随机信号通过线性和非线性系统后地特性分析报告 实验报告材料
随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。
随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。
实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。
实验原理:随机信号可以分为离散随机信号和连续随机信号。
离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。
常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。
实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。
实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。
2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。
3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。
4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。
5.计算统计特性:计算随机信号的均值、方差等统计特性。
6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。
实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。
通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。
通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。
通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。
结论:本实验通过对随机信号的分析,加深了对随机信号的理解。
通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。
2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。
随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
随机信号处理教程第6章随机信号通过非线性系统

信号的调制和解调
01
02
03
调制过程
在非线性系统中,输入信 号会受到调制,使得信号 的参数发生变化,如幅度、 频率或相位等。
解调过程
对调制后的信号进行解调, 恢复出原始的信号参数, 以便进一步处理或使用。
调频与调相
在非线性系统中,调制和 解调的方式可以是调频或 调相,具体取决于系统的 特性和应用需求。
音频处理中的非线性系统
音频压缩
音频压缩技术利用非线性系统来减小音频文件的大小,同时保持音频质量。压 缩算法通过非线性变换和量化过程来去除音频信号中的冗余信息。
音频特效
音频处理软件中的非线性系统用于创建各种音效和特效,如失真、混响、均衡 器和自动增益控制等。这些效果通过将音频信号通过非线性函数来实现。
应用实例
给出了随机信号通过非线性系统的应用实 例,如通信系统中的非线性失真、音频处 理中的压缩效应等。
非线性系统的发展趋势和未来展望
新技术与新方法
随着科学技术的不断发展,新的非线性系 统建模方法和分析技术将不断涌现,如深
度学习在非线性系统建模中的应用等。
跨学科融合
非线性系统理论与其他领域的交叉融合将 进一步加深,如与控制理论、人工智能等 领域的结合。
升级系统的硬件设备,提升性能表现。
系统集成优化
优化系统内部各模块之间的集成方式, 提高整体性能。
05
实际应用案例
通信系统中的非线性系统
数字信号处理
在通信系统中,数字信号经过非线性系统可能导致信号失真 ,如振幅压缩和频率偏移。这种失真可以通过数字信号处理 技术进行补偿和校正。
调制解调
在无线通信中,调制解调过程可能涉及非线性系统。例如,在 QAM(Quadrature Amplitude Modulation)调制中,信号 通过非线性调制器进行调制,然后通过非线性解调器进行解调。
随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。
二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。
随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
随机信号通过线性系统和非线性系统后的特性分析

随机信号分析----通过线性系统和非线性系统后的特性分析一、实验目的1、了解随机信号自身的特性,包括均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度等的概念和特性2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、相关函数、概率密度、频谱及功率谱密度有何变化,分析线性系统和非线性系统所具有的性质3、掌握随机信号的分析方法。
4、熟悉常用的信号处理仿真软件平台:matlab、c/c++、EWB。
二、实验仪器1、256MHz以上内存微计算机。
2、20MHz双踪示波器、信号源。
3、matlab或c/c++语言环境、EWB仿真软件。
4、fpga实验板、面包板和若干导线。
三、实验步骤1、根据选题的内容和要求查阅相关的文献资料,设计具体的实现程序流程或电路。
2、自选matlab、EWB或c仿真软件。
如用硬件电路实现,需用面包板搭建电路并调试成功。
3、按设计指标测试电路。
分析实验结果与理论设计的误差,根据随机信号的特征,分析误差信号对信号和系统的影响。
四、实验任务与要求1、用matlab或c/c++语言编程并仿真2、输入信号为x(t)加上白噪声n(t),用软件仿真通过滤波器在通过限幅器后的信号y1(t),在仿真先平方律后在通过滤波器后的信号y2(t).框图如下:3、计算x(t)、a、b、c、y(t)的均值、均方值、方差、频谱、功率谱密度,自相关函数,并绘出函数曲线。
五.实验过程与仿真1、输入信号的获取与分析(a)输入信号的获取按照实验要求,Matlab仿真如下:%输入信号x的产生t=0:1/16000:0.01;x1=sin(1000*2*pi*t)+sin(2000*2*pi*t)+sin(3000*2*pi*t);x=awgn(x1,5,'measured'); %加入高斯白噪声n=x-x1; %高斯白噪声(b)输入信号及其噪声的分析%输入信号x自相关系数x_arr=xcorr(x);tau = (-length(x)+1:length(x)-1)/16000;%输入信号x的频谱和功率谱x_mag=abs(fft(x,2048));f=(0:2047)*16000/2048;x_cm=abs(fft(x_arr,2048));%画出高斯白噪声n的时域图和频域图figure(1)subplot(1,2,1)plot(t,n)title('高斯白噪声n')xlabel('t/s')ylabel('n(t)')grid onsubplot(1,2,2)N=fft(n,2048);plot(f(1:length(f)/2),N(1:length(f)/2))title('高斯白噪声n的频谱图')xlabel('f/Hz')ylabel('幅值')grid on结果为:%画输入信号的时域,相关系数,频谱图和频谱图figure(2);subplot(2,2,1)plot(t,x)title('输入信号x')xlabel('t/s');ylabel('x(t)');grid on;subplot(2,2,2)plot(tau,x_arr)title('输入信号x的自相关系数')xlabel('\tau/s')ylabel('R_x_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),x_mag(1:length(f)/2)) title('输入信号x的频谱')xlabel('f/Hz')ylabel('幅值')grid on;subplot(2,2,4)plot(f(1:length(f)/2),x_cm(1:length(f)/2)) title('输入信号x的功率谱')xlabel('f/Hz')ylabel('S_x_i(f)')结果如下图:2、带通滤波器的频谱和相频特性[B,A]=butter(8,[1500/(16000/2) 2500/(16000/2)]); figure(3)freqz(B,A,2048)title('带通滤波器的频率特性曲线')grid on结果作图如下:3、输入信号通过带通滤波器后的信号a%信号通过带通滤波器后,过滤出2khz分量,得到信号a a=filter(B,A,x);%信号a的自相关系数a_arr=xcorr(a);%信号a的频谱和功率谱a_mag=abs(fft(a,2048));a_cm=abs(fft(a_arr,2048));%画出信号a的时域图,自相关系数,频谱图和功率谱图figure(4)subplot(2,2,1)plot(t,a)title('通过带通滤波器后的信号a')xlabel('t/s');ylabel('a(t)');subplot(2,2,2)plot(tau,a_arr)title('信号a的自相关系数')xlabel('\tau/s')ylabel('R_a_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),a_mag(1:length(f)/2)) title('信号a的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),a_cm(1:length(f)/2)) title('信号a的功率谱')xlabel('f/Hz')ylabel('S_a_i(f)')作图如下:4、输入信号x通过平方律检波器的信号b%平方律检波器的传输特性为y=m*x^2,k\m=1b=1:length(x);for k=1:length(x)if(x(k)>0)b(k)=x(k)^2;elseb(k)=0;endend%信号b的自相关系数b_arr=xcorr(b);%信号b的频谱和功率谱b_mag=abs(fft(b,2048));b_cm=abs(fft(b_arr,2048));%画出信号b的时域图,自相关系数,频谱图和功率谱figure(5)subplot(2,2,1)plot(t,b)title('通过平方检波器后的信号b')xlabel('t/s');ylabel('b(t)');subplot(2,2,2)plot(tau,b_arr)title('信号b的自相关系数')xlabel('\tau/s')ylabel('R_b_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),b_mag(1:length(f)/2)) title('信号b的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),b_cm(1:length(f)/2)) title('信号b的功率谱')xlabel('f/Hz')ylabel('S_b_i(f)')作图如下:5、信号a通过限幅器后的信号y1%限定幅度最大为0.5,大于0.5的取0.5y1=0:length(a)-1;for k=1:length(a)if(a(k)>0.5)y1(k)=0.5;else if(a(k)<-0.5)y1(k)=-0.5;elsey1(k)=a(k);endendend%信号y1的自相关系数y1_arr=xcorr(y1);%信号y1的频谱和功率谱y1_mag=abs(fft(y1,2048));y1_cm=abs(fft(y1_arr,2048));figure(5)%画出信号y1的时域图,自相关系数,频谱图和功率谱图figure(6)subplot(2,2,1)plot(t,y1)axis([0 0.01 -1 1])title('信号a通过限幅器后的信号y1')xlabel('t/s');ylabel('y1(t)');subplot(2,2,2)plot(tau,y1_arr)title('信号y1的自相关系数')xlabel('\tau/s')ylabel('R_y_1_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),y1_mag(1:length(f)/2))title('信号y1的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),y1_cm(1:length(f)/2))title('信号y1的功率谱')xlabel('f/Hz')ylabel('S_y_1_i(f)')作图如下:6、信号b通过带通滤波器器后的信号y2%信号a通过带通滤波器后,过滤出2khz分量,得到信号y1 [B,A]=butter(8,[1900/(16000/2) 2100/(16000/2)]);y2=filter(B,A,b);%信号a的自相关系数y2_arr=xcorr(y2);%信号a的频谱和功率谱y2_mag=abs(fft(y2,2048));y2_cm=abs(fft(y2_arr,2048));%画出信号a的时域图,自相关系数,频谱图和功率谱图figure(7)subplot(2,2,1)plot(t,y2)title('信号b通过带通滤波器后的信号y2')xlabel('t/s');ylabel('y2(t)');subplot(2,2,2)plot(tau,y2_arr)title('信号y2的自相关系数')xlabel('\tau/s')ylabel('R_y_2_i(\tau)')subplot(2,2,3)plot(f(1:length(f)/2),y2_mag(1:length(f)/2)) title('信号y2的频谱')xlabel('f/Hz')ylabel('幅值')subplot(2,2,4)plot(f(1:length(f)/2),y2_cm(1:length(f)/2))title('信号y2的功率谱')xlabel('f/Hz')ylabel('S_y_2_i(f)')作图如下:7、通过matlab计算x(t)、a、b、c、y(t)的均值、均方值、方差(a)输入信号x的均值,方差和均方值x_mean=mean(x)x_var=var(x)x_st=x_var+x_mean^2结果得:x_mean = 0.0200x_var =1.9562x_st =1.9566(b)信号a的均值,方差和均方值a_mean = mean(a)a_var=var(a)a_st=a_var+a_mean^2a_arr=xcorr(a);结果得:a_mean =-0.0051a_var =0.4908a_st = 0.4908(c)信号b的均值,方差和均方值b_mean=mean(b)b_var=var(b)b_st=b_var+b_mean^2结果得:b_mean =0.9755b_var = 6.2748b_st = 7.2264(d)信号y1的均值,方差和均方值y1_mean=mean(y1)y1_var=var(y1)y1_st=y1_var+y1_mean^2结果得:y1_mean =-0.0054y1_var = 0.1616y1_st =0.1617(e)信号y1的均值,方差和均方值y2_mean = mean(y2)y2_var=var(y2)y2_st=y2_var+y2_mean^2结果得:y2_mean =-0.0035y2_var = 1.3080y2_st =1.30806.实验中遇到的问题在刚开始做实验时,理论知识都没有学完,对于很多概念仍不清晰。
第四章 随机信号通过非线性系统分析

第四章 随机信号通过非线性系统的分析4.1 通信中常见的非线性系统从电子设备各组成部分的作用结果看,基本上可以把它们划分成线性系统和非线性系统两大类,非线性系统与线性系统有两个重要方面不同;1.一般来说对于线性系统的解,入们通常能够求得封闭形式的表达式,而对非线性系统来说,这一点并不是总能实现的。
人们往往不得不满足于找出收敛于真实解的近似函数,或者对真实解作出估计。
因此同线性系统比较起来人们一般不能确切地知道什么是非线性系统的精确解。
2.分析非线性系统相对于线性系统来说一般涉及的数学在概念上更高深,在内容上则更繁杂。
由于线性系统的本质特征是叠加原理,因此非线性系统也可以理解为不满足叠加原理的系统。
本章主要是研究随机信号通过非线性系统的分析。
在对非线性系统的分析中,也可划分成无惰性和惰性两种情况。
如果在某个瞬时t 的输出随机信号,只取决于同一瞬时的输入随机信号,那么我们可以用一个函数关系把它表示为()[()]Y t g X t =式中g[]代表某种非线性函数关系。
这样的非线性关系,我们称之为无惰性的。
凡在一个非线性系统中,只要有贮能元件存在,它就会有惰性。
但在有些情况下,可以把非线性系统中的贮能元件,归并在非线性系统的输入及输出的线性系统中。
换句话说,即使我们遇到了一个非线性的有惰性的系统,往往可以作某种折合或等效归并到下一级的输入电路或前级的输出电路中去。
表示非线性系统特性的()g x 通常可以用实验的方法得到,如电子管、半导体器件的伏安特性曲线。
为了要进行理论分析,往往是在实验的基础上,采用各种渐近方法求出()g x 。
从理论上讲,比较方便的有多项式,折线和指数等渐近方法。
每种方法各具有优缺点,因为所要求的渐近精确性和解析表达式的简单性往往是有矛盾的,通常在它们之间只能采用折衷的方法去处理这种矛盾。
在通信当中,主要有下列几个简单的非线性系统:通过非线性系统, 我们一般化放大器和衰减器的概念。
例如, 一个·模拟放大器输出的电压不会高于它们的动力供给电压,这就导致了峰值剪 (clipping ). 这种形式的非线性系统为:(())Ax t θy(t)=Clib 这里,,,x x x Clip x θθθθθθθ≥⎧⎪-<<⎪=⎨--≥⎪⎪⎩与峰值剪相对应的一种非线性系统是 中心剪 (center clipper ), 其式为:0,||(),x y C x x θθ<⎧==⎨⎩其它中心剪显然是一个非线性的,从其表达式看很难想象它的用处,其实,它在语音处理中有很重要的应用。
随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三 随机信号通过线性和非线性系统后的特性分析
一、实验目的
1、了解随机信号的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱特性。
2、研究随机信号通过线性系统和非线性系统后的均值、均方值、方差、自相关函数、互相关函数、概率密度、频谱及功率谱有何变化,分析随机信号通过线性系统和非线性系统后的特性
二、实验仪器与软件平台
1、 微计算机
2、 Matlab 软件平台
三、实验步骤
1、 根据本实验内容和要求查阅有关资料,设计并撰写相关程序流程。
2、 选择matlab 仿真软件平台。
3、 测试程序是否达到设计要求。
4、 分析实验结果是否与理论概念相符
四、实验内容
1、 随机信号通过线性系统和非线性系统后的特性分析
(1)实验原理
①随机信号的分析方法
在信号系统中,可以把信号分成两大类:确定信号和随机信号。
确定信号具有一定的变化规律,二随机信号无一定的变化规律,需要用统计特性进行分析。
在这里引入了一个随机过程的概念。
所谓随机过程,就是随机变量的集合,每个随机变量都是随机过程的一个采样序列。
随机过程可以分为平稳的和非平稳的,遍历的和非遍历的。
如果随机信号的统计特性不随时间的推移而变化。
则随机过程是平稳的。
如果一个平稳的随机过程的任意一个样本都具有相同的统计特性。
则随机过程是遍历的。
下面讨论的随机过程都认为是平稳的遍历的随机过程,因此,可以随机取随机过程的一个样本值来描述随机过程中的统计特性。
随机过程的统计特性一般采用主要的几个平均统计特性函数来描述,包括、均方值、方差、自相关系数、互相关系数、概率密度、频谱及功率谱密度等。
a.随机过程的均值
均值E[x(t)]表示集合平均值或数学期望值。
基于过程的各态历经行,可用时间间隔T 内的幅值平均值表示,即
∑-==1
/)()]([N t N
t x t x E
均值表达了信号变化的中心趋势,或称之为直流分量。
b.随机过程的均方值
信号x(t)的均方值E[x 2
(t)],或称为平均效率,也是辛亥平均能量的一种表达。
N
t x t x E N t /)()]([(1
22
∑-==
均方值表示信号的强度,其正平方根,又称有效值,也是信号平均能量的一种表达。
c.随机信号的方差
信号x(t)的方差定义为
N
t x E t x N t /)]]([)([1
22
∑-=-=σ
2σ称为均方差或标准差。
可以证明,222μϕσ+= 其中:2σ描述了信号的波动量;2
μ
描述了信号的静态量,方差反映了信号绕均值的波动程度。
d.随机过程的自相关函数
信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程X(t)和Y(t)在两个不同时刻t 和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:
∑∑-=-+=10
1
N t
xy N
/)t (y )t (x ),t (N R τττ τ,t=0,1,2,……N-1。
e.随机过程的频谱
信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号)(f x ,从而帮助人们从另一个角度来了解信号的特征。
时域信号x(t)的傅氏变换为:
-j2πf t ()()x f x t e dt
∞
-∞
=
⎰
d.随机过程的功率谱密度
随机信号的功率普密度是随机信号的各个样本在单位频带内的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,表示X(t)的平均功率在频域上的分布。
它只反映随机信号的振幅信息,而没有反映相位信息。
随机过程的功率普密度为:
]
2|)(|lim [)(2
T
X E x G Ti T ω∞→= -∞<ω<+∞
②线性系统特性
系统的数学模型满足叠加原理。
若对于任意常数a 和b ,输入信号x 1(t)和x 2(t) ,有
L [ax 1(t)+bx 2(t)]=aL [x 1(t)]+bL [x 2(t)]
则称系统为线性系统,线性系统下面有一些重要性质:叠加性、比例性、微分性、积分性、频率保持性等、
③非线性系统特性
在一般电子设备中,除了线性电路之外,通常还包括一些非线性电路,例如检波器、限
幅器、鉴频器等。
非线性电路具有下述特点:
a.叠加原理已不适用,当信号与噪声共同通过非线性电路时,不能像线性电路那样将他们分开研究。
b.会发生频谱变换,其输出产生了输入信号中没有的新频率分量,例如输入信号的各次谐波。
(2)实验任务与要求
①通过实验,要求掌握线性系统、非线性系统基本特性,比较通过系统的随机信号与通过系统后的随机信号的特性。
实验框图如图所示。
②输入信号x(t)、噪声n(t)的测试与分析
输入信号
)(
sin
sin
sin
)(
3
2
1
t
n
t
t
t
t
x+
+
+
=ω
ω
ω
,其中:1
ω、
2
ω、3ω为
1KHz、2KHz、3KHz。
噪声n(t)为高斯白噪声
要求测试n(t)的均值、均方值、方差、自相关函数、概率密度、频谱及功率谱密度,并用波形图表示。
分析实验结果,掌握均值、均方值、方差、自相关函数、概率密度、频谱及功率谱密度的物理意义。
噪声信号的均值 x_mn = -0.0347
方差 x_vr = 0.4823
均方值 x_st = 0.4811
③线性系统设计及测试
研究随机信号经过线性系统后的线性变换问题,需要设计一个线性系统。
线性系统设计成一个滤波器。
要求信号经滤波器后只剩下2kHz的信号。
滤波器设计好之后,要求测试它的幅频特性。
滤波后特性x1(t)
④非线性系统设计及测试
研究随机信号经非线性系统后的额非线性变换问题,需设计一个非线性系统。
在这里非线性系统分别设计成一个限幅器和一个平方律器件。
平方律器件硬件实现一般利用二极管的特性曲线,如图。
时域特性:当x>0时,
2
bx
y=,当x≤0时,y=0。
频域特性:3
2
)
(
ω
ω
b
F=。
软件实现也
是利用这个平方特性。
限幅器是一种波形变换或整形电路。
当输入信号在一定范围内变化是,输出电压跟随输入电压相应变化,完成信号的传输。
二档输入电压超过这一范围时,期超过的部分就被削去,输出电压保持不变。
限幅器、平方律器件设计好之后,要求测试它的频率特性并画出频率特性曲线。
经平方率检波器后信号特性曲线图
经限幅器后信号曲线特性图
⑤按以上要求编写好程序,测试x(t)x1(t)x2(t)y1(t)y2(t)的均值、均方值、方差、自相关函数、概率密度、频谱及功率谱密度,并对两路系统输入和输出信号进行比较。
两路系统输入相同,均为x(t)。
输出时y1均值更大,y2方差更大。
五、实验结论
随机信号经过线性系统后,不会增加新的频率分量。
经过滤波器滤波后,可以从调制信号中得到特定频率范围内的信号,从而提取消息信号。
随机信号经过非线性系统,不但含有基频,而且产生了谐波分量。
平方率检波的输出与输入载波电压幅度的平方成正比(即输入信号的功率),因而,在无线电测量仪表中得到较为广泛的应用。
六、心得体会
通过这次实验,我了解到随机信号自身的数学特性,包括均值,方差,均方值等等,以及随机信号通过线性非线性系统后有何变化。
掌握了一定的matlab技巧,直观的看到了随机信号,高斯白噪声信号以及滤波器限幅器的特点。
加深了我对随机信号的认识,对以后的学习大有帮助。