风速分布函数简介

风速分布函数简介
风速分布函数简介

● 韦伯分布 概率密度函数:()1()(),0,,0k

v k c k v f v e v k c c c

--=

≥> 累计分布函数:()0()1k

v c

F v v e

-≤=-

式中:x 为随机变量,c 为比例参数(scale parameter ),k 为形状参数(shape parameter )

● Gamma 分布

()1()exp v v f v ααβαβ

-??=-

?Γ??

MATLAB 实现:

彰武的weibull分布拟合结果(逐年数据拟合)①以0.5m/s为组距

Dec 2.6205 1.5180 1.6710 0.9836 1.91449 1.2363 4.7080 0.9648

?密集城市高层建筑屋顶风资源评估大纲

①introduction

介绍风资源评估的手段,城市建筑风能利用的潜力,有哪些人做了研究(可列表)

②method

介绍用到的方法与公式,主要集中在风速分布的不同模型密度函数与累计函数,然后是参数的估计方法,然后是拟合的检验方法。

2.1 weibull distribution; gamma distribution; ….Distribution; beta distribution; wakepy distribution

2.2 maximum likelihood method

2.3 Chi-square error 和R2检验的原理、公式,结果的含义

③results

3.1 逐年,逐月,总计的各种分布函数参数估计的值,及图(2~3个左右的图或表);参数跟平均风速的关系(经验公式)

3.2 风速分析,逐月的平均风速+平均风向日分布曲线(12张图或者2张图)

3.3 风向分析(玫瑰图)

3.4 湍流强度分析(一到两张图)

3.5 most energy-carrying wind speed analysis(公式和计算结果图表)

●用韦伯分布进行风能密度估计

风速分布函数简介

● 韦伯分布 概率密度函数:()1()(),0,,0k v k c k v f v e v k c c c --= ≥> 累计分布函数:()0()1k v c F v v e -≤=- 式中:x 为随机变量,c 为比例参数(scale parameter ),k 为形状参数(shape parameter ) ● Gamma 分布 ()1()exp v v f v ααβαβ -??=- ?Γ?? MATLAB 实现:

彰武的weibull分布拟合结果(逐年数据拟合)①以0.5m/s为组距

Dec 2.6205 1.5180 1.6710 0.9836 1.91449 1.2363 4.7080 0.9648

?密集城市高层建筑屋顶风资源评估大纲 ①introduction 介绍风资源评估的手段,城市建筑风能利用的潜力,有哪些人做了研究(可列表) ②method 介绍用到的方法与公式,主要集中在风速分布的不同模型密度函数与累计函数,然后是参数的估计方法,然后是拟合的检验方法。 2.1 weibull distribution; gamma distribution; ….Distribution; beta distribution; wakepy distribution 2.2 maximum likelihood method 2.3 Chi-square error 和R2检验的原理、公式,结果的含义 ③results 3.1 逐年,逐月,总计的各种分布函数参数估计的值,及图(2~3个左右的图或表);参数跟平均风速的关系(经验公式) 3.2 风速分析,逐月的平均风速+平均风向日分布曲线(12张图或者2张图) 3.3 风向分析(玫瑰图) 3.4 湍流强度分析(一到两张图) 3.5 most energy-carrying wind speed analysis(公式和计算结果图表) ●用韦伯分布进行风能密度估计 ●

正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用.

正态分布、指数分布、对数正态分布和威布尔分布函数及其在工程分析中的应用 071330225 张洋洋

目录 正态分布函数 (3) 正态分布应用领域 (4) 正态分布案例分析 (5) 指数分布函数 (5) 指数分布的应用领域 (6) 指数分布案例分析 (7) 对数正态分布函数 (7) 对数正态分布的应用领域 (9) 对数正态分布案例分析 (9) 威布尔分布函数 (10) 威布尔分布的应用领域 (16) 威布尔分布案例分析 (16) 附录 (18) 参考文献 (21)

正态分布函数【1】 0.20 0.15 0.10 0.05 105510 正态分布概率密度函数f(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 绿线:μ=1 σ=3 均数μ决定正态曲线的中心位置;标准差σ决定正态曲线的陡峭或扁平程度。σ越小,曲线越陡峭;σ越大,曲线越扁平。 1.0 0.8 0.6 0.4 0.2 105510 正态分布函数F(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。

1.0 0.8 0.6 0.4 0.2 105510 正态分布可靠度函数R(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。 2.5 2.0 1.5 1.0 0.5 105510 正态分布失效率函数λ(t) 蓝线:μ=-1 σ=2 红线:μ=1 σ=2 棕线:μ=-1 σ=3 均数μ改变,图像会进行平移,标准差σ改变,图形陡峭度发生变化。σ越小,图像越陡。正态分布应用领域【1】 正态分布是一种最常见的连续型随机变量的分布,它在概率论和数理统计中无论在理论研究还是实际应用上都占有头等重要的地位,这是因为它在误差理论、无线电噪声理论、自动控制、产品检验、质量控制、质量管理等领域都有广泛应用.数理统计中许多重要问题的解决都是以正态分布为基础的.某些医学现象,如同质群体的身高、红细胞数、血红蛋白量、胆固醇等,以及实验中的随机误差,呈现为正态或近似正态分布;有些资料虽为偏态分布,但经数据变换后可成为正态或近似正态分布,故可按正态分布规律处理。

MATLAB绘制威布尔分布曲线

MATLAB 绘制威布尔分布曲线 威布尔分布概率密度函数: 1(/)(,,)()a a x m a x f x m a e m m --= 威布尔分布概率分布函数: ()()1a mx F x e -=- 其中m>0,是尺度参数也叫比例参数,a>0是形状参数。 X 是随机变量,是未知参数,表示时间延滞。 图1:设定尺度参数m 值为1,取五个形状参数a ,自变量x 代码如下: m=[1 1 1 1 1,2]; a=[0.5 1 1.5 2.5 5,5]; x=linspace(0,5); linecolor=['r','b','g','k','y']; for n=1:5 y1=m(n)*a(n)*((m(n)*x).^(a(n)-1)).*(exp(-(m(n)*x).^a(n))); y=1-exp(-(m(n)*x).^a(n)); subplot(1,2,2) title('图1:概率分布函数'); plot(x,y);

hold on; subplot(1,2,1) type=linecolor(n); title('图1:概率密度函数'); plot(x,y1,type); hold on; legend('m=1,a=0.5','m=1,a=1','m=1,a=1.5','m=1,a=2.5','m=1,a=5'); end 图2:设定形状参数a值为2,取五个尺度参数m,自变量x 代码如下: m=[0.5 0.75 1 1.5 1.75,2]; a=[2 2 2 2 2.5]; x=linspace(0,5); linecolor=['r','y','b','g','k']; for n=1:5 y1=m(n)*a(n)*((m(n)*x).^(a(n)-1)).*(exp(-(m(n)*x).^a(n))); y=1-exp(-(m(n)*x).^a(n)); subplot(1,2,2) title('图2:概率分布函数'); plot(x,y); hold on;

极端风速和发生时间隔分布的概率分布研究 文献翻译

极端风速和发生时间间隔分布的概率分布研究 摘要:这篇论文是基于香港记录的极端风速数据对极端风速及其发生时间间隔分布可能性的研究调查。I型极值分布、三参数Weibull分布、双参数Weibull分布都被这项研究所采用来匹配风速数据。假设检验发现,尽管这三种分布型都适合用来描述计算风速数据的分布可能性,但是I型极值分布和三参数Weibull分布比二参Weibull分布更加恰当一些。据观察,特定极端风速的发生时间间隔是随着三参数Weibull分布或二参Weibull分布的随机变量,而二参Weibull分布模型相对来说是一个更好的选择。给出一个研究案例来讨论可能性分析的结果。 1.介绍 对结构的风载荷评估需要对结构寿命内的预测对风知识有一个最全面深入的了解。Davenport是最早运用概率统计理论来决心风速设计的研究人员之一。各种分布可能性的模型已经被用于或者建议用于记录的风速的统计分析。在这些模型之间,I型极值分布就是众所周知的Gumbel分布,一个拟合最大值的经典模型。Gumbel促进了I型极值分布在特大洪水预报中的应用。1970年以后,很多研究人员都认为I型极值分布是适合于极端风速数据分布研究的。因此,I型极值分布是在世界各地结构设计规范和标准采用的最常用的方法。广义极值分布是由Jenkinson通过合并三个极值分布类型到一个简单的数学形式中来的,这一概念模型已经被广泛的使用于风工程当中。一个新的极值分布模型,实际上已经覆盖了I型极值分布的模型,被Li等人所建议提出来,这是最近应用到风行动下玻璃包层的时间依赖性可靠性分析。这些研究表明这个新的分布对于描述极值风速的可能性分布是一种有效的和灵活的工具。Gomes 和Vickery通过应用Gumbel极值分布提出了一种在混合天气状态下用于极值风速分析的新方法。与广义极值分布十分相近的广义帕累托分布被很多研究人员应用到适应极值风速。正如Holmes 和Moriarty所评论,她的最大优势在于利用感兴趣的风暴所产生的高阵风上的相关数据,而不仅仅是年最大风速,同时也没有必要为了一个值而每年进行分析。 威布尔分布是另一种广泛使用于适应风速数据的分布模型。Stewart 和Essenwanger通过威布尔分布研究地球近地层风速的频率分布,发现在极值预报中三参数模型比二参数模型要更好。Deaves和Lines展示了一种适应风速数据的提高方法到威布尔分布中,也证明了二参数威布尔分布可以适应于所有风速数据的全部范围,也证明风速计分辨率是足够的,十分钟平均风速也是适用的。Ulgen和Hepbasli通过使用Izmir的风速数据检查了两种风速分布功能的威布尔参数分布,同时也威布尔分布和瑞利分布相比较。威布尔分布被发现是最准确的分布为根的试验方法的均方误差,并适合于表示的风速数据密尔的实际概率分布。Lun和Lam计算出数值估计并用威布尔二参数分布功能去描述过去30年的一组风数据的风速频率分布,并检查了三个地方:一个城区、一个城市中心极其暴露的区域和香港一个开放的海域威布尔密度分布功能的两个参数。 很多先前的关于风速可能性分布分析的研究,包括上面所提及的,都主要关于风速概率分布的测定。据记录,一般在先前的研究当中都只是考虑了风速的大小和方向和发生频率;而强风发生间隔的可能性分布是常常被忽略的。在这项研究中将会呈现一个指定的强风速的发生间隔实际上是具有某种概率分布的随机变量。然而,这种现象是还没有调查以往概率分析的基础上。 为了精确的估计极值风速,同时考虑指定风速发生可能性和它的发生间隔是很合理的。在这篇文章中,风速的发生频率和发生间隔都将被考虑到极值风速可能性分析当中。一项案例研究展示是在基于香港记录的极端风速数据上。据作者所知,这项研究可能是风工程中的

分析不同气象地形条件下风速概率分布模型研究

分析不同气象地形条件下风速概率分布模型研究 风速依托天气系统产生,而在局部或全球范围内发生天气变化,能够对风速序列波动产生影响,导致风能资源的分布发生变化。本文主要从大气循环系统及时空功率谱方面入手,分析与之分布模型相关的联系因子,寻找我国气象地形环境下风速概率分布模型研究的相应方法。 标签:气象地形条件;风速概率分布模型;模型研究 通过评估风能资源,确定变动规律,一定程度上能够为决定风能转化的相关工作提供积极意义。而建立风速概率分布模型,能够更加直观的对风速进行统计,对风能资源进行量化。 一、前期准备 进行风速概率分布模型研究,我们需要进行充分的前期准备。一方面,需要通过测定不同气象地形环境下的风速数据,从而进一步寻找规律,并为概率分布模型的研究做充分的数据准备[1]。通过逐步完善典型气象地形环境下的风速数据,例如风速,平均值,风向气压等,保证数据的有效性和完整性,然后将数据订正为可适用的风速及风向结果。 二、相关性分析 进行相应的气象地形因素及其风速之间的相关性分析,可以进一步为风速概率分布模型的研究提供必要数据。首先,通过考虑大气系统的温度,荷电等成分进行垂直运动活动层次的相对划分,主要分析对流层天气现象。而气象因素主要有温度,风向,压强,降雨量,湿度等影响,从而表示空气性质。风速则与风向共同构成其空气的主要运动情况。运用威布尔分布(weibull),对数正态分布(ln),威布尔双峰(ww),伽馬威布尔(gw),单结尾正态(nw),瑞利分布(r)等多种分布函数进行拟合对比。通过对比得出风速的年概率分布与气温,气压,湿度之间具有相关性,进一步选取周概率分布数据进行确认[2]。最后,做相关性对比表,通过综合形成风速分布与各气象要素之间的周相关性图。 三、风速概率分布研究 (一)不同区域分布特性 从华北区域拟合情况进行分析,选用不同的评价指标,对选取的最终拟合结果有较大的影响,从而无法得出最优结果。因此,我们需要将个别的指标进行统一化,从而形成综合性评价指标。 指标为:当结果最优时,R2值最大,反之最小,RMSE及SSE作为卡方值,趋向接近于零,综合指标中1为每项最大值,因此,最接近1,则为最优,综合

Excel求解线性回归详解(LINEST 函数)

LINEST 函数 本文介绍Microsoft Office Excel 中LINEST 函数(函数:函数是预先编写的公式,可以对一个或多个值执行运算,并返回一个或多个值。函数可以简化和缩短工作表中的公式,尤其在用公式执行很长或复杂的计算时。)的公式语法和用法。有关绘制图表和执行回归分析的详细信息,请点击“请参阅”部分中的链接。 说明 LINEST 函数可通过使用最小二乘法计算与现有数据最佳拟合的直线,来计算某直线的统计值,然后返回描述此直线的数组。也可以将LINEST 与其他函数结合使用来计算未知参数中其他类型的线性模型的统计值,包括多项式、对数、指数和幂级数。因为此函数返回数值数组,所以必须以数组公式的形式输入。请按照本文中的示例使用此函数。 直线的公式为: y = mx + b - 或- y = m1x1 + m2x2 + ... + b(如果有多个区域的x 值) 其中,因变量y 是自变量x 的函数值。m 值是与每个x 值相对应的系数,b 为常量。注意,y、x 和m 可以是向量。LINEST 函数返回的数组为{mn,mn-1,...,m1,b}。LINEST 函数还可返回附加回归统计值。 语法 LINEST(known_y's, [known_x's], [const], [stats]) LINEST 函数语法具有以下参数(参数:为操作、事件、方法、属性、函数或过程提供信息的值。): ?Known_y's必需。关系表达式y = mx + b 中已知的y 值集合。 如果known_y's 对应的单元格区域在单独一列中,则known_x's 的每一列被视为一个独立的变量。 如果known_y's 对应的单元格区域在单独一行中,则known_x's 的每一行被视为一个独立的变量。 ?Known_x's可选。关系表达式y = mx + b 中已知的x 值集合。

风速概率分布估计和风能评估2016翻译最终版

风速概率分布估计和风能评估2016 摘要 风能的统计特征以及合适的风力发电机组的选择对于有效评估风力发电潜 力和设计风电场至关重要。本研究以中国中部四个地点为例,对风速概率分布的流行参数和非参数模型以及这些模型参数的估计方法(广泛使用的方法和随机启发式优化算法)进行了比较。仿真结果表明,非参数模型在拟合精度和操作简便性方面优于所有选定的参数模型,随机启发式优化算法优于广泛使用的估计方法。本研究还回顾和讨论了文献提出的六个功率曲线以及风能潜在评估过程中涡轮 机之间相互唤醒效应引起的功率损耗。评估结果表明,功率曲线的选择影响风力涡轮机的选择,考虑相互唤醒效应可能有助于优化风能评估中的风电场设计。

目录 1 介绍 (1) 2 以前的工作概述 (2) 2.1 风速分布函数概述 (2) 2.2估计方法概述 (4) 3 数据收集和简要分析 (5) 4 风速分布突变试验 (5) 4.1 Mann-Whitney U检验 (5) 4.2 双样本Kolmogorov-Smirnov检验(K-S检验) (6) 5 参数模型和非参数模型 (6) 5.1 常规分布 (6) 5.2 用于估计参数的方法 (6) 5.2.1 时刻法(MM) (6) 5.2.3 最小二乘估计(LSE)法 (6) 5.2.4 最大熵原理法(MaxE) (6) 5.3非参数模型 (7) 5.4杜鹃搜索(CS)算法 (7) 6 仿真比较结果 (7) 6.1 评价标准 (7) 6.2 突变试验分析 (8) 6.3 分析估算结果 (8) 6.3.1 分析参数模型 (8) 6.3.2 参数和非参数建模的比较 (9) 7 风能评估 (10) 7.1 风力密度的计算 (10) 7.2 风力发电机效率 (10) 7.3 计算因素 (10) 7.4 风电场风电损耗估算 (10) 7.5 风能计算与分析 (11) 8 结论 (12)

双参数威布尔分布函数的确定及曲线拟合(精)

2007.NO.4. CN35-1272/TK 图 1威布尔函数拟合曲线的仿真系统模块 作者简介 :包小庆 (1959~ , 男 , 高级工程师 , 从事可再生能源的研究。 大型风电场的建设不但可以减缓用电短缺情况 , 而且并网后还能为电网提供很大一部分电能。而大型风电场的选址 , 与该地的风速分布情况有关。用于描述风速分布的模型很多 , 如瑞利分布、对数正态分布、 r 分布、双参数威布尔分布、 3参数威布尔分布 , 皮尔逊曲线拟合等。经过大量的研究表明 , 双参数威布尔分布函数更接近风速的实际分布。本文采用 4种方法计算威布尔分布函数的参数 , 并利用计算出的参数确定威布尔分布函数的实际数学模型进行曲线拟合。最后以白云鄂博矿区风电场拟选址为例 , 使用计算机软件 (MATLAB 对该地区风速威布尔分布函数进行曲线拟合 , 得到该地区不同高度的风速分布函数曲线。 1双参数威布尔分布函数的确定 双参数威布尔分布是一种单峰的正偏态分布函数 , 其概 率密度函数表达式为 : p(x=k x " exp-x " (1 式中 :k ———形状参数 , 无因次量 ; c ———

尺度参数 , 其量纲与速度相同。为了确定威布尔分布函数的实际模型 , 需计算出实际情况下对应函数的 2个参数。估算风速威布尔参数的方法很多 , 本文给出4种有效的方法以确定 k 和 c 值。 1.1HOMER 软件法 HOMER 是一个对发电系统优化配置与经济性分析的软件。通过输入 1a 逐时风速数据或者月平均风速数据 , 根据实际情况设置相应参数 , 即可计算得到 k 和c 值 , 此时计算出的 k 和 c 值是计算机系统认为的最佳值。 1.2Wasp 软件法 Wasp 是一个风气候评估、 计算风力发电机组年发电量、风电场年总发电量的软件。通过输入风速统计资料 , 计算机可以直接计算出 k 和 c 值。 1.3最小二乘法 通过风速统计资料计算出最小二乘法拟合直线 y=ax+b 的斜率 a 和截距 b 。由下式确定 k 和 c 的值 : k=b (2 c=esp a (3 1.4平均风速和最大风速估计法 从常规气象数据获得平均风速和时间 T 观测到的 10min 平均最大风速 V m ax , 设全年的平均风速为通过下式计算 k 和 c 值 : k=ln (lnT (4 c=(5

威布尔分析方法

第1章威布尔分析 1.1 引言: 在所有可用的可靠性计算的分布当中,威布尔分布是唯一可用于工程领域的。在1937,Waloddi Weibull教授(1887-1979)创造性的提出了该种分布,它是用于失效数据分析分布中应用最广泛的分布之一,也用于寿命数据分析,因为系统或部件的寿命周期的测量也需要分析。 一位瑞典的工程师和一位数学家潜心研究冶金的失效,威布尔教授曾指出正态分布要求冶金的初始强度服从正态分布,而情况并非如此。他还指出对于功能需求可以包含各种分布,其中包括正态分布。 1951年他发表了代表作,“一个具有广泛适用性的统计分布函数”,威布尔教授声称寿命数据可以从威布尔分布族中选择最恰当的分布,然后用合适的参数进行合理准确的失效分析。他列举七种不同的情况来证明威布尔分布可顺利用于很多问题的分析。 对威布尔分布的最初反应是普遍诊断它太过完美以致于不真实。尽管如此,失效数据分析领域的先驱们还是开始应用并不断改进,直到1975年,美国空军才认可了它的优点并资助了威布尔教授的研究。 今天,威布尔分析涉及图表形式的概率分析以找出对于一个给定失效模式下最能代表一批寿命数据的分布。尽管威布尔分布在检测寿命数据以确定最合适的分布方面在世界范围内处于领先位置,但其它分布也会偶尔用于寿命数据分析包括指数分布,对数正态分布,正态分布,寿命数据有了对应的统计学分布,威布尔分析对预计产品寿命做了准备。这种具代表性的样本分布用来估计产品的重要寿命特征,如可靠性,某一时刻的失效率,产品的平均寿命及失效率。 1.1.1威布尔分析的优点: 威布尔分析广泛用于研究机械、化工、电气、电子、材料的失效,甚至人体疫病。威布尔分析最主要的优点在于它的功能: ?提供比较准确的失效分析和小数据样本的失效预测,对出现的问题尽早的制订解 决方案。 ?为单个失效模式提供简单而有用的图表,使数据在不充足时,仍易于理解。 ?描述分布状态的形状可很好的选择相应的分布。 ?提供基于威布尔概率图的斜率的物理失效的线索。

线性回归分析在EXCEL的常用函数

线性回归分析在EXCEL的常用函数 在Excel中线性回归分析(y=ax+b)常用的函数: 详见以下说明: CORREL 函数 返回单元格区域array1 和array2 之间的相关系数。使用相关系数可以确定两种属性之间的关系。例如,可以检测某地的平均温度和空调使用情况之间的关系。 语法 CORREL(array1,array2) Array1第一组数值单元格区域。 Array2第二组数值单元格区域。 注解 如果数组或引用参数包含文本、逻辑值或空白单元格,则这些值将被忽略;但包含零值的单元格将计算在内。 如果array1 和array2 的数据点的个数不同,函数CORREL 返回错误值#N/A。 如果array1 或array2 为空,或者其数值的s(标准偏差)等于零,函数CORREL 返回错误值#DIV/0!。 SLOPE 函数 返回根据known_y's 和known_x's 中的数据点拟合的线性回归直线的斜率。斜率为直线上任意两点的重直距离与水平距离的比值,也就是回归直线的变化率。 语法

SLOPE(known_y's,known_x's) Known_y's为数字型因变量数据点数组或单元格区域。 Known_x's为自变量数据点集合。 注解 参数可以是数字,或者是包含数字的名称、数组或引用。 如果数组或引用参数包含文本、逻辑值或空白单元格,则这些值将被忽略;但包含零值的单元格将计算在内。 如果known_y's 和known_x's 为空或其数据点个数不同,函数SLOPE 返回错误值#N/A。 STEYX 函数 返回通过线性回归法计算每个x 的y 预测值时所产生的标准误差。标准误差用来度量根据单个x 变量计算出的y 预测值的误差量。 语法 STEYX(known_y's,known_x's) Known_y's为因变量数据点数组或区域。 Known_x's为自变量数据点数组或区域。 注解 参数可以是数字或者是包含数字的名称、数组或引用。 逻辑值和直接键入到参数列表中代表数字的文本被计算在内。 如果数组或引用参数包含文本、逻辑值或空白单元格,则这些值将被忽略;但包含零值的单元格将计算在内。 如果参数为错误值或为不能转换为数字的文本,将会导致错误。 如果known_y's 和known_x's 的数据点个数不同,函数STEYX 返回错误值#N/A。 如果known_y's 和known_x's 为空或其数据点个数小于三,函数STEYX 返回错误值#DIV/0!。

蒙特卡洛方法解决威布尔密度分布函数

% P(X>1.8)=1-P(X<=1.8) % =1-P(0

00.51 1.52 2.53 3.54 00.1 0.2 0.3 0.4 0.5 0.6 0.7 概率密度分布函数 %函数积分的方法 a=2; k=3; syms x f Fx ; f=(k/a).*((x/a).^(k-1)).*exp(-(x/a).^k); %当要求X>1.8时,也就是 da=int(f,1.8,inf) %最终答案0.4824 da =1/exp(729/1000); %蒙特卡罗方法:随机试验的方法计算积分 % 方法1: % x 范围(0,1.8),y 的范围是(0,0.6)形成一个矩形 % 均匀布点N ,计算落入曲线下面的数据点的个数acount

% 那么P(x<=1.8)的(面积)概率也就是1.8*0.6*acount/N % 当然,这个方法取决于布点的密度,也就是个数的多寡 a=2; k=3; x=0:0.01:1.8; y=0:0.01:0.6; sx=size(x); sy=size(y); N=sx(1,2)*sy(1,2); %总共有N=11041个点 acount=0; %计算落入曲线下方的点的个数 for i=1:sx(1,2) for j=1:sy(1,2) t=(k/a).*((x(i)/a).^(k-1)).*exp(-(x(i)/a).^k); if y(j)

相关文档
最新文档