4 5 6 7 8
返 回
u1的极性 u2的极性
+ + + +
上一页
|u1|、|u2|大小
|u1|〈|u2| |u1|〉|u2| |u1|〉|u2| |u1|〈|u2| |u1|〈|u2| |u1|〉|u2| |u1|〉|u2| |u1|〈|u2|
相关文档
最新文档