非线性电路中的混沌现象实验报告
非线性电路中的混沌现象实验报告doc

非线性电路中的混沌现象实验报告篇一:非线性电路混沌实验报告近代物理实验报告指导教师:得分:实验时间: XX 年 11 月 8 日,第十一周,周一,第 5-8 节实验者:班级材料0705学号 XX67025 姓名童凌炜同组者:班级材料0705学号 XX67007 姓名车宏龙实验地点:综合楼 404实验条件:室内温度℃,相对湿度 %,室内气压实验题目:非线性电路混沌实验仪器:(注明规格和型号) 1. 约结电子模拟器约结电子模拟器的主要电路包括:1.1, 一个压控震荡电路, 根据约瑟夫方程, 用以模拟理想的约结1.2, 一个加法电路器, 更具电路方程9-1-10, 用以模拟结电阻、结电容和理想的约结三者相并联的关系1.3, 100kHz正弦波振荡波作为参考信号2. 低频信号发生器用以输出正弦波信号,提供给约结作为交流信号 3. 数字示波器用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形实验目的:1. 了解混沌的产生和特点2. 掌握吸引子。
倍周期和分岔等概念3. 观察非线性电路的混沌现象实验原理简述:混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。
混沌的最本质特征是对初始条件极为敏感。
1. 非线性线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。
除此之外,非线性关系还具有某些不同于线性关系的共性:1.1 线性关系是简单的比例关系,而非线性是对这种关系的偏移1.3 线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化 1.4 非线性是引起行为突变的原因2. 倍周期,分岔,吸引子,混沌借用T.R.Malthas的人口和虫口理论,以说明非线性关系中的最基本概念。
虫口方程如下:xn?1???xn(1?xn)μ是与虫口增长率有关的控制参数,当1 1?,这个值就叫做周期或者不动点。
在通过迭代法解方程的过程中,最终会得到一个不随时间变化的固定值。
非线性混沌电路实验报告

非线性电路混沌及其同步控制【摘要】本实验通过测量非线性电阻的I-U特性曲线,了解非线性电阻特性,,从而搭建出典型的非线性电路——蔡氏振荡电路,通过改变其状态参数,观察到混沌的产生,周期运动,倍周期与分岔,点吸引子,双吸引子,环吸引子,周期窗口的物理图像,并研究其费根鲍姆常数。
最后,实验将两个蔡氏电路通过一个单相耦合系统连接并最终研究其混沌同步现象。
【关键词】混沌现象有源非线性负阻蔡氏电路混沌同步费根鲍姆常数一.【引言】1963年,美国气象学家洛伦茨在《确定论非周期流》一文中,给出了描述大气湍流的洛伦茨方程,并提出了著名的“蝴蝶效应”,从而揭开了对非线性科学深入研究的序幕。
非线性科学被誉为继相对论和量子力学之后,20世界物理学的“第三次重大革命”。
由非线性科学所引起的对确定论和随机论、有序和无序、偶然性与必然性等范畴和概念的重新认识,形成了一种新的自然观,将深刻的影响人类的思维方法,并涉及现代科学的逻辑体系的根本性问题。
迄今为止,最丰富的混沌现象是非线性震荡电路中观察到的,这是因为电路可以精密元件控制,因此可以通过精确地改变实验条件得到丰富的实验结果,蔡氏电路是华裔科学家蔡少棠设计的能产生混沌的最简单的电路,它是熟悉和理解非线性现象的经典电路。
本实验的目的是学习有源非线性负阻元件的工作原理,借助蔡氏电路掌握非线性动力学系统运动的一般规律性,了解混沌同步和控制的基本概念。
通过本实验的学习扩展视野、活跃思维,以一种崭新的科学世界观来认识事物发展的一般规律。
二.【实验原理】1.有源非线性负阻一般的电阻器件是有线的正阻,即当电阻两端的电压升高时,电阻内的电流也会随之增加,并且i-v 呈线性变化,所谓正阻,即I-U 是正相关,i-v 曲线的斜率u i∆∆为正。
相对的有非线性的器件和负阻,有源非线性负阻表现在当电阻两端的电压增大时,电流减小,并且不是线性变化。
负阻只有在电路中有电流是才会产生,而正阻则不论有没有电流流过总是存在的,从功率意义上说,正阻在电路中消耗功率,是耗能元件;而负阻不但不消耗功率,反而向外界输出功率,是产能元件。
非线性电路混沌实验报告

非线性电路混沌实验报告本实验旨在通过搭建非线性电路,观察其在一定条件下的混沌现象,并对实验结果进行分析和总结。
在此过程中,我们使用了一些基本的电子元件,如电阻、电容和电感等,通过合理的连接和控制参数,成功地观察到了混沌现象的产生。
首先,我们搭建了一个基本的非线性电路,其中包括了电源、电阻、电容和二极管等元件。
通过调节电路中的参数,我们观察到了电压和电流的非线性响应,这表明电路的行为不再遵循简单的线性关系。
接着,我们进一步调整电路参数,尤其是电容和电阻的数值,使电路处于临界状态,这时我们观察到了电路输出信号的混沌波形。
混沌波形表现出了随机性和不可预测性,这与传统的周期性信号有着明显的区别。
在观察混沌波形的过程中,我们发现了一些有趣的现象。
首先,混沌波形的频谱分布呈现出了宽带特性,这说明混沌信号包含了多个频率成分,这也是混沌信号难以预测的重要原因之一。
其次,混沌信号的自相关函数表现出了指数衰减的特性,这表明混沌信号的相关性极低,难以通过传统的方法进行分析和处理。
最后,我们还观察到了混沌信号的分形特性,即信号在不同时间尺度下呈现出相似的结构,这也是混沌信号独特的特征之一。
综合以上实验结果,我们可以得出以下结论,非线性电路在一定条件下会产生混沌现象,混沌信号具有随机性、不可预测性、宽带特性、自相关性低和分形特性等特点。
这些特点使得混沌信号在通信、加密、混沌电路设计等领域具有重要的应用前景。
同时,我们也需要注意到混沌信号的复杂性和不确定性,这对于混沌信号的分析和处理提出了挑战,需要进一步的研究和探索。
总之,本实验通过搭建非线性电路,成功地观察到了混沌现象,并对混沌信号的特性进行了初步的分析和讨论。
通过本次实验,我们对混沌现象有了更深入的理解,也为混沌信号的应用和研究提供了一定的参考和启发。
希望本实验能够对相关领域的研究和工程实践有所帮助。
感谢各位的参与和支持!非线性电路混沌实验小组。
日期,XXXX年XX月XX日。
[实验报告]用非线性电路研究混沌现象
![[实验报告]用非线性电路研究混沌现象](https://img.taocdn.com/s3/m/f09c2d0fde80d4d8d15a4fdc.png)
用非线性电路研究混沌现象一. 实验目的掌握用示波器观察正弦波形的周期分岔及混沌现象的方法。
学会自己设计和制作一个实用电感器以及测量非线性器件伏安特性的方法。
二. 实验原理1.非线性电路与非线性动力学实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。
电感器L 和电容C 2组成一个损耗可以忽略的谐振回路;可变电阻R V 和电容器C 1串联将振荡器产生的正弦信号移相输出。
本实验中所用的非线性元件R 是一个三段分段线性元件。
图2所示的是该电阻的伏安特性曲线,从特性曲线显示中加在此非线性元件上电压与通过它的电流极性是相反的。
由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。
图1非线性电路原理图 图2非线性元件伏安特性 图1电路的非线性动力学方程为:1121)(1C C C C U g U U G dtdU C ⋅--⋅= L C C C i U U G dt dU C +-⋅=)(21122 (1)2C L U dt di L -=式中,导纳V R G /1=,1C U 和2C U 分别为表示加在电容器C 1和C 2上的电压,L i 表示流过电感器L 的电流,G 表示非线性电阻的导纳。
2.有源非线性负阻元件的实现有源非线性负阻元件实现的方法有多种,这里使用的是一种较简单的电路,采用两个运算放大器和六个配置电阻来实现其电路如图4所示,实验所要研究的是该非线性元件对整个电路的影响,而非线性负阻元件的作用是使振动周期产生分岔和混沌等一系列非线性现象。
图3有源非线性器件图4双运放非线性元件的伏安特性实际非线性混沌实验电路如图5所示。
图5非线性电路混沌实验电路图三.实验步骤测量一个铁氧体电感器的电感量,观测倍周期分岔和混沌现象。
1.按图5所示电路接线,其中电感器L由实验者用漆包铜线手工缠绕。
可在线框上绕70-75圈,然后装上铁氧体磁心,并把引出漆包线端点上的绝缘漆用刀片刮去,使两端点导电性能良好。
非线性混沌实验报告

非线性混沌实验报告实验报告:非线性混沌1. 实验目的本实验旨在通过模拟和观察非线性混沌现象,探索混沌的数学本质、规律和应用。
2. 实验原理2.1. 什么是混沌?混沌(chaos)是指某些动力系统中的一种行为模式,它表现出极其复杂而又看似无序的运动规律,但却又有一定的确定性和不可重复性,并在很多领域中具有应用价值。
2.2. 非线性混沌的定义和特征非线性混沌(Nonlinear Chaos)是指某些非线性动力系统中的一类特殊混沌状态。
它们通常表现出以下几个特征:(1)极为敏感的初始条件:微小的初值差别会导致在长时间内产生极大的漂移。
(2)随机性行为:混沌状态下的系统呈现出高度复杂且表现随机性的运动规律,与绝大多数稳定系统完全不同。
(3)多周期态:非线性混沌的运动规律常常呈现出多个周期,周期的长度也呈现出一种统计规律。
2.3. 几个著名的非线性混沌系统著名的非线性混沌系统有Lorenz系统、Henon映射、Rössler系统、Mandelbrot集等。
3. 实验过程与结果我们选取了Henon映射系统作为本次实验的对象,通过Matlab 软件对其进行了模拟分析。
实验过程中我们首先设置了Henon映射系统的参数和初值,然后观察了其在不同参数下的运动轨迹和相空间分布情况,并对其进行了一些统计分析和图像处理。
(1)观察Henon映射在不同参数下的运动轨迹和相空间分布情况我们首先选取了较为典型的Henon映射参数a=1.4,b=0.3,并对其初值进行了一些微小扰动。
然后,我们通过Matlab软件调用Henon方程进行了计算和绘图,结果如下图所示:(2)对Henon映射进行分形维数计算和Lyapunov指数统计我们还对Henon映射的分形维数进行了计算和统计,结果为:通过对Henon映射系统的分形维数统计和图像处理,我们发现其分形维数存在着一定的统计性质,并表现出非线性混沌的明显特征。
4. 实验结论通过本次实验,我们得出了关于非线性混沌系统的一些结论和启示:(1)非线性混沌是一种高度复杂的运动模式,表现出极其敏感的初值依赖性,这使得其在现实世界中很难被精确预测和控制。
混沌波形的实验报告(3篇)

第1篇一、实验目的1. 理解混沌现象的基本概念和特性。
2. 掌握混沌波形的产生机制。
3. 通过实验观察和分析混沌波形的动力学行为。
4. 研究混沌波形在不同参数条件下的变化规律。
二、实验原理混沌现象是自然界和工程领域中普遍存在的一种非线性动力学现象。
它表现为系统在确定性条件下呈现出复杂的、不可预测的行为。
混沌波形的产生通常与非线性动力学方程有关,其中典型的混沌系统包括洛伦茨系统、蔡氏电路等。
本实验采用蔡氏电路作为混沌波形的产生模型。
蔡氏电路由三个非线性元件(电阻、电容和运算放大器)和一个线性元件(电阻)组成。
通过改变电路中的电阻和电容值,可以调节电路的参数,从而产生混沌波形。
三、实验仪器与设备1. 蔡氏电路实验板2. 数字示波器3. 函数信号发生器4. 万用表5. 计算机及数据采集软件四、实验步骤1. 搭建蔡氏电路:根据实验板上的电路图,将电阻、电容和运算放大器等元件按照电路图连接好。
2. 调节电路参数:使用万用表测量电路中各个元件的参数值,并记录下来。
3. 输入信号:使用函数信号发生器输出正弦波信号,作为蔡氏电路的输入信号。
4. 观察混沌波形:打开数字示波器,观察电路输出端的混沌波形。
调整电路参数,观察混沌波形的变化规律。
5. 数据采集:使用数据采集软件,记录混沌波形的时域和频域特性。
6. 分析结果:对采集到的数据进行处理和分析,研究混沌波形的动力学行为。
五、实验结果与分析1. 混沌波形的产生:当电路参数满足一定条件时,蔡氏电路可以产生混沌波形。
混沌波形具有以下特点:- 复杂性:混沌波形呈现出复杂的非线性结构,难以用简单的数学公式描述。
- 敏感性:混沌波形对初始条件和参数变化非常敏感,微小变化可能导致完全不同的波形。
- 自相似性:混沌波形具有自相似结构,局部结构类似于整体。
2. 混沌波形的参数调节:通过调节电路参数,可以改变混沌波形的特性。
例如,改变电容值可以改变混沌波形的周期和频率;改变电阻值可以改变混沌波形的幅度和形状。
非线性电路中的混沌现象实验报告

竭诚为您提供优质文档/双击可除非线性电路中的混沌现象实验报告篇一:非线性电路混沌实验报告近代物理实验报告指导教师:得分:实验时间:20XX年11月8日,第十一周,周一,第5-8节实验者:班级材料0705学号20XX67025姓名童凌炜同组者:班级材料0705学号20XX67007姓名车宏龙实验地点:综合楼404实验条件:室内温度℃,相对湿度%,室内气压实验题目:非线性电路混沌实验仪器:(注明规格和型号)1.约结电子模拟器约结电子模拟器的主要电路包括:1.1,一个压控震荡电路,根据约瑟夫方程,用以模拟理想的约结1.2,一个加法电路器,更具电路方程9-1-10,用以模拟结电阻、结电容和理想的约结三者相并联的关系1.3,100khz正弦波振荡波作为参考信号2.低频信号发生器用以输出正弦波信号,提供给约结作为交流信号3.数字示波器用以测量结电压、超流、混沌特性和参考信号等各个物理量的波形实验目的:1.了解混沌的产生和特点2.掌握吸引子。
倍周期和分岔等概念3.观察非线性电路的混沌现象实验原理简述:混沌不是具有周期性和对称性的有序,也不是绝对的无序,而是可以用奇怪吸引子等来描述的复杂有序——混沌而呈现非周期性的有序。
混沌的最本质特征是对初始条件极为敏感。
1.非线性线性和非线性,首先区别于对于函数y=f(x)与其自变量x的依赖关系。
除此之外,非线性关系还具有某些不同于线性关系的共性:1.1线性关系是简单的比例关系,而非线性是对这种关系的偏移1.3线性关系保持信号的频率成分不变,而非线性使得频率结构发生变化1.4非线性是引起行为突变的原因2.倍周期,分岔,吸引子,混沌借用T.R.malthas的人口和虫口理论,以说明非线性关系中的最基本概念。
虫口方程如下:xn?1xn(1?xn)μ是与虫口增长率有关的控制参数,当1 1?,这个值就叫做周期或者不动点。
在通过迭代法解方程的过程中,最终会得到一个不随时间变化的固定值。
非线性混沌电路实验报告

非线性混沌电路实验报告一、实验目的本实验旨在通过设计和搭建一个非线性混沌电路,了解混沌理论的基本原理,并观察和分析混沌电路的输出特性。
二、实验原理混沌理论是一种描述非线性系统行为的数学理论。
混沌系统有着极其敏感的初始条件和参数,微小的初始条件差异可能导致系统行为的巨大差异。
混沌电路是模拟混沌系统行为的电路,通过合适的电路设计和参数设置,可以实现混沌现象。
三、实验步骤及结果1.搭建电路2.参数设置根据实验要求,设置电路中的参数:L1=0.67H,L2=0.07H,C=0.001F,V1=2V,V2=0.6V。
3.实验观察连接电路电源后,用示波器观察电路输出的波形,并记录实验结果。
在实验观察中,我们可以看到输出波形呈现出混沌现象。
混沌信号的特征是没有周期性,具有高度的随机性和复杂性。
四、实验分析通过实验观察结果,我们可以看到混沌电路输出的波形呈现出混沌现象。
混沌信号的特征是没有周期性,具有高度的随机性和复杂性。
这是由于混沌系统对初始条件和参数的敏感性所导致的。
混沌电路通过合适的电路设计和参数设置,模拟了混沌系统的行为。
通过调整电路中的元件值和电源电压,可以改变混沌电路的输出特性。
这为混沌系统的研究和应用提供了重要的实验手段。
五、实验总结本实验通过设计和搭建一个非线性混沌电路,对混沌理论的基本原理进行了实践探究。
通过观察和分析混沌电路的输出特性,我们认识到混沌系统的随机性和复杂性。
混沌电路有着广泛的应用领域,例如密码学、通信和图像处理等。
这些应用都是基于混沌信号具有的随机性和复杂性。
通过深入研究混沌电路,我们可以更好地理解和应用混沌系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性电路中的混沌五:数据处理:1.计算电感L在这个实验中使用了相位测量。
根据RLC 谐振定律,当输入激励频率时LCf π21=,RLC 串联电路达到谐振,L 和C 的电压反向,示波器显示一条45度斜线穿过第二象限和第四象限。
实测:f=32.8kHz ;实验仪器标记:C=1.095nF 所以:mH C f L 50.21)108.32(10095.114.34141239222=⨯⨯⨯⨯⨯==-π估计不确定性:估计 u(C)=0.005nF ,u(f)=0.1kHz 但:32222106.7)()(4)(-⨯=+=CC u f f u L L u 这是mH L u 16.0)(=最后结果:mH L u L )2.05.21()(±=+2、有源非线性负电阻元件的测量数据采用一元线性回归法处理: (1) 原始数据:(2) 数据处理:根据RU I RR =流过电阻箱的电流,由回路KCL 方程和KVL 方程可知:RR R R U U I I =-=11对应的1R I 值。
对于非线性负电阻R1,将实验测量的每个(I ,U )实验点标记在坐标平面上,可以得到:从图中可以看出,两个实验点( 0.0046336 ,-9.8)和( 0.0013899 ,-1.8)是折线的拐点。
因此,我们采用线性回归的方法,分别在V U 8.912≤≤-、 、 和8V .1U 9.8-≤<-三个区间得到对应的 IU 曲线。
0V U 1.8≤<-使用 Excel 的 Linest 函数找到这三个段的线性回归方程:⎪⎩⎪⎨⎧≤≤≤≤+-≤≤= 0U 1.72- 0.00079U - -1.72U 9.78- 30.000651950.00041U - 9.78U 12-20.02453093-0.002032U I经计算,三段线性回归的相关系数非常接近1(r=0.99997),证明区间IV 内的线性符合较好。
应用相关绘图软件可以得到U<0范围内非线性负电阻的IU 曲线。
曲线关于原点对称可以得到区间 U>0 的非线性负电阻 IU 曲线:3、观察混沌现象:(1) 双周期:周期Vc 1 -t加倍(2)双倍周期:Vc 1 -t的两倍(3) 四倍期:四倍周期Vc 1 -t (4) 单吸引子:单吸引子爆发混沌三重周期Vc 1 -t (5) 双吸引子:双吸引子Vc 1 -t4. 使用计算机数值模拟混沌现象:(1)源程序(Matlab代码):算法核心:四阶龙格-库塔数值积分法文件 1:chua.m函数 [xx]=chua(x,time_variable,aaa,symbol_no) h=0.01;a=h/2;aa=h/6;xx=[];对于 j=1:symbol_no;k0=chua_map(x,time_variable,aaa);x1=x+kO*a;k1=chua_map(xl,time_variable,aaa);xl=x+k1*a;k2=chua_map(x1,time_variable,aaa);x1=x+k2*h;k3=chua_map(x1,时变,aaa);x = x+aa*(kO+2*(k1+k2)+k3);xx = [xx x];结尾chua_initial.m第2条:函数 [x0] = chua_initial (x, aaa)h = 0.01; a = h/2; aa = h/6;x = [-0.03 0.6 -0.01] ';k0 = chua_map (x, 1, aaa);x1 = x+k0*a;k1 = chua_map (xl, 1, aaa);x1 = x+k1*a;k2 = chua_map (x1,1, aaa);x1 = x+k2*h;k3 = chua_map (x1,1, aaa);x = x+aa*(k0+2*(kl+k2)+k3);对于 k = 2:400kO = chua_map (x, k, aaa);x1 = x+k0*a;k1 = chua_map (x1, k, aaa);x1 = x+k1*a;k2 = chua_map (x1, k, aaa);x1 = x+k2*h;k3 = chua_map (xl, k, aaa);x=x+aa*(kO+2*(k1+k2)+k3);结尾x0=x;文件3:chua_map.m:函数[x]=chua_map(xx,time_variable,aaa)m0=-1/7.0;m1=2/7.0;如果 xx(1)>=1hx=m1*xx(1)+m0-m1;elseif abs(xx(1))<=1hx=m0*xx(1);别的hx=m1*xx(1)-m0+m1;结尾A=[0 9.0 01.0 -1.0 1.0o aaa 0];x=A*xx;x=x+[-9*hx 0 O]';文件4:chua_demo.mx0=0.05*randn(3,1);[x0]=chua_initial(x0,-100/7);[xx]=chua(x0,1,-100/7,20000);情节(UVI(1,1:结束),UVI(2,1:结束));xlabel('Uc1(V)');ylabel('Uc2(V)');数字;plot3(UVI(3,1:end),UVI(2,1:end),UVI(1,1:end))xlabel('I(V)');ylabel('Uc1(V)');zlabel('Uc2(V)'); (2)对于这个实验,微分方程的解也可以离散化。
具体代码如下:(Matlab 代码)函数离散柴dt=0.04;c1=1/9;c2=1;L=1/7;G=0.7;N=10000;a0=0.8;a1=0.1;MT=[1-dt*G/c1,dt*G/c1,0;dt*G/c2,(1-dt*G/c2),dt/c2;0,-dt/L,1] ;UVI=零(3,N);UVI(:,1)=[0.1;0.1;0.1];对于 k=1:N-1;bd=[-dt/c1*a0*UVI(1,k)*(a1^2*UVI(1,k)^2/3-1);0;0];UVI(:,k+1)=MT*UVI(:,k)+Bd;结尾情节(UVI(1,1:结束),UVI(2,1:结束));xlabel('Uc1(V)');ylabel('Uc2(V)');数字;plot3(UVI(3,1:end),UVI(2,1:end),UVI(1,1:end))xlabel('I(V)');ylabel('Uc1(V)');zlabel('Uc2(V)');经验证,该代码的执行效率高于四阶龙格-库塔数值积分法,但初始精度稍差。
(2)数值模拟结果:改变G的值,当G=0.7时,数值模拟出现双吸引子:Uc1-Uc2图使用matlab的Plot3可以制作I-Uc1-Uc2的三维图:I-Uc1-Uc2图同时,Plot 可用于制作 I、Uc1 和 Uc2 对时间的曲线:改变 G 的值,使 G=0.35,数值模拟中出现单个吸引子:Uc1-Uc2图使用matlab的Plot3可以制作I-Uc1-Uc2的三维图:同时,Plot 可用于制作 I、Uc1 和 Uc2 对时间的曲线:从结果可以看出,计算机数值模拟的相图特性与前述示波器非常相似。
同时,使用计算机可以很方便地改变系统参数,充分显示了计算机仿真的优越性。
六、选择做实验:费根鲍姆常数的测量:以G 为系统参数,从一个较大的值逐渐减小R V1 + R V2 ,记录倍周期分岔发生时的参数值Gn ,得到倍周期分岔之间连续参数间隔的比值:nn n n n G G G G --=+-∞→11lim δ 测量时, δn 值越大,越接近费根鲍姆常数。
由于本实验中的限制,需要使用费根鲍姆常数的近似值:132321)()(R R R R R R --≈δ 实验发现:R 1 =8700 Ω; R 2 =11060 Ω; R 3 =11829 Ω。
代入上式,我们得到:≈δ 4.1728七、实验后思考题:1. 什么是相图?为什么要使用相图来研究混沌现象?本实验的相图是如何得到的?1 (t) 和y=V2 (t) 中消去时间变量t 得到的空间曲线在非线性理论中称为相图。
在非线性理论中,我们会看到利用运动状态之间的关系更有利于揭示事物的本质,从而突出了电路系统运动的全局概念。
本实验中,示波器CH1端接Vc 1电压,CH2端接Vc 2电压,即可得到Vc 1 -Vc 2相位图。
2、什么是倍周期分岔,它在相图上有什么特点?答:系统更改某些参数后,运动周期变为原来的两倍,即系统需要两倍的时间才能恢复原来的状态。
这在非线性理论中称为倍周期分岔。
倍周期分岔在相图上显示,原来的一个椭圆变成了两个分岔的椭圆,运动轨迹从一个椭圆跑到另一个椭圆,然后在重叠点又回到原来的椭圆。
3.什么是混沌?相图有什么特点?答:混沌一般包括以下主要内容:(1) 该系统执行看似单向运动,但决定其运动规律的基本动力学是确定性的;(2) 具体结果敏感地依赖于初始条件,因此它们的长期行为是不可预测的;(3) 这种不可预测性不是由外部噪声引起的;(4) 系统的长期行为具有独立于初始条件的某些全局性和普遍性特征。
混沌出现在相图上,因为围绕某一侧的轨道似乎是随机的,但这种随机性与真正随机系统中不可预测的不规则性不同。
因为相位点似乎在不规则地四处游荡,它不会重复已经走过的路径,但也不是在具有连续概率分布的相位平面上随机游走。
类似于“线圈”的轨道本身是有界的,其中显然有一些规律。
.4. 什么是吸引子?什么是非奇异吸引子?什么是奇异吸引子?相图有什么特点?答:在一定的系统条件下,无论它有什么初始条件,最终都会落入各自的最终状态集,称为“吸引子”。
周期解的吸引子称为非奇异吸引子,非周期解的吸引子称为奇异吸引子。
5. 什么是费根鲍姆常数?在这个实验中如何测量它的近似值? 答:对于某个系统,改变参数r ,当r=r 1时,可以看出系统从稳定周期1变为周期2,并继续改变r 。
当r=r 2时,周期2变得不稳定,同时出现周期4。
, 等等。
定义:nn n n n r r r r --=+-∞→11lim δ 常数δ称为费根鲍姆常数。
测量时, δn 值越大,越接近费根鲍姆常数。
由于本实验中的限制,需要使用费根鲍姆常数的近似值:132321)()(R R R R R R --≈δ 6、如何测量非线性电阻R 的伏安特性?如何对实验数据进行分段拟合?实验中使用了哪条曲线?答:测量非线性电阻R 时,从电路中取出电感,使有源非线性负电阻R 脱离移相器的连接。