高一上学期期末测试题及答案
安徽省部分重点中学2023-2024学年高一上学期期末测试数学试卷含答案

姓名______座位号______(在此卷上答题无效)高一数学(答案在最后)(人教版A )本试卷共4页,22题.全卷满分150分,考试时间120分钟.考生注意事项:1.答题前,先将自己的姓名,准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂照.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}250A x x x =-=,则()A.{}0A∈ B.5A∉ C.{}5A∈ D.0A∈【答案】D 【解析】【分析】用列举法表示出集合A ,再利用元素与集合、集合与集合的关系逐项判断即得.【详解】依题意,{0,5}A =,所以0A ∈,5A ∈,B 错误,D 正确;显然{}0A ⊆,{}5A ⊆,AC 错误.故选:D2.12+=()A.4B.6C.8D.10【答案】B 【解析】【分析】根据给定条件,利用指数运算、指数式与对数式的互化及换底公式计算即得.【详解】因为1222122log3log3log2==,所以22l11lo3og3g2223622++==⨯=⨯=.故选:B3.中文“函数”一词,最早是由近代数学家李善兰翻译的,之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,下列选项中是同一个函数的是()A.01y x=-与0y=B.y=与y=C.y x=与z=D.2y x x=+与32x xyx+=【答案】C【解析】【分析】利用同一函数的定义,逐项分析判断即得.【详解】对于A,函数01y x=-的定义域为{R|0}x x∈≠,函数0y=的定义域为R,两个函数定义域不同,A不是;对于B,函数y=的定义域为{|2}x x≥,函数y=的定义域为{|2x x≤-或2}x≥,两个函数定义域不同,B不是;对于C,函数y x=的定义域为R,函数z=R,且z y==,两个函数定义域相同,对应法则也相同,C是;对于D,函数2y x x=+的定义域为R,函数32x xyx+=的定义域为{R|0}x x∈≠,两个函数定义域不同,D不是.故选:C4.已知角α的顶点与原点重合,始边与x轴的非负半轴重合,点(1,P在角α的终边上,则5πsin(2)6α+=()A.14 B.14- C.12D.12-【答案】C【分析】根据给定条件,利用正切函数定义求出tan α,再利用二倍角公式结合齐次式法及和角的正弦公式求解即得.【详解】依题意,tan α=,则2222sin cos 2tan sin 22sin cos sin cos tan 12ααααααααα====-++,22222222cos sin 1tan 1cos 2cos sin sin cos tan 12ααααααααα--=-===-++所以5π5π5π111sin(2sin 2cos cos 2sin (66622222ααα+=+=-⨯--⨯=.故选:C5.已知“0x ∃∈R ,200202420240x x a --<”为真命题,则实数a 的取值范围为()A.506a >-B.506a -≥ C.506a -≤ D.506a <-【答案】A 【解析】【分析】根据给定条件,分离参数,借助二次函数求出最小值即得.【详解】“0x ∃∈R ,200202420240x x a --<”为真命题,则“0x ∃∈R ,20020242024a x x >-”为真命题,而2020012024()506506422022024x x x =≥----,当且仅当012x =时取等号,则506a >-,所以实数a 的取值范围为506a >-.故选:A6.函数()4e xf x x =-在[]3,3-上的大致图象为()A. B.C. D.【答案】D【分析】根据给定函数的奇偶性,结合(0)1f =-即可判断得解.【详解】依题意,||||()()4||e 4||e x x x f x x f x -=-=---=,因此函数()f x 是偶函数,其图象关于y 轴对称,排除AB ;又(0)1f =-,选项C 不满足,D 符合题意.故选:D7.《梦溪笔谈》是我国科技史上的杰作,其中收录了扇形弧长的近似计算公式:22ABl ⨯=+矢弦径.如图,公式中“弦”是指扇形中 AB 所对弦AB 的长,“矢”是指 AB 所在圆O 的半径与圆心O 到弦的距离之差,“径”是指扇形所在圆O 的直径.若扇形的弦AB =,扇形的圆心角为2π3,利用上面公式,求得该扇形的弧长的近似值与实际值的误差为()A.16π13-B.8π13--C.16π132-D.8π132--【答案】B 【解析】【分析】利用等腰三角形性质求出圆半径及点O 到弦AB 的距离并求出 AB l ,再由弧长公式求出 AB 的实际值即可计算得解.【详解】取弧AB 的中点C ,连接OC 交AB 于D ,则D 是AB 的中点,且OC AB ⊥,在等腰AOB中,2π3AB AOB =∠=,则π6OAB ∠=,圆O 半径124πcos 6ABR OA ===,122OD R ==,2CD R OD =-=,因此 2212AB CD l AB R=+=,而扇形弧长的实际值为2π8π33R =,所以该扇形的弧长的近似值与实际值的误差为8π13-.故选:B8.定义在R 上的偶函数()f x 在(],0-∞上单调递减,且()50f -=,则不等式()()160x f x +-≤的解集是()A.(][],11,11-∞-B.(],11-∞C.[]1,11- D.(][),111,-∞-+∞ 【答案】A 【解析】【分析】利用()f x 的奇偶性与单调性得到()f x 在(0,)+∞上单调递增与()50f =,再分类讨论1x +的取值范围,结合偶函数的性质()()fx f x =即可得解.【详解】因为定义在R 上的偶函数()f x 在(],0-∞上单调递减,且()50f -=,所以()f x 在(0,)+∞上单调递增,()()550f f =-=,因为()()160x f x +-≤,当10x +>,即1x >-时,()60f x -≤,即()()65fx f -≤,所以65x -≤,即565x -≤-≤,解得111x ≤≤,故111x ≤≤;当10x +≤,即1x ≤-时,()60f x -≥,即()()65fx f -≥,所以65x -≥,即65x -≤-或65x -≥,解得1x ≤或11x ≥,故1x ≤-;综上:1x ≤-或111x ≤≤.故选:A.【点睛】关键点点睛:本题解决的关键是充分利用偶函数的性质()()fx f x =,从而简化运算得解.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,选对但不全的得2分,有选错的得0分.9.已知a b c >>,则下列结论错误的是()A.33b c >B.22a c > C.> D.a c b->【答案】BCD 【解析】【分析】根据给定条件,利用不等式性质判断A ;举例说明判断BCD.【详解】由b c >及3y x =在R 上单调递增,可得33b c >,A 正确;取1,2a c ==-,满足a c >,而2214a c =<=,B 错误;由a b >,知,a b 是否是非负数不确定,当0b <>C 错误;取3,2,1a b c ===,满足a b c >>,而2a c b -==,D 错误.故选:BCD10.已知集合{}29A x x =<,A B ⊆,则()A.集合A B B ⋃=B.{}33A B x x ⋂=-<<C.集合A B ⋃可能是{}22x x -<<D.{}44x x -<<可能是B 的子集【答案】ABD 【解析】【分析】解不等式化简集合A ,由已知结合集合运算逐项判断即得.【详解】集合29{|}{3}3|A x x x x ==<<<-,A B ⊆,则A B B ⋃=,{|33}A B A x x ==-<< ,AB 正确;显然()A A B ⊆ ,即{|33}()x x A B -<<⊆ ,而{}22x x -<<是{|33}-<<x x 的真子集,C 错误;由于{|33}x x B -<<⊆,{}{|33}44x x x x -<<⊆-<<,因此{}44x x -<<可能是B 的子集,D 正确.故选:ABD11.函数()sin()f x A x ωϕ=+(0A >,0ω>,π2ϕ<)的部分图象如图所示,将函数()f x 的图象上所有点的横坐标变为原来的3倍,纵坐标变为原来的2倍,然后向左平移3π4个单位长度,得到函数()g x 的图象,则()A.1A =B.()g x 的解析式为2π2sin 33y x ⎛⎫=+⎪⎝⎭C.7π,02⎛⎫⎪⎝⎭是()g x 图象的一个对称中心D.()g x 的单调递减区间是11π5π3π,3π44k k ⎡⎤--⎢⎥⎣⎦,Z k ∈【答案】ABD 【解析】【分析】先利用三角函数的图象求得()f x 的解析式,再利用三角函数平移的性质与正弦函数的性质即可得解.【详解】依题意,由图象可知1A =,3π5π3π43124T ⎛⎫=--= ⎪⎝⎭,则πT =,故A 正确;因为0ω>,所以2ππω=,则2ω=,所以()sin(2)f x x ϕ=+,因为()f x 的图象过点π,13⎛⎫⎪⎝⎭,所以sin 21π3ϕ⎛⎫⨯+= ⎪⎝⎭,则2ππ2π,Z 32k k ϕ+=+∈,即π2π,Z 6k k ϕ=-+∈,又π2ϕ<,则π6ϕ=-,所以()sin 26πf x x ⎛⎫=- ⎪⎝⎭,将函数()f x 的图象上所有点的横坐标变为原来的3倍,得到2πsin 36y x ⎛⎫=-⎪⎝⎭的图象,纵坐标变为原来的2倍,得到2π2sin 36y x ⎛⎫=-⎪⎝⎭的图象,向左平移3π4个单位长度,得到函数()23ππ2π2sin 2sin 34633g x x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,故B 正确;因为7π27ππ8π2sin 2sin 023233g ⎛⎫⎛⎫=⨯+=≠ ⎪ ⎪⎝⎭⎝⎭,故C 错误;令3π2ππ2π2π,Z 2332k x k k -+≤+≤-+∈,解得11π5π3π3π,Z 44k x k k -≤≤-∈,所以()g x 的单调递减区间是11π5π3π,3π44k k ⎡⎤--⎢⎣⎦,Z k ∈,故D 正确.故选:ABD.12.已知函数21,0(),0ax x f x x bx x -≤⎧=⎨+>⎩,则下列结论中正确的是()A.若函数()f x 在(,1)-∞上单调递减,则0a >且2b ≤-B.若函数()f x 有2个零点,则a<0且0b <C.若函数()f x 有1个零点,则a<0且0b ≥D.若函数()f x 在(,2]-∞的最大值为1,则a<0且32b ≤-【答案】AB 【解析】【分析】分类探讨分段函数()f x 的性质,再结合分段函数单调性、零点及最大值逐项分析判断即得.【详解】当0x ≤时,()1f x ax =-,当a<0时,()f x 单调递增,函数值集合为(,1]-∞,当0a =时,()1f x =,当0a >时,()f x 单调递减,函数值集合为[1,)+∞;当0x >时,2()f x x bx =+,当0b ≥时,()f x 在(0,)+∞上单调递增,当0b <时,()f x 在(0,)2b -上单调递减,在[,)2b-+∞上单调递增,对于A ,由函数()f x 在(,1)-∞上单调递减,得012a b >⎧⎪⎨-≥⎪⎩,解得0a >且2b ≤-,A 正确;对于B ,当0x >时,2()f x x bx =+,函数()f x 在(0,)+∞上最多一个零点,由函数()f x 有2个零点,得函数()f x 在(,0]-∞上有一个零点,在(0,)+∞上有一个零点,因此a<0且0b <,B 正确;对于C ,当0a ≤时,()1f x ax =-在(,0]-∞上无零点,当0b <时,()f x 在(0,)+∞上有一个零点,则当0a ≤且0b <时,函数()f x 也只有1个零点,C 错误;对于D ,由于函数()f x 在(,2]-∞的最大值为1,则()f x 在(,0]-∞上不能单调递减,即0a ≤,且(0)1f =,当0b ≥时,()f x 在(0,2]上单调递增,(2)424f b =+≥,不符合题意,当0b <时,若22b-≥,即4b ≤-,则()f x 在(0,2]上单调递减,()0f x <,此时()f x 在(,2]-∞的最大值为1,因此4b ≤-,若22b -<,即40b -<<,则()f x 在(0,]2b -上单调递减,在[,2]2b-上单调递增,必有(2)421f b =+≤,解得32b ≤-,则342b -<≤-,此时()f x 在(,2]-∞的最大值为1,因此342b -<≤-,综上所述,函数()f x 在(,2]-∞的最大值为1,则0a ≤且32b ≤-,D 错误.故选:AB【点睛】方法点睛:对于分段函数的单调性,有两种基本的判断方法:一保证各段上同增(减)时,要注意上、下段间端点值间的大小关系;二是画出这个分段函数的图象,结合函数图象、性质进行直观的判断.三、填空题:本题共4小题,每小题5分,共20分.13.已知幂函数的图象经过点1(243,)3,那么()f x 的解析式为______;不等式(|)3|f x ≤的解集为______.【答案】①.15()f x x-=②.11(,[,)243243-∞-+∞ 【解析】【分析】利用幂函数过的点求出()f x 的解析式,再利用单调性解不等式即可.【详解】设幂函数()f x x α=,依题意,12433α=,即5133α-=,因此51α=-,解得15α=-,所以函数()f x 的解析式为15()f x x -=;显然函数()f x 在(0,)+∞上单调递减,且1()3243f =,于是不等式(|)3|f x ≤为:2(||)1()43f f x ≤,解得|4|123x ≥,即1243x ≤-或1243x ≥,所以不等式(|)3|f x ≤的解集为11(,][,)243243-∞-+∞ .故答案为:15()f x x -=;11(,][,)243243-∞-+∞ 14.若π02α<<,02βπ<<,()3cos 5αβ+=-,5cos 13β=,则cos()4πα+=______.【答案】232130-##【解析】【分析】根据给定条件,利用同角公式及和差角的余弦公式计算得解.【详解】由π02α<<,02βπ<<,得0παβ<+<,而()3cos 5αβ+=-,5cos 13β=,则4sin()5αβ+==,12sin 13β==,因此3541233cos cos[()]51351365ααββ=+-=-+=,56sin 65α==,所以πππ23356232cos()cos cos sin sin (44426565130ααα+=-=-=-.故答案为:130-15.已知函数())f x x =,若0m >,0n >,且41()(1)(0)f f f m n+-=,则16m n +的最小值为______.【答案】36【解析】【分析】根据给定条件,探讨函数()f x 的奇偶性及单调性,由此求出,m n 的关系式,再利用基本不等式“1”的妙用求解即得.【详解】函数())f x x =中,R x ∀∈||x x >≥,则函数()f x 的定义域为R ,而()()))ln10f x f x x x -+=++-==,则函数()f x 是奇函数,显然函数y y x ==-在(,0]-∞上都单调递减,则函数t x =-在(,0]-∞上单调递减,而函数ln y t =在(0,)+∞上单调递增,则函数()f x 在(],0-∞上单调递减,于是函数()f x 在[)0,+∞上单调递减,因此函数()f x 在R 上单调递减,(0)0f =,由41((1)(0)f f f m n +-=,得411()(1)(1)f f f m n n =--=-,则411m n=-,即411m n +=,于是441616(16)2020236n m m n n m n m n m +++=+=+≥+,当且仅当64n mm n=,即812m n ==时取等号,所以16m n +的最小值为36.故答案为:3616.已知直线y a =与函数()()tan f x x ωϕ=+(0ω>,π02ϕ<<)的图象所有交点之间的最小距离为2,且其中一个交点为()1,1-,则函数()y f x =的图象与函数223y x =-(3922x -<<)的图象所有交点的横坐标之和为______.【答案】6【解析】【分析】根据给定条件,结合正切函数的图象性质求出()f x ,确定函数()y f x =与223y x =-共同具有的性质,再借助图象求解即可.【详解】依题意,函数()tan()f x x ωϕ=+的最小正周期为2,则π2ω=,解得π2=ω,于是π()tan()2f x x ϕ=+,由π(1)tan()12f ϕ=+=-,得π3ππ,Z 24k k ϕ+=+∈,而π02ϕ<<,取π0,4k ϕ==,因此ππ()tan()24f x x =+,显然33ππ()tan()0244f =+=,则函数()y f x =的图象关于点3(,0)2成中心对称,又函数223y x =-的图象关于点3(,0)2成中心对称,在同一坐标系内作出函数()y f x =和223y x =-的图象,观察图象知,两个函数在39(,)22-的图象共有4个公共点,且关于点3(,0)2成中心对称,所以4个交点的横坐标之和为3462⨯=.故答案为:6【点睛】思路点睛:给定)t )a ()(n(0f x x ωϕω=>+的性质求解解析式,一般是求出周期定ω,由图象上特殊点求ϕ.四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.计算:(1)1105448132()()πlog 816243-++-;(2)2log 33810log log 274lglg303-⋅---.【答案】(1)52;(2)212-.【解析】【分析】(1)利用指数运算法则、对数换底公式计算即得.(2)利用对数运算法则、对数换底公式计算即得.【小问1详解】2421111045355448132333335(()πlog 8[(][()]1log 2116243222222-++-=++-=+-=.【小问2详解】2log 3810log log 274lglg303-⋅---2312312log 332232310log 3log 3log 22lg(30)3=-⋅--⨯2log 32232)23321log 3log 2(2lg10013222=-⋅--=---=-.18.已知3πtan()74α-=.(1)求sin 2cos sin 3cos αααα+-的值;(2)若π(π,)2α∈--,求sin 2cos 2αα+的值.【答案】(1)119-;(2)24102510+.【解析】【分析】(1)利用差角的正切公式求出tan α,再利用齐次式法计算即得.(2)利用同角公式求出sin ,cos αα,再利用二倍角公式计算即得.【小问1详解】由3πtan()74α-=,得tan tantan 17n 3π1tan 1ta π4n 3t 4a αααα-+==-+,解得3tan 4α=,所以32sin 2cos tan 21143sin 3cos tan 3934αααααα+++===----.【小问2详解】由π(π,)2α∈--,得ππ(,)224α∈--,则sin 0,cos 0,cos 02ααα<<>,由3tan 4α=,得3sin cos 4αα=,而22sin cos 1αα+=,解得34sin ,cos 55αα=-=-,于是3424sin 22sin cos 2(()5525ααα==⨯-⨯-=,又21cos 1cos 2210αα+==,则cos 210α=,所以0sin 2cos224251αα++=.19.已知函数()f x 的定义域为()0,∞+,x ∀,()0,y ∈+∞,总有()()x f f x f y y ⎛⎫=- ⎪⎝⎭成立.若1x >时,()0f x <.(1)判断并证明函数()f x 的单调性;(2)若132f ⎛⎫= ⎪⎝⎭,求解关于x 的不等式()364f x x f ⎛⎫+-< ⎪⎝⎭的解集.【答案】(1)()f x 在()0,∞+上单调递减,证明见解析(2)()1,+∞【解析】【分析】(1)利用单调性的定义结合已知即可证明;(2)利用赋值法求出164f ⎛⎫= ⎪⎝⎭,根据已知结合函数的单调性,将不等式化得到关于x 的不等式组,解之即可得解.【小问1详解】()f x 在()0,∞+上单调递减,证明如下:因为x ∀,()0,y ∈+∞,总有()()x f f x f y y ⎛⎫=- ⎪⎝⎭成立,当1x >时,()0f x <,12,0x x ∀>,且12x x <,则211x x >,则()()22110x f x f x f x ⎛⎫-=< ⎪⎝⎭,即()()12f x f x >,所以()f x 在()0,∞+上单调递减.【小问2详解】因为因为x ∀,()0,y ∈+∞,总有()()x f f x f y y ⎛⎫=- ⎪⎝⎭成立,所以()()x f f y f x y ⎛⎫+= ⎪⎝⎭,则()()()f x f y f xy +=,因为132f ⎛⎫=⎪⎝⎭,所以1116422f f f ⎛⎫⎛⎫⎛⎫=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以不等式()364f x x f ⎛⎫+-< ⎪⎝⎭可化为3144x f f x ⎛⎫⎛⎫-< ⎪ ⎪⎢⎝⎭⎝⎡⎤⎣⎦⎭⎥,所以31440304x x x x ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎪>⎨⎪⎪->⎪⎩,解得1x >.所以不等式()364f x x f ⎛⎫+-< ⎪⎝⎭的解集为()1,+∞.20.已知函数()22f x x ax =+-.(1)若关于()f x 的不等式()0f x <的解集为(),2b ,求a ,b 的值;(2)已知当[]1,2x ∈-时,()336xxf -≤恒成立,求实数a 的取值范围.【答案】(1)1a =-,1b =-(2)43,3⎛⎤--∞ ⎥⎝⎦【解析】【分析】(1)根据已知结合三个二次之间的关系,列出关于,a b 的方程组,解之即可得解;(2)利用换元法将问题转化为41a t t -≥+在1,93⎡⎤⎢⎥⎣⎦上恒成立,再利用对勾函数的性质求得max4t t ⎛⎫+ ⎪⎝⎭,从而得解.【小问1详解】因为()22f x x ax =+-,且()0f x <的解集为(),2b ,所以b 和2是方程220x ax +-=的两个不等实根,且2b <,由韦达定理可得222b a b +=-⎧⎨=-⎩,解得11a b =-⎧⎨=-⎩,故1a =-,1b =-.【小问2详解】因为()22f x x ax =+-,所以()()23332x xx f a ⋅=+-,则()336xxf -≤可化为()233362x x x a ≤+--⋅,整理可得()()21334xx a +⋅≤-,令3x t =,[]1,2x ∈-,所以1,93t ⎡⎤∈⎢⎥⎣⎦,则上式可化为()241t a t ≤+-⋅在1,93⎡⎤⎢⎥⎣⎦上恒成立,即41a t t -≥+在1,93⎡⎤⎢⎥⎣⎦上恒成立,因为44t t +≥=,当且仅当4t t =,即2t =时,等号成立,所以由对勾函数的性质可知4y t t =+在1,23⎡⎫⎪⎢⎣⎭上单调递减,在(]2,9上单调递增,而当13t =时,7313343y +==⨯;当9t =时,485999y +==;所以max 4373t t ⎛⎫+= ⎪⎝⎭,故3713a -≥,所以343a ≤-,所以实数a 的取值范围为43,3⎛⎤--∞ ⎥⎝⎦.21.某学校校园内有一个扇形空地AOB (πAOB ∠<),该扇形的周长为10π203+,面积为50π3,现要在扇形空地AOB 内部修建一矩形运动场馆CDEF ,如图所示.(1)求扇形空地AOB 的半径和圆心角;(2)取CD 的中点M ,记MOD θ∠=.(i )写出运动场馆CDEF 的面积S 与角θ的函数关系式;(ii )求当角θ为何值时,运动场馆CDEF 的面积最大?并求出最大面积.【答案】(1)扇形空地AOB 的半径为10,圆心角为π3;(2)(i)π200sin(23S θ=+-π(0,6θ∈;(ii )π12θ=,200-【解析】【分析】(1)利用扇形弧长公式、扇形面积公式列出方程求解并验证即得.(2)(i )借助直角三角形的边角关系求出函数关系式;(ii )利用正弦函数的性质求解最值.【小问1详解】设扇形空地AOB 所在圆半径为r ,扇形弧长为l ,依题意,10π2203150π23r l rl ⎧+=+⎪⎪⎨⎪=⎪⎩,解得1010π3r l =⎧⎪⎨=⎪⎩或5π320r l ⎧=⎪⎨⎪=⎩,当5π320r l ⎧=⎪⎨⎪=⎩时,圆心角12ππl AOB r ∠==>,不符合题意,当1010π3r l =⎧⎪⎨=⎪⎩时,圆心角ππ3l AOB r ∠==<,符合题意,所以扇形空地AOB 的半径为10,圆心角为π3.【小问2详解】(i )由(1)知,π3AOB ∠=,则π(0,6θ∈,在Rt MOD △中,10cos ,10sin OM DM θθ==,则10sin EN DM θ==,在Rt EON △中,π6EON ∠=,tan ENON EONθ==∠,于是10cos MN OM ON θθ=-=-,所以220sin (10cos )S EN MN θθθ=⋅=-2200sin cos 100sin 2cos 2)θθθθθ=-=--π100(sin 22)200sin(23θθθ=+-=+-,π(0,)6θ∈.(ii )由(i )知,当π(0,)6θ∈时,ππ2π2(,)333θ+∈,则当ππ232θ+=,即π12θ=时,max 200S =-所以当π12θ=时,运动场馆CDEF 的面积最大,最大面积为200-【点睛】思路点睛:涉及求正(余)型函数在指定区间上的最值问题,根据给定的自变量取值区间求出相位的范围,再利用正(余)函数性质求解即得.22.已知函数4(2)4log af x x xb -=+(0a >,1a ≠,2b ≠-)是定义在(2,2)-上的奇函数.(1)求(0)f 和实数b 的值;(2)若()f x 满足2(2)(32)0f t f t -+-<,求实数t 的取值范围;(3)若01a <<,问是否存在实数m ,使得对定义域内的一切t ,都有2(2)(10)f t f mt +++>恒成立?【答案】(1)(0)0f =,2b =;(2)当01a <<时,01t <<,当1a >时,413<<t ;(3)存在,116m =.【解析】【分析】(1)根据给定条件,结合奇函数的定义求解即得.(2)按01,1a a <<>分类,利用单调性解不等式即得.(3)利用奇函数及意识性脱去法则,转化为恒成立的不等式组,再借助二次函数分类求解.【小问1详解】依题意,420(0)log log 1004aa fb -⨯===⨯+,又()f x 是(2,2)-上的奇函数,则()()f x f x -=-,即42()42log log ()44a a x xb x bx ---=--++,亦即424log log 442aa x bx bx x++=-+-,整理得22216416x b x -=-,于是24b =,而2b ≠-,所以2b =.【小问2详解】由(1)知,424288()log log log (1)(0,1)242424a a a x x f x a a x x x ---+===->≠+++,显然函数8124y x =-+在(2,2)-上单调递减,由奇函数性质及2(2)(32)0f t f t -+-<,得2(2)(32)(23)f t f t f t -<--=-,当01a <<时,函数log a y x =在(0,)+∞上单调递减,则()f x 在(2,2)-上单调递增,不等式化为222232t t -<-<-<,解得01t <<,当1a >时,函数log a y x =在(0,)+∞上单调递增,则()f x 在(2,2)-上单调递减,不等式化为222322t t -<-<-<,解得413t <<,所以当01a <<时,01t <<;当1a >时,413<<t .【小问3详解】假定存在实数m ,对定义域内的一切t ,都有2(2)(10)f t f mt +++>恒成立,即2(1(2)()2)f mt f t f t +>-+=--恒成立,当01a <<时,由(2)知函数()f x 在(2,2)-上单调递增,不等式化为2212212222mt t mt t ⎧+>--⎪-<+<⎨⎪-<--<⎩,整理得22303140mt t mt t ⎧++>⎪-<<⎨⎪-<<⎩,于是有231mt -<<对任意40t -<<恒成立,则2231m t t-<<,当40t -<<时,223311(,),(,)1616t t -∈-∞-∈+∞,因此311616m -≤≤;有230mt t ++>对任意40t -<<恒成立,设2()3g t mt t =++,①当0m >时,函数2()3g t mt t =++的图象开口向上,对称轴102t m=-<,(i )当1120m ∆=->,即112m <时,必有(4)1610142g m m-=-≥⎧⎪⎨-≤-⎪⎩,则111612m ≤<;(ii )当1120m ∆=-=,即112m =时,2211()3(6)01212g t t t t =++=+>在(4,0)t ∈-上恒成立,则112m =;(iii )当1120m ∆=-<,即112m >时,()0g t >在(4,0)t ∈-上恒成立,则112m >;②当0m ≤时,(4)16110g m -=-≤-<,不满足()0g t >在(4,0)t ∈-上恒成立,综上得311616m -≤≤且116m ≥,所以存在116m =使得对定义域内的一切t ,都有()2(2)10f t f mt +++>恒成立.。
2025届重庆一中生物高一第一学期期末综合测试试题含解析

2025届重庆一中生物高一第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共7小题,每小题6分,共42分。
)1.细菌被归为原核生物的原因是()A.细胞体积小B.单细胞C.没有成形的细胞核D.没有DNA2.细胞是由物质组成的,物质是由元素组成的。
人体内的某种有机物只含有C、H、O三种元素,下列对该种有机物的叙述错误的是()A.一定与细胞膜、核糖体的组成无关B.可作为人体细胞内的储能物质C.可能是核酸的组成成分D.可分布在人体的内脏器官周围,起到缓冲和减压的作用3.对玉米种子的实验处理方法和观察到的现象如下,该实验结果说明:实验处理将玉米种子浸泡15h,从中央切开后用稀释红墨水染色将玉米种子煮熟,从中央切开后用稀释红墨水染色实验现象胚体细胞着色浅胚体细胞着色深A.细胞膜具有流动性B.红墨水容易进出玉米细胞C.细胞膜具有全透性 D.活细胞膜具有选择透过性4.一分子ATP中,含有的高能磷酸键和磷酸基团的数目分别是()A.2和3 B.1和3 C.2和2 D.4和65.下图为酶催化作用的模型。
相关叙述正确的是( )A.该模型能很好地解释酶的专一性B.该模型反映了酶可降低反应的活化能C.该模型中生理过程表示脱水缩合D.人成熟的红细胞内不能合成酶,也无上述模型表示的生理过程6.研究人员将R型肺炎链球菌荚膜中的各种糖类都提取出来,然后再通过动物实验筛选出能引发机体免疫反应的糖类制成“多糖”疫苗,这里的多糖相当于免疫反应中的A.抗原 B.抗体 C.淋巴因子 D.抗原受体7.下列物质的组成中不含糖分子的是()A.DNA B.纤维素C.胆固醇D.淀粉8.(10分)如图,曲线b表示最适温度、最适pH条件下,反应物浓度与酶促反应速率的关系。
2023-2024学年北京密云区高一上学期期末地理试题及答案

2024北京密云高一(上)期末地理2024.1本试卷共10页,100分。
考试时长90分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分本部分共30题,每题2分,共60分。
在每题列出的四个选项中,选出最符合题目要求的一项。
2023年11月27日-28日期间有四次太阳日冕物质抛射,引起比较强的地磁暴,北京可见极光现象。
完成下面小题。
1. 北京地区能看到极光()A. 源于太阳辐射对地球影响过强B. 因色球层黑子增多所引起C. 表明太阳活动对地球影响较强D. 因光球层耀斑活跃而产生2. 此次强地磁暴发生时()①造成太阳大气层结构改变②会影响无线电短波通讯③手表上指南针的指向异常④全球洪涝灾害频繁发生A. ①②B. ①④C. ②③D. ③④2022年9月5日在四川甘孜州泸定县(北纬29.59°,东经102.08°)发生6.8级地震,震源深度16千米。
中国地震预警网成功预警此次地震,图中(a)、(b)分别是某手机用户收到的预警信息图和地球内部圈层结构图。
读图,完成下面小题。
3. 此次地震震源位于图(b)中的圈层()A. ①B. ②C. ③D. ④4. 图(a)中利用横波与纵波传播速度差异而发布预警,关于横波、纵波表述正确的是()A. 横波传播速度快于纵波B. 纵波在地核内传播速度加快C. 横波能穿过地壳和地幔D. 经过莫霍罗面时,纵波消失5. 图(a)中地震预警系统()A. 利用全球卫星导航系统即可实现B. 能预测地震引发的次生灾害C. 提示地震来临时的安全避险措施D. 能得知震中位置和受灾情况6. 地震常引发泥石流,关于泥石流灾害的避防措施,下列叙述正确的有()①灾害发生时,应设法从房屋里跑到开阔地带并迅速转移到高处②该种灾害发生时,要勇于到室内救出被困人员,同时抢运财产③不要顺沟谷方向往上游或下游逃生,要向两边的山坡上面逃生④不可在发生该种灾害的沟谷中横渡A. ①②④B. ①③④C. ①②③D. ②③④新疆哈密翼龙-雅丹国家地质公园具有形态各异的雅丹地貌。
襄阳市普通高中 2022-2023 学年度上学期期末教学质量检测统一测试高一数学(含答案解析)

襄阳市普通高中 2022-2023 学年度上学期期末教学质量检测统一测试高一数学1. 已知全集U =R ,集合A ={x|1≤x ≤2},B ={−1,1,2,3},那么阴影部分表示的集合为A. {−1,3}B. {1,2,3}C. {1,3}D. {−1,2,3}2. 命题“∀x >0,x 2−x ≤1”的否定是( ) A. ∀x ≤0,x 2−x ≤1 B. ∀x >0,x 2−x >1 C. ∃x ≤0,x 2−x ≤1D. ∃x >0,x 2−x >13. 下列函数中,值域为(0,+∞)的是 A. f(x)=√x B. f(x)=x +1x (x >0) C. f(x)=√x+1 D. f(x)=1−1x (x >1)4. 已知一个扇形的周长为8,则当该扇形的面积取得最大值时,圆心角大小为A. π6 B. π4 C. 32 D. 25. 下列选项中,是“不等式2x 2−x −m >0在x ∈R 上恒成立”的一个必要不充分条件的是A. m ≤−18B. m <−18C. m <−14D. −18<m <−146. 已知f(x)是定义在R 上的奇函数,且f(x)=−f(x −2),当x ∈(0,1]时,f(x)=3x −1,则f(log 336)=A. −12 B. −54C. 54 D. 127. 设函数f(x)=2tan(ωx −π3)(ω>0)的图象的一个对称中心为(π6,0),则f(x)的一个最小正周期是( )A. π3B. π4C. π5D. 2π58. 我们知道二氧化碳是温室性气体,是全球变暖的主要元凶.在室内二氧化碳含量的多少也会对人体健康带来影响.下表是室内二氧化碳浓度与人体生理反应的关系室内二氧化碳浓度不大于0.1%(0.1%即为1000ppm),所以室内要换气,保持二氧化碳浓度水平不高于标准值.经测定,某中学刚下课时,一个教室内二氧化碳浓度为2000ppm,若开窗通风后二氧化碳浓度y%与经过时间t(单位:分钟)的关系式为y=0.05+λe−t9(λ∈R),则该教室内的二氧化碳浓度达到国家标准需要开窗通风时间至少约为(参考数据:ln3≈1.099,ln5≈1.609)A. 8分钟B. 9分钟C. 10分钟D. 11分钟9. 已知θ∈(0,π),sinθ+cosθ=15,则下列结论正确的是A. θ∈(π2,π) B. cosθ=35C. tanθ=−34D. sinθ⋅cosθ=−122510. 已知函数f(x)=log a|x−2|+2(a>0且a≠1)的图象经过定点A,且点A在角θ的终边上,则1tanθ+1sinθ的值可能是( )A. √13+34B. √13+32C. √5+14D. √5+1211. 已知关于x的不等式ax2+bx+c≤0的解集是{x|x≤−2或x≥6},则下列说法正确的是A. a<0B. 不等式bx+c>0的解集是{x|x<−3}C. 不等式cx2−bx+a<0的解集是{x|−16<x<12}D. a+b+c>012. 已知定义在R上的函数f(x)的图象连续不断,若存在常数λ(λ∈R),使得f(x+λ)+λf(x)=0对于任意的实数x恒成立,则称f(x)是回旋函数.给出下列四个命题,正确的命题是( )A. 函数f(x)=a(其中a为常数,a≠0)为回旋函数的充要条件是λ=−1B. 函数f(x)=2x+1是回旋函数C. 若函数f(x)=a x(0<a<1)为回旋函数,则λ<0D. 函数f(x)是λ=2的回旋函数,则f(x)在[0,2022]上至少有1011个零点13. 已知tan(π+α)=−2,则sinα−4cosαsinα+cosα=___________.14. 已知幂函数f(x)=x a,指数函数g(x)=a x(a>0,且a≠1),若f(x)在[12,2]上的最大值为4,则g(f(a+1))=__________.15. 若函数f(x)=x2−6x+2+a在区间(1,4)内有零点,则实数a的取值范围是__________16. 甲、乙两人解关于x的方程2x+b⋅2−x+c=0,甲写错了常数b,得到的根为x=−2或x=log2174,乙写错了常数c,得到的根为x=0或x=1,则原方程所有根的和是__________.17. 已知集合A={x|a−1≤x≤2a+1},B={x|−2≤x≤4}.在①A∪B=B;②"x∈A”是“x∈B”的充分不必要条件;③A∩B=⌀这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题.(1)当a=3时,求∁R(A∩B);(2)若__________,求实数a的取值范围.18. 求下列各式的值:(1)已知a,b是方程x2+6x+3=0的两个实根,求ba +ab的值;(2)化简√823−(log2510)−1+4log23+√4lg22−4lg2+1,并求值.19. 随着我国经济发展,医疗消费需求增长,人们健康观念转变以及人口老龄化进程加快等因素的影响,医疗器械市场近年来一直保持了持续增长的趋势,某医疗公司为了进一步增加市场竞争力,计划改进技术生产某产品.已知生产该产品的年固定成本为300万元,最大产能为80台.每生产x台,需另投入成本G(x)万元,且G(x)={2x2+80x,0<x≤40201x+3600x−2020,40<x≤80,由市场调研知,该产品每台的售价为200万元,且全年内生产的该产品当年能全部销售完.(1)写出年利润W(x)万元关于年产量x台的函数解析式(利润=销售收入一成本);(2)当该产品的年产量为多少台时?公司所获利润最大,最大利润是多少?20. 已知二次函数f(x)=ax2+bx+c(a,b,c∈R),f(0)=14,f(1)=1,且对任意的x∈R,都有f(x−2)=f(−x)成立.(1)求二次函数f(x)的解析式;(2)若函数g(x)=4f(x)−x+|x−λ|的最小值为2,求实数λ的值.21. 设函数f(x)=ka x−a−x(a>0且a≠1,k∈R),若f(x)是定义在R上的奇函数且f(1)= 32.(1)求k和a的值;(2)判断其单调性(无需证明),并求关于t的不等式f(2t+3)<f(t2−5)成立时,实数t的取值范围;(3)函数g(x)=a2x+a−2x−6f(x),x∈[1,2],求g(x)的值域.22. 函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,|φ|<π2)的部分图象如图所示,把函数f(−x)的图象向右平移π4个单位,得到函数g(x)的图象.(1)当x∈R时,求函数g(x)的单调递减区间;(2)对于∀x1∈[−π12,π3],是否总存在唯一的实数x2∈[π6,34π],使得f(x1)+g(x2)=m成立?若存在,求出实数m的值或取值范围;若不存在,说明理由.答案和解析1.【答案】A【解析】【分析】本题考查Venn图,属于基础题.【解答】解:由图知,阴影部分表示(∁U A)∩B={−1,3).2.【答案】D【解析】【分析】本题考查命题的否定,属于基础题.【解答】解:命题“∀x>0,x2−x≤1”的否定是∃x>0,x2−x>1.3.【答案】C【解析】【分析】本题主要考查函数的值域的求法,属于基础题。
辽宁省重点高中沈阳市郊联体2023-2024学年高一上学期期末考试语文试题及答案

辽宁省重点高中沈阳市郊联体2023—2024学年度上学期高一年级期末考试试题语文本试卷满分150分,考试时间150分钟。
一、现代文阅读(35分)(一)现代文阅读Ⅰ(本题共5小题,19分)阅读下面的文字,完成1-5题。
材料一:中国从先秦开始,就有一个“文”的传统,也存在着一种独一无二的、往往被学界忽视的散文“原型”——文化的“天人合一”。
散文的这种精神话语,主要体现在几个层面:其一,自由无待,随物赋形。
庄子是这方面的代表人物,他把用于表现“散木”“散人”之“散”,即表现“无用”的语言形式称为“卮言”。
而他的散漫无拘束的文章形式和超拔的想象,表现的正是他自由自在、无拘无束的散文精神。
其二,崇尚自然,物我合一。
庄子反对以人为中心的功利主义态度,主张“丧我”“弃知”“物化”。
因此,他认为文章应“以寓言为广。
独与天地精神往来而不敖倪于万物”(《庄子·杂篇·天下》)。
其三,诗性智慧。
这也是构成中国散文精神内涵的一个重要方面。
诗性智慧,它的前提是“诗性”,是创造性、想象性和审美性的融合;而智慧是对于知识的反思和超越,也是一种滋润僵硬知识和理论的调和剂。
其四,是“造气”“造势”之内功。
曹丕在《典论·论文》里说:“文以气为主”,以后的文论家又将“气”引申为“气势”。
所谓“气势”,指文学作品尤其是散文所表现出的一种充盈流转的精神活力,是以作者的气质、才性、习染、志趣、德操等主体精神因素为支撑的风骨底气,呈现在散文中则是作者的精神气象。
上述四方面的“原型”精神,就是中国散文传统精神元气的标识,也是散文文体内在的张力。
强调文人“言志”的情趣,弘扬散文的“休闲”功能,也是中国传统“言志”散文理论的一大特色,这一特色实质上是强调散文“寓教于乐”中“乐”的维度,即强调让读者在审美体验和审美感受中获得陶冶、教化和愉悦。
“言志”散文的“寓教于乐”,自然在某种程度上包含着“载道”的功能,但与“载道”散文比较起来,更侧重于发挥“休闲”的功能。
安徽省A10联盟2023-2024学年高一上学期期末检测数学试卷含答案

2023—2024学年第一学期高一年级期末检测数学试题卷(答案在最后)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.试卷包括“试题卷”和“答题卷”两部分,请务必在“答题卷”上答题,在“试题卷”上答题无效.第Ⅰ卷(选择题共60分)一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案涂在答题卡上)1.已知集合{2,1,0,1,2}M =--,{(1)(3)0}N xx x =+->∣,则M N ⋂=()A.{2,1,0,1}-- B.{2}- C.{2,1}-- D.{0,1,2}【答案】B 【解析】【分析】解一元二次不等式,求出集合N ,然后进行交集的运算即可.【详解】由{(1)(3)0}N xx x =+->∣解得:{3N x x =>∣或1}x <-,因为{2,1,0,1,2}M =--,所以M N ⋂={2}-.故选:B 2.“π2π,6k k α=+∈Z ”是“1sin 2α=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要条件结合任意角的正弦函数分析判断.【详解】若π2π,6k k α=+∈Z ,则ππ1sin sin 2πsin ,662k k α⎛⎫=+==∈ ⎪⎝⎭Z 成立;若1sin 2α=,则π2π,6k k α=+∈Z 或5π2π,6k k α=+∈Z ,故π2π,6k k α=+∈Z 不一定成立;综上所述:“π2π,6k k α=+∈Z ”是“1sin 2α=”的充分不必要条件.故选:A.3.计算55log 42log 10-=()A.2B.1- C.2- D.5-【答案】C 【解析】【分析】利用对数的运算公式可得答案.【详解】555552log 42log 10log 4log 1100l 5og 2-===--.故选:C.4.已知正数x ,y 满足811x y+=,则2x y +的最小值是()A.6B.16C.20D.18【答案】D 【解析】【分析】将所求的式子乘以“1”,然后利用基本不等式求解即可.【详解】因为正数x ,y 满足811x y+=,则()811622101018y x x y x y x y x y ⎛⎫+=++=++≥+=⎪⎝⎭,当且仅当16y xx y=,即12,3x y ==时等号成立.故选:D5.计算sin 50cos10sin 40sin10︒︒︒︒+=()A. B.32C.12-D.12【答案】B 【解析】【分析】由两角和的正弦公式求解即可.【详解】因为sin 50cos10sin 40sin10︒︒︒︒+=sin 50cos10cos50sin10︒︒︒︒+()sin 5010=sin 602︒︒︒=+=.故选:B6.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线3y x =-上,则πtan 24θ⎛⎫+= ⎪⎝⎭()A.17-B.17C.7D.7-【答案】C 【解析】【分析】先求解tan θ的值,结合倍角公式和和角公式可得答案.【详解】由题意tan 3θ=-,所以22tan 63tan 21tan 194θθθ-===--,所以πtan 21tan 2741tan 2θθθ+⎛⎫+== ⎪-⎝⎭.故选:C.7.将函数π()cos 23f x x ⎛⎫=+⎪⎝⎭向右平移2π3个单位,再将所得的函数图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()y g x =的图象,则()A.()cos g x x =-B.()cos g x x=C.π()cos 3g x x ⎛⎫=- ⎪⎝⎭D.()πcos 43g x x ⎛⎫=-⎪⎝⎭【答案】A 【解析】【分析】利用三角函数图象变化规律,即可判断选项.【详解】将函数π()cos 23f x x ⎛⎫=+⎪⎝⎭向右平移2π3个单位,得到()2ππcos 2cos 2πcos 233y x x x ⎡⎤⎛⎫=-+=-=- ⎪⎢⎝⎭⎣⎦,再将所得的函数图象上的各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数()cos y g x x ==-的图象.故选:A.8.设函数()f x 的定义域为R ,(1)f x +为奇函数,(2)f x +为偶函数,当[0,1]x ∈时,2(2)f x x bx c =++.若(3)(2)6f f -=,则752f ⎛⎫= ⎪⎝⎭()A.94B.32C.74-D.52-【答案】D 【解析】【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()2286f x x x =-+,进而利用周期性结论,即可得到答案.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()02f f c =-=,由②得:()()312f f b c ==++,因为(3)(2)6f f -=,所以26b c c +++=,即24b c +=,令0x =,由①得:()()()111020f f f b c =-⇒=⇒++=,解得:8,6b c =-=,所以()2286f x x x =-+.又因为()()()()()221111f x f x f x f x f x ⎡⎤⎡⎤+=-+=--+=--+=-⎣⎦⎣⎦,即()()2f x f x +=-,则()()()42f x f x f x +=-+=,所以函数()f x 是以4为周期的函数,所以75331114911222222f f f f ff ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+==+=--+=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭115246242f ⎛⎫=⨯-+= ⎪⎝⎭.75522f ⎛⎫=- ⎪⎝⎭.故选:D【点睛】结论点睛:复合函数的奇偶性:(1)()f x a +是偶函数,则()()f x a f x a -+=+;(2)()f x a +是奇函数,则()()f x a f x a -+=-+.二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.请把正确答案涂在答题卡上)9.已知a ,b 为实数,且a b <,则下列不等式恒成立的是()A.sin sin a b <B.1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C.33a b <D.()()22ln 1ln 1a b +<+【答案】BC 【解析】【分析】利用函数单调性和反例可得答案.【详解】对于A ,π2π23<,而π2πsin sin 23>,故A 不正确;对于B ,因为12xy ⎛⎫= ⎪⎝⎭为减函数,a b <,所以1122ab⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故B 正确;对于C ,因为3y x =为增函数,a b <,所以33a b <,故C 正确;对于D ,21-<,而()()ln 41ln 11+>+,故D 不正确.故选:BC.10.高斯是世界著名的数学家,近代数学奠基者之一,享有“数学王子”的美称.函数[]()f x x =称为“高斯函数”,它的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=,[3]3=.下列结论正确的是()A.对12,x x ∀∈R ,若12x x <,则()()12f x f x ≤B.函数()f x 是R 上的奇的数C.对任意实数m ,(2)2()f m f m =D.对任意实数m ,1()(2)2f m f m f m ⎛⎫++= ⎪⎝⎭【答案】AD 【解析】【分析】利用函数定义及单调性的定义判断A ;通过举例来判断BC ;设m n r =+,其中n 为m 的整数部分,r 为m 的小数部分,01r ≤<,分102r ≤<,112r ≤<讨论计算来判断D .【详解】对于A :对12,x x ∀∈R ,若12x x <,则[][]12x x ≤,即()()12f x f x ≤,故A 正确;对于B :例如()[]1.5 1.51f ==,()[]1.5 1.52f -=-=-,即()()1.5 1.5f f -≠-,故函数()[]f x x =不是奇函数,故B 错误;对于C :取12m =,()[]121112f f ⎛⎫⨯=== ⎪⎝⎭,1122022f⎛⎫⎡⎤== ⎪⎢⎥⎝⎭⎣⎦,不满足(2)2()f m f m =,故C 错误;对于D :设m n r =+,其中n 为m 的整数部分,,n m n ≤∈Z ,r 为m 的小数部分,01r ≤<,则[][]1122m m n r n r ⎡⎤⎡⎤++=++++⎢⎥⎢⎥⎣⎦⎣⎦,[][]222m n r =+,若102r ≤<,可得[]122m m n ⎡⎤++=⎢⎥⎣⎦,[]22m n =,若112r ≤<,可得[]1212m m n ⎡⎤++=+⎢⎥⎣⎦,[]221m n =+,所以对任意实数m ,1()(2)2f m f m f m ⎛⎫++= ⎪⎝⎭,故D 正确;故选:AD.11.已知0a >,0b >,且4a b +=,则下列不等式恒成立的是()A.4ab ≤B.228a b +≥ C.228a b +≥ D.22log log 2a b +≥【答案】ABC 【解析】【分析】根据基本不等式及其变形式,结合指数运算判断ABC ,举反例根据对数函数的单调性判断D.【详解】对于A :因为4=+≥a b 4ab ≤,当且仅当2a b ==时取等号,A 正确;对于B :因为222222228a b a b ++≥=⋅=⋅=,当且仅当2a b ==时取等号,故B 正确;对于C :因为()2222162a b a b ab ab +=+-=-,4ab ≤,所以221621688a b ab +=-≥-=,当且仅当2a b ==时取等号,故C 正确;对于D :当10,30a b =>=>时,满足4a b +=,但是222222log log log 1log 3log 3log 42a b +=+=<=,故D 错误;故选:ABC.12.已知函数()cos(2)(0π)f x x ϕϕ=+<<的图象关于直线7π12=-x 对称,则()A.(0)2f =B.函数()y f x =的图象关于点2π,03⎛⎫⎪⎝⎭对称C.函数()f x 在区间19π,π24⎛⎫⎪⎝⎭上单调递增 D.函数()f x 在区间5,126ππ⎡⎤⎢⎥⎣⎦上的值域为1,2⎡-⎢⎣⎦【答案】ABD 【解析】【分析】先根据对称轴求出函数解析式,结合选项逐个验证即可.【详解】因为()f x 的图象关于直线7π12=-x 对称,所以7ππ6k ϕ-=,即7ππ6k ϕ=+,Z k ∈;因为0πϕ<<,所以π6ϕ=,即()cos(2π6=+f x x .π(0)cos 62f ==,故A 正确;2π3π(cos 032f ==,所以函数()y f x =的图象关于点2π,03⎛⎫ ⎪⎝⎭对称,故B 正确;令π26t x =+,由19π,π24x ⎛⎫∈ ⎪⎝⎭可得21π13π,126t ⎛⎫∈ ⎪⎝⎭,因为21π13π2π126<<,所以函数()f x 在区间19π,π24⎛⎫⎪⎝⎭上不是单调函数,故C 不正确;令π26t x =+,由5,126x ππ⎡⎤∈⎢⎥⎣⎦可得11,36t ππ⎡⎤∈⎢⎣⎦,所以cos 1,2t ⎡∈-⎢⎣⎦,所以()1,2f x ⎡∈-⎢⎣⎦,故D 正确.故选:ABD.第Ⅱ卷(非选择题共90分)三、填空题:本大题共4小题,每小题5分.把答案填在答题卡的相应位置.13.命题“()2R,ln 10x x ∀∈+>”的否定是_________.【答案】()2R,ln 10x x ∃∈+≤【解析】【分析】利用全称命题的否定方法可得答案.【详解】因为“()2R,ln 10x x ∀∈+>”的否定是“()2R,ln 10x x ∃∈+≤”故答案为:()2R,ln 10x x ∃∈+≤.14.已知函数()f x 是定义在R 上的周期为2的奇函数,当01x <<时,()4x f x =,则52f ⎛⎫-= ⎪⎝⎭_________.【答案】2-【解析】【分析】先利用周期和奇偶性,把所求转化为已知区间内,代入可得答案.【详解】因为()f x 是周期为2的奇函数,所以511222f f f ⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为当01x <<时,()4x f x =,所以1()22f =,所以522f ⎛⎫-=- ⎪⎝⎭.故答案为:2-15.已知偶函数()f x 在[0,)+∞单调递减,(2)0f -=,若()2log 0f m >,则实数m 的取值范围是______.【答案】1,44⎛⎫ ⎪⎝⎭【解析】【分析】根据函数单调性和奇偶性得到22log 2m -<<,利用对数函数单调性求解即可.【详解】因为偶函数()f x 在[0,)+∞单调递减,(2)0f -=,所以()f x 在(),0∞-上单调递增,()20f =,所以()2log 0f m >等价于()()2log2f m f >,所以2log 2m <,所以22log 2m -<<,解得144m <<.所以实数m 的取值范围是1,44⎛⎫⎪⎝⎭.故答案为:1,44⎛⎫⎪⎝⎭.16.已知函数π()2sin 23f x x ⎛⎫=+⎪⎝⎭,区间[,]a b (,a b ∈R 且a b <)满足:()y f x =在区间[,]a b 上至少含有20个零点,在所有满足此条件的区间[,]a b 中,b a -的最小值为_________.【答案】55π6##55π6【解析】【分析】通过整体代换求解函数的零点通式,求出相邻零点之间的距离,即可求出满足零点个数的最小区间长度.【详解】令π()2sin 203f x x ⎛⎫=+= ⎪⎝⎭,解得πx k =或ππ6x k =+,k ∈Z ,即()y f x =的相邻两零点间隔为π6或5π6,故若()y f x =在[],a b 上至少含有20个零点,则b a ﹣的最小值为π5π55π109666⨯+⨯=.故答案为:55π6四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知函数2()(2)2f x x k x k =++++,设集合{}122xA x=<<∣,集合{()0}B x f x =<∣.(1)若B =∅,求实数k 的取值范围;(2)若“x A ∈”是“x B ∈”的充分条件,求实数k 的取值范围.【答案】17.[]2,2-18.5,2⎛⎤-∞- ⎥⎝⎦【解析】【分析】(1)根据题意可得()()2220f x x k x k =++++≥恒成立,即0∆≤求解;(2)化简()0,1A =,由题意A B ⊆得()()0010f f ⎧≤⎪⎨≤⎪⎩求得答案.【小问1详解】由B =∅,即()()2220f x x k x k =++++≥恒成立,()()22420k k ∴∆=+-+≤,解得22k -≤≤.所以实数k 的取值范围为[]22-,.【小问2详解】由{}()1220,1xA x =<<=,x A ∈是xB ∈的充分条件,所以A B ⊆,得()()0010f f ⎧≤⎪⎨≤⎪⎩,即20250k k +≤⎧⎨+≤⎩,解得52k ≤-.所以实数k 的取值范围为5,2∞⎛⎤-- ⎥⎝⎦.18.已知函数π()2sin 6g x x ω⎛⎫=-⎪⎝⎭周期为π,其中0ω>.(1)求函数()g x 的单调递增区间;(2)请运用“五点法”,通过列表、描点、连线,在所给的直角坐标系中画出函数()g x 在[0,]π上的简图.【答案】(1)πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦(2)答案见解析【解析】【分析】(1)先利用周期求出函数解析式,再利用单调性可得答案;(2)利用五点法画图可得答案.【小问1详解】由题意可得2ω=,所以π()2sin 26g x x ⎛⎫=- ⎪⎝⎭;令πππ2π22π262k x k -≤-≤+,Z k ∈,解得ππππ63k x k -≤≤+,故函数()g x 的单调递增区间为πππ,π,Z 63k k k ⎡⎤-+∈⎢⎥⎣⎦.【小问2详解】π26x -π6-π2π3π211π6x 0π12π37π125π6π()g x 1-022-1-描点,连线,其简图如下19.已知函数2()141x a f x =-+是奇函数.(1)求实数a 的值并判断函数单调性(无需证明);(2)若不等式()()412250x x f f t ++-⋅+<在R 上恒成立,求实数t 的取值范围.【答案】(1)1a =,减函数(2)5t >-【解析】【分析】(1)先根据奇偶性求出a ,再根据复合函数单调性可判定单调性;(2)利用奇偶性和单调性进行转化,再结合换元法可求答案.【小问1详解】因为2()141x a f x =-+是奇函数,所以(0)0f =,解得1a =;当1a =时,214()14141xx x f x -=-=++,定义域为R ,又1441()41)4(1x x x x f x x f ---+-==-+=-符合题意.所以1a =,因为41x y =+为增函数,所以()f x 为减函数.【小问2详解】()()412250x x f f t ++-⋅+<等价于()()41225x x f f t +<--⋅+,即()()41225x x f f t +<-+⋅-;因为()f x 为减函数,所以41225x x t +>-+⋅-,即4226x x t ⋅+->-;令20x m =>,则上式化为226m m t ⋅+->-,即()215m t -+>-;所以5t >-.20.中国“一带一路”倡议提出后,某科技企业为抓住“一带一路”带来的机遇,决定开发生产一款大型电子设备,生产这种设备的年固定成本为500万元,每生产1台,需另投入成本()C x (万元),当年产量不足70台时,21()602C x x x =+(万元);当年产量不小于70台时,8100()1212180C x x x=+-(万元),若每台设备售价为120万元,通过市场分析,该企业生产的电子设备能全部售完.(1)求年利润y (万元)关于年产量x (台)的函数关系式;(2)年产量为多少台时,该企业在这一电子设备的生产中所获利润最大?【答案】20.2160500,070281001680,70x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-++≥ ⎪⎪⎝⎭⎩21.90台时利润最大.【解析】【分析】(1)分070x <<、70x ≥两种情况分别求出函数关系式即可;(2)利用二次函数及基本不等式计算可得.【小问1详解】由题可知当070x <<时,2211120605006050022y x x x x x ⎛⎫=-+-=-+- ⎪⎝⎭,当70x ≥时,8100810012012121805001680y x x x x x ⎛⎫⎛⎫=-+--=-++ ⎪ ⎪⎝⎭⎝⎭,所以2160500,070281001680,70x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-++≥ ⎪⎪⎝⎭⎩;【小问2详解】当070x <<时,()22116050060130022y x x x =-+-=--+,则60x =时,y 有最大值1300(万元);当70x ≥时,81001680y x x ⎛⎫=-+ ⎪⎝⎭,当0x >时,8100180x x +≥=,当且仅当8100x x =,即90x =时取等号,所以8100168016801801500y x x ⎛⎫=-+≤-= ⎪⎝⎭,所以当90x =时,y 有最大值1500(万元);综上,年产量为90台时,该厂在这一商品的生产中所获利润最大.21.已知函数2())2cos 1(0,0π)2x f x x ωϕωϕωϕ+⎛⎫=+-+><< ⎪⎝⎭为奇函数,且()f x 图象的相邻两对称轴间的距离为π2.(1)求()()sin cos h x f x x x =+-的最小值.(2)将函数()f x 的图象向右平移π6个单位长度,再把横坐标缩小为原来的12倍(纵坐标不变),得到函数()y g x =的图象,记方程2()3g x =在4π0,3x ⎡⎤∈⎢⎥⎣⎦上的根从小到依次为1231,,,,,n n x x x x x - 试确定n 的值,并求1231222n n x x x x x -+++++ 的值.【答案】21.2-22.85π12【解析】【分析】(1)利用降幂公式和辅助角公式化简()f x ,再根据周期及奇偶数性求出()f x 的解析式,再令sin cos t x x =-,利用二次函数性质求解最小值即可;(2)根据三角函数图像变换求得()g x ,利用换元法,结合三角函数图象与性质求得n 以及1231222n n x x x x x -+++++ 的值.【小问1详解】()()22cos 12x f x x ωϕωϕ+⎛⎫=+-+ ⎪⎝⎭()()πcos 2sin 6x x x ωϕωϕωϕ⎛⎫=+-+=+- ⎪⎝⎭.因为函数()f x 图象的相邻两对称轴间的距离为π2,所以πT =,可得2ω=,又由函数()f x 为奇函数,所以ππ,6k k ϕ-=∈Z ,因为0πϕ<<,所以π6ϕ=,所以函数()2sin2f x x =.所以()()sin cos 2sin 2sin cos h x f x x x x x x =+-=+-,令πsin cos 4t x x x ⎛⎫⎡=-=-∈ ⎪⎣⎝⎭,则22sin 24sin cos 22x x x t ==-,故原函数最小值为222,y t t t ⎡=-++∈⎣的最小值,其对称轴为14t =,在14t ⎡⎤∈⎢⎣⎦单调递增,在14t ⎡∈⎢⎣单调递减,且(222222-⨯+>--,所以t =222y t t =-++有最小值2-,所以()()sin cos h x f x x x =+-的最小值为2-.【小问2详解】将函数()f x 的图象向右平移π6个单位长度,得到ππ2sin 22sin 263y x x ⎡⎤⎛⎫⎛⎫=-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再把横坐标缩小为原来的12(纵坐标不变),得到()π2sin 43g x x ⎛⎫=-⎪⎝⎭,令()π22sin 433g x x ⎛⎫=-= ⎪⎝⎭,则π1sin 433x ⎛⎫-= ⎪⎝⎭,因为4π0,3x ⎡⎤∈⎢⎥⎣⎦,所以ππ4,5π33x ⎡⎤-∈-⎢⎥⎣⎦,令3π4t x =-,则π,5π3t ⎡⎤∈-⎢⎥⎣⎦,函数sin y t =在π,5π3t ⎡⎤∈-⎢⎥⎣⎦上的图象如下图所示,由图可知,sin y t =与13y =共有6个交点,所以方程2()3g x =在4π0,3x ⎡⎤∈⎢⎥⎣⎦上共有6个根,即6n =,因为()()()123456162345222222t t t t t t t t t t t t +++++=+++++5π3π7π2222225π222=⨯+⨯⨯+⨯⨯=,所以1234562222x x x x x x +++++()1234561π222210412t t t t t t =++++++⨯85π12=.22.对于函数()()f x x D ∈,D 为函数定义域,若存在正常数T ,使得对任意的x D ∈,都有()()f x T f x +≤成立,我们称函数()f x 为“T 同比不增函数”.(1)若函数()sin f x kx x =+是“π2同比不增函数”,求k 的取值范围;(2)是否存在正常数T ,使得函数()11f x x x x =---++为“T 同比不增函数”,若存在,求T 的取值范围;若不存在,请说明理由.【答案】(1)22,π∞⎛-- ⎝⎦(2)存在,且4T ≥【解析】【分析】(1)由()()f x T f x +≤恒成立,分离常数k ,结合三角函数的最值来求得k 的取值范围.(2)结合()f x 的图象以及图象变换的知识求得T 的取值范围.【小问1详解】因为函数()sin f x kx x =+是“π2同比不增函数”,则()π2f x f x ⎛⎫+≤ ⎪⎝⎭恒成立,所以ππsin sin 22k x x kx x ⎛⎫⎛⎫+++≤+ ⎪ ⎪⎝⎭⎝⎭恒成立,所以ππsin cos 24k x x x ⎛⎫≤-=- ⎪⎝⎭,即πsin π4k x ⎛⎫≤- ⎪⎝⎭,由于πsin 14x ⎛⎫-≥- ⎪⎝⎭,所以πk ≤-.所以k的取值范围是,π∞⎛-- ⎝⎦.【小问2详解】存在,理由如下:2,1()11,112,1x x f x x x x x x x x --≤-⎧⎪=---++=-<<⎨⎪-+≥⎩,画出()f x的图象如下图所示,()f x T +的图象是由()f x 的图象向左平移T 个单位所得,由图可知,当4T ≥时,对任意的x D ∈,都有()()f x T f x +≤成立,所以存在正常数T ,使得函数()11f x x x x =---++为“T 同比不增函数”,且4T ≥.【点睛】关键点点睛:本题考查新定义的理解和应用,解题的关键在于利用题中的定义,将问题转化为恒成立问题,本题第(2)问利用数形结合思想求解比较直观简单.。
2023-2024学年广东省深圳中学高一学期期末数学试题及答案

深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A. 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C.D. 5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg 为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值④此人的心跳为80次/分.的其中正确结论的个数为( )A. 1B. 2C. 3D. 46. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长10个时段占比的中位数为20.2%7. 将函数()2sin f x x =图象上所有点横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B.C.D. 8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1B. 2C. 3D. 4二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.的的的9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为8112. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.14. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.15. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.16. cos()cos cos 1y αβαβ=++--的取值范围是_________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1xy ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈-⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.深圳中学2023-2024学年度第一学期期末考试试题年级:高一 科目:数学参考:以10为底的对数叫常用对数,把10log N 记为lg N ;以()e e 2.718281828=⋯为底的对数叫自然对数,把e log N 记为ln N .一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 为了解某地区居民使用手机扫码支付的情况,拟从该地区的居民中抽取部分人员进行调查,事先已了解到该地区老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异,而男、女使用手机扫码支付的情况差异不大.在下面的抽样方法中,最合理的是( )A 抽签法B. 按性别分层随机抽样C. 按年龄段分层随机抽样D. 随机数法【答案】C 【解析】【分析】根据抽样方法确定正确答案.【详解】依题意,“居民人数多”, “男、女使用手机扫码支付的情况差异不大”,“老、中、青三个年龄段的人员使用手机扫码支付的情况有较大差异”,所以最合理的是按年龄段分层随机抽样.故选:C 2. 下列与7π4的终边相同的角的表达式中,正确的是( )A. ()2π315Z k k +∈B. ()36045Z k k ⋅-∈C. ()7π360Z 4k k ⋅+∈D. ()5π2πZ 4k k +∈【答案】B 【解析】【分析】AC 项角度与弧度混用,排除AC ;D 项终边在第三象限,排除D.【详解】因为7πrad 3154= ,终边落在第四象限,且与45- 角终边相同,故与7π4终边相同的角的集合.的{}{}31536045360S k k αααα==+⋅==-+⋅即选项B 正确;选项AC 书写不规范,选项D 表示角终边在第三象限.故选:B.3. 角α的终边与单位圆O 相交于点P ,且点P 的横坐标为35的值为( )A.35B. 35-C.45 D. 45-【答案】A 【解析】【分析】利用三角函数定义以及同角三角函数之间的平方关系即可得出结果.【详解】根据三角函数定义可知3cos 5α=,又22sin cos 1αα+=53cos α===.故选:A4. 已知角()0,πα∈,且1cos 23α=,则sin α的值为( )A.B.C. D. 【答案】B 【解析】【分析】根据余弦的二倍角公式即可求解.【详解】因为21cos 212sin3αα=-=,所以sin α=,因为()0,πα∈,所以sin α=.故选:B .5. 健康成年人的收缩压和舒张压一般为90~139mmhg 和60~89mmhg ,心脏跳动时,血压在增加或减小,血压的最大值、最小值分别为收缩压和舒张压,血压计上的读数就是收缩压和舒张压,读数为120/80mmhg为标准值.设某人的血压满足函数式()11525sin(160π)P t t =+,其中()P t 为血压(mmhg ),t 为时间(min ).给出以下结论:①此人的血压在血压计上的读数为140/90mmhg ②此人的血压在健康范围内③此人的血压已超过标准值 ④此人的心跳为80次/分其中正确结论的个数为( )A. 1 B. 2 C. 3 D. 4【答案】C 【解析】【分析】根据所给函数解析式及正弦函数的性质求出()P t 的取值范围,即可得到此人的血压在血压计上的读数,从而判断①②③,再计算出最小正周期,即可判断④.【详解】因为某人的血压满足函数式()11525sin(160π)P t t =+,又因为1sin(160π)1t -≤≤,所以11525()11525P t -≤≤+,即90()140P t ≤≤,即此人的血压在血压计上的读数为140/90mmhg ,故①正确;因为收缩压为140mmhg ,舒张压为90mmhg ,均超过健康范围,即此人的血压不在健康范围内,故②错误,③正确;对于函数()11525sin(160π)P t t =+,其最小正周期2π1160π80T ==(min ),则此人的心跳为180T=次/分,故④正确;故选:C6. 孩子在成长期间最需要父母的关爱与陪伴,下表为2023年中国父母周末陪孩子日均时长统计图.根据该图,下列说法错误的是( )A. 2023年母亲周末陪伴孩子日均时长超过8小时的占比大于13B. 2023年父亲周末陪伴孩子日均时长超过6小时的占比大于12C. 2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为28.8%D. 2023父母周末陪伴孩子日均时长的10个时段占比的中位数为20.2%【答案】C 【解析】【分析】根据题意结合统计相关知识逐项分析判断.【详解】由题图可知:2023年母亲周末陪伴孩子日均时长超过8小时的占比为138.7%3>,A 说法正确;2023年父母周末陪伴孩子日均时长超过6小时的占比为131.5%24.2%55.7%2+=>,B 说法正确;2023年母亲周末陪伴孩子日均时长的5个时段占比的极差为38.7% 2.5%36.2%-=,C 说法错误;2023年父母周末陪伴孩子日均时长的10个时段占比的中位数为21.4%19.0%20.2%2+=,D 说法正确.故选:C .7. 将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,再向右平移π6个单位长度,得到函数()g x 的图象,若()0g x a -=在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点1x ,2x ,则()12tan x x +=( )A.B. C.D. 【答案】B 【解析】【分析】根据函数图象的变换可得()π2sin 23g x x ⎛⎫=-⎪⎝⎭,即可结合正弦函数的对称性得12πt t +=,进而125π6x x +=,即可求解.【详解】将函数()2sin f x x =图象上所有点的横坐标缩小为原来的12,得到2sin 2y x =的图象,再向右平移π6个单位长度,得到()ππ2sin 22sin 263g x x x ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭的图象.当π0,2x ⎡⎤∈⎢⎥⎣⎦时,ππ2π2,333x ⎡⎤-∈-⎢⎥⎣⎦,令π23x t -=,π2π,33t ⎡⎤∈-⎢⎥⎣⎦,则关于t 的方程2sin t a =在π2π,33-⎡⎤⎢⎥⎣⎦上有两个不等的实数根1t ,2t ,所以12πt t +=,即12ππ22π33x x -+-=,则125π6x x +=,所以()125πtan tan 6x x +==.故选:B8. 如果对于任意整数πππ,sin,cos ,tan n n n n k k k都是有理数,我们称正整数k 是“好整数”,下面的整数中哪个是最大的“好整数”( )A. 1 B. 2C. 3D. 4【答案】A 【解析】【分析】利用三角函数定义域代入选项逐个验证即可得出结论.【详解】考虑三角函数的定义域,对于选项A ,当1k =时,sin π,cos π,tan πn n n 对于任意整数n ,都是整数,满足题意;对于B ,当2k =时,2ππtantan n n k =对于整数1,没有意义,不满足题意;同理可得对于C 和D ,当3ππtantan n n k =或4ππtan tan n n k =时,代入验证可知不满足题意;所以可知最大“好整数”为1故选:A二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项是符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9. 下列说法中正确的是( )A. 度与弧度是度量角的两种不同的度量单位B. 1度的角是周角的1360,1弧度的角是周角的12πC. 根据弧度的定义,180︒一定等于π弧度D. 不论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短有关【答案】ABC 【解析】【分析】根据角度制与弧度制的定义,以及角度制和弧度制的换算公式,以及角的定义,逐项判定,即可求解.【详解】根据角度制和弧度制的定义可知,度与弧度是度量角的两种不同的度量单位,所以A 正确;由圆周角的定义知,1度的角是周角的1360,1弧度的角是周角的12π,所以B 正确;根据弧度的定义知,180︒一定等于π弧度,所以C 正确;无论是用角度制还是用弧度制度量角,角的大小均与圆的半径长短无关,只与弧长与半径的比值有关,故D 不正确.故选:ABC.10. 下列各式中,值是12的是( )A. ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ B. tan10tan 35tan10tan 35︒+︒+︒︒C.2tan 22.51tan 22.5︒-︒D.22cos 203sin 50-︒-︒【答案】ACD 【解析】【分析】利用两角差的余弦公式,诱导公式,二倍角公式即可逐个选项判断.【详解】ππc s cos sin os n 3i 3x x x x ⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭ππ1cos cos 332x x ⎛⎫=--== ⎪⎝⎭,A 正确;tan10tan 35tan10tan 35︒+︒+︒︒()()tan 10351tan10tan 35tan10tan 35=︒+︒-︒︒+︒︒tan 451=︒=,B 不对;22tan 22.512tan 22.511tan 451tan 22.521tan 22.522︒︒==︒=-︒-︒,C 正确;()2311cos 403sin502cos 2012223sin 503sin503sin502-︒-︒-︒===-︒-︒-︒,D 正确.故选:ACD11. 2023年是共建“一带一路”倡议提出十周年.某校组织了“一带一路”知识竞赛,将学生的成绩(单位:分,满分:120分)整理成如图的频率分布直方图(同一组中的数据用该组区间的中点值为代表),则( )A. 该校竞赛成绩的极差为70分B. a 的值为0.005C. 该校竞赛成绩的平均分的估计值为90.7分D. 这组数据的第30百分位数为81【答案】BC【解析】【分析】利用频率分布直方图,用样本估计总体,样本的极差、平均值、百分位数相关知识计算即可.【详解】因为由频率分布直方图无法得出这组数据的最大值与最小值,所以这组数据的极差可能为70,也可能为小于70的值,所以A 错误;因为(0.00820.0120.01540.030)10700.651a a a a ++++++⨯=+=,解得0.005a =,所以B 正确;该校竞赛成绩的平均分的估计值550.00510650.00810x =⨯⨯+⨯⨯+750.01210850.01510950.03010⨯⨯+⨯⨯+⨯⨯10540.0051011520.0051090.7+⨯⨯⨯+⨯⨯⨯=分,所以C 正确.设这组数据的第30百分位数为m ,则(0.0050.0080.012)10(80)0.015100.3m ++⨯+-⨯⨯=,解得2413m =,所以D 错误.故选:BC .12. 在平面直角坐标系中,已知角α的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边经过点ππsin ,cos 33⎛⎫- ⎪⎝⎭,()cos sin 2sin cos 2f x x x αα=-则下列结论正确的是( )A. 11cos 22α-=B. 2π3x =是()y f x =的图象的一条对称轴C. 将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为sin 2y x=D. ()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有3个零点【答案】AB 【解析】【分析】利用三角函数的定义求得α,从而得到()f x 的解析式,进而利用三角函数的性质与平移的结论,逐一分析各选项即可得解.【详解】因为ππ1sin ,cos 332⎛⎫⎛⎫-= ⎪ ⎪ ⎪⎝⎭⎝⎭,所以由三角函数的定义得1sin 2α=,cos α=,所以5π2π,6k k α∈=+Z ,则()()cos sin 2sin cos 2sin 2f x x x x ααα=-=-5π5πsin 22πsin 2,66x k x k ∈⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭Z ,A : 22111cos 22sin 222αα⎛⎫-==⨯= ⎪⎝⎭,故A 正确;B :因为5π62π4ππsin sin 1332f ⎛⎫⎛⎫=-==⎪ ⎪⎝⎭⎝⎭,所以2π3x =是()y f x =的图象的一条对称轴,故B 正确;C :将函数()y f x =图象上的所有点向左平移5π6个单位长度,所得到的函数解析式为5π5πsin 2sin 2665π6y x x ⎡⎤⎛⎫⎛⎫=+-=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故C 错误;D :令()0f x =,得5πsin 206x ⎛⎫-= ⎪⎝⎭,解得5π5ππ2π,,6122k x k k x k ∈∈-=⇒=+Z Z ,仅0k =,1,即5π11π,1212x =符合题意,即()y f x =在4π0,3⎛⎫⎪⎝⎭内恰有两个零点,故D 错误.故选:AB三、填空题:本题共4小题,每小题5分,共20分.13. 某班级有50名同学,一次数学测试平均成绩是92分,如果30名男生的平均成绩为90分,那么20名女生的平均成绩为____分.【答案】95【解析】【分析】利用平均数的求法计算即可.【详解】设所求平均成绩为x ,由题意得5092309020x ⨯=⨯+⨯,∴95x =.故答案为:9514. 已知1cos 7α=,()sin αβ+=,π02α<<,π02β<<,则cos β=________.【答案】12##0.5【解析】【分析】根据题意,分别求得()sin ,cos ααβ+,再由余弦的差角公式,代入计算,即可得到结果.【详解】因为π02α<<且11cos c 2πos 73α=<=,则ππ32α<<,又02βπ<<,所以π3παβ<+<,且()sin αβ+=<,所以π2π3αβ<+<,则()11cos 14αβ+==-,sin α==,所以()()()cos cos cos cos sin sin βαβααβααβα=+-=+++⎡⎤⎣⎦11111472=-⨯+=.故答案为:1215. 已知函数()()πsin 0,02f x x ωϕωϕ⎛⎫=+>≤≤⎪⎝⎭是R 上的奇函数,其图象关于点3,04A π⎛⎫⎪⎝⎭对称,且在区间0,4⎡⎤⎢⎥⎣⎦π上是单调函数,则ω的值为______.【答案】43【解析】【分析】由函数为奇函数,得0ϕ=,再根据函数图像关于点3,04A π⎛⎫⎪⎝⎭对称,可知43kω=,根据函数的单调性可得04ω<≤,进而得解.【详解】因为函数()()sin 0,02f x x πωϕωϕ⎛⎫=+>≤≤ ⎪⎝⎭是R 上的奇函数,则()()f x f x -=-,即sin cos cos sin x x ϕωωϕ=-,又因为0ω>,所以sin 0ϕ=,因为π02ϕ≤≤,所以0ϕ=;故()sin f x x ω=;又因为图象关于点3π,04A ⎛⎫⎪⎝⎭对称,则3ππ4k ω=,Z k ∈,所以43k ω=,Z k ∈,因为函数在区间π0,4⎡⎤⎢⎥⎣⎦上是单调函数,则12ππ24ω⨯≥,得04ω<≤;所以43ω=,故答案为:43.16. cos()cos cos 1y αβαβ=++--取值范围是_________.【答案】1[4,]2-【解析】【分析】由和角的余弦公式变形给定函数,再利用辅助角公式变形,结合正弦函数的性质用含cos β的关系式表示y ,再借助二次函数最值求解即得.【详解】cos cos sin sin cos cos 1y αβαβαβ=-+--(cos 1)cos (sin )sin (cos 1)βαβαβ=+--+)(cos 1)αϕβ=+-+)(cos 1)αϕβ=+-+由sin()[1,1]αϕ+∈-,得(cos 1)(cos 1)y ββ-+≤≤+,令t =,则t ∈,则22t y t ≤≤--,所以221(42y t t ≥-=-+≥-,当且仅当t =,即cos 1β=时取等号,且2211(22y t t ≤-=-+≤,当且仅当t =,即1cos 2β=-时取等号,的所以y 的取值范围为1[4,]2-.故答案为:1[4,]2-四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 已知()()()()3πsin πcos 2πcos 2.πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭(1)化简()f α;(2)若α是第三象限角,且()1sin π5α-=,求()f α的值.【答案】(1)()cos f αα=-(2【解析】【分析】(1)利用诱导公式化简即可;(2)利用诱导公式及同角三角函数的关系计算即可.【小问1详解】因为()()()()3πsin πcos 2πcos 2πcos sin π2f αααααα⎛⎫--- ⎪⎝⎭=⎛⎫--- ⎪⎝⎭()sin cos sin cos sin sin αααααα⋅⋅-==-⋅,所以()cos fαα=-.【小问2详解】由诱导公式可知()1sin πsin 5αα-=-=,即1sin 5α=-,又α是第三象限角,所以cos α===所以()cos fαα=-=.18. 据调查,某市政府为了鼓励居民节约用水,减少水资源的浪费,计划在本市试行居民生活用水定额管理,即确定一个合理的居民用水量标准x (单位:吨),月用水量不超过x 的部分按平价收费,超出x 的部分按议价收费.为了了解全市居民用水量分布情况,通过抽样,获得了n 户居民某年的月均用水量(单位:吨),其中月均用水量在(]9,12内的居民人数为39人,并将数据制成了如图所示的频率分布直方图.(1)求a 和n 的值;(2)若该市政府希望使80%的居民月用水量不超过标准x 吨,试估计x 的值;(3)在(2)的条件下,若实施阶梯水价,月用水量不超过x 吨时,按3元/吨计算,超出x 吨的部分,按5元/吨计算.现市政府考核指标要求所有居民的月用水费均不超过70元,则该市居民月用水量最多为多少吨?【答案】(1)1300a =,200n = (2)16.6吨 (3)20.64吨【解析】【分析】(1)频率分布直方图总面积为1,由此即可求解.(2)先判断所求值所在的区间,再按比例即可求解.(3)按题意列不等式即可求解.【小问1详解】()0.0150.0250.0500.0650.0850.0500.0200.0150.00531a +++++++++⨯= ,1.300a ∴=用水量在(]9,12频率为0.06530.195⨯=,392000.195n ∴==(户)【小问2详解】()0.0150.0250.0500.0650.08530.720.8++++⨯=< ,()0.0150.0250.0500.0650.0850.05030.870.8+++++⨯=>,0.800.7215316.60.870.72-∴+⨯=-(吨)【小问3详解】设该市居民月用水量最多为m 吨,因为16.6349.870⨯=<,所以m 16.6>,则()16.6316.6570w m =⨯+-⨯≤,解得20.64m ≤,答:该市居民月用水量最多为20.64吨.19. 已知函数()()2πcos 2cos f x x x x =-+.(1)若ππ,63x ⎡⎤∈-⎢⎥⎣⎦,求函数()f x 的值域;(2)若函数()()1g x f x =-在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,求m 的取值范围.【答案】(1)[]0,3(2)5π11π,1212⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用诱导公式以及二倍角公式化简可得()f x 的表达式,结合ππ,63x ⎡⎤∈-⎢⎥⎣⎦,确定π26x +的范围,即可求得答案;(2)由π,6x m ⎡⎤∈-⎢⎥⎣⎦,确定πππ2[,2666x m +∈-+,根据()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,结合正弦函数的零点,列出相应不等式,即求得答案.【小问1详解】由题意得()()2πcos 2cos f x x x x=-+的πcos 212sin 216x x x ⎛⎫=++=++ ⎪⎝⎭,当ππ,63x ⎡⎤∈-⎢⎥⎣⎦,则ππ5π2[,666x +∈-,则1πsin 2126x ⎛⎫-≤+≤ ⎪⎝⎭,则π02sin 2136x ⎛⎫≤++≤ ⎪⎝⎭,即函数()f x 的值域为[]0,3;【小问2详解】由题可得π6m >-,当π,6x m ⎡⎤∈-⎢⎥⎣⎦时,πππ2[,2666x m +∈-+,()()π2sin 216g x x f x ⎛⎫+ ⎪⎝=-⎭=,且()g x 在区间π,6m ⎡⎤-⎢⎥⎣⎦上有且仅有两个零点,而sin y x =在π[,2π)6-有且仅有2个零点,分别为0,π,故π5π11ππ22π,61212m m ≤+<∴≤<,即5π11π,1212m ⎡⎫∈⎪⎢⎣⎭.20. 某生物研究者于元旦在湖中放入一些凤眼莲(其覆盖面积为k ),这些凤眼莲在湖中的蔓延速度越来越快,二月底测得凤眼莲的覆盖面积为224m ,三月底测得凤眼莲的覆盖面积为236m ,凤眼莲的覆盖面积y (单位:2m )与月份x (单位:月)的关系有两个函数模型()0,1x y ka k a =>>与()120,0y px k p k =+>>可供选择.(1)试判断哪个函数模型更合适并求出该模型的解析式;(2)求凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份.(参考数据:lg 20.3010,lg 30.4711≈≈).【答案】(1)选择模型()0,1x y ka k a =>>符合要求,*32323N 2,11,xy x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭ (2)六月份【解析】【分析】(1)根据指数函数与幂函数的增长速度即可选得哪一个模型,再利用待定系数法即可求出该模型的解析式;(2)由(1)结合已知可得3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,再结合已知数据即可得出答案.【小问1详解】函数()0,1x y ka k a =>>与()120,0y pxk p k =+>>在()0,∞+上都是增函数,随着x 的增加,函数()0,1x y kak a =>>的值增加的越来越快,而函数()120,0y px k p k =+>>的值增加的越来越慢,由于凤眼莲在湖中的蔓延速度越来越快,因此选择模型()0,1x y kak a =>>符合要求,根据题意可知2x =时,24y =;3x =时,36y =,所以232436ka ka ⎧=⎨=⎩,解得32323a k ⎧=⎪⎪⎨⎪=⎪⎩,故该函数模型的解析式为*32323N 2,11,x y x x ⎛⎫=⋅ ⎪⎝≤≤∈⎭;【小问2详解】当0x =时,323y =,元旦放入凤眼莲的覆盖面积是232m 3,由3233210323x ⎛⎫⋅>⨯ ⎪⎝⎭,得3102x ⎛⎫> ⎪⎝⎭,所以32lg1011log 10 5.93lg 3lg 20.47110.3010lg 2x >==≈≈--,又*N x ∈,所以6x ≥,即凤眼莲的覆盖面积是元旦放入凤眼莲面积10倍以上的最小月份是六月份.21. 已知函数()()sin (0,0π)f x x ωϕωϕ=+><<的最小正周期为π,且直线π2x =-是其图象的一条对称轴.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象向右平移π4个单位,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数记作()y g x =,已知常数*,n λ∈∈R N ,且函数()()()F x f x g x λ=+在()0,πn 内恰有2023个零点,求常数λ与n 的值.【答案】(1)()cos2f x x =(2)1,1349n λ==【解析】【分析】(1)由周期求得ω,再由对称性求得ϕ得解析式;(2)由图象变换求得()g x ,然后可得()F x 的表达式,令[]sin 1,1t x =∈-,()0F x =化为22210,Δ80t t λλ--==+>,则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,然后分类讨论()0F x =在(0,π)n 上解的个数后得出结论.【小问1详解】由三角函数的周期公式可得()()2π2,sin 2πf x x ωϕ==∴=+,令()π2π2x k k Z ϕ+=+∈,得()ππ422k x k Z ϕ=-+∈,由于直线π2x =-为函数()y f x =的一条对称轴,所以,()πππZ 2422k k ϕ-=-+∈,得()3ππZ 2k k ϕ=+∈,由于0π,1k ϕ<<∴=-,则π2ϕ=,因此,()πsin 2cos22f x x x ⎛⎫=+= ⎪⎝⎭;小问2详解】将函数()y f x =的图象向右平移π4个单位,得到函数ππcos 2cos 2sin242y x x x ⎡⎤⎛⎫⎛⎫=-=-= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再将所得的图象上每一点的纵坐标不变,横坐标伸长为原来的2倍后所得到的图象对应的函数为()sin g x x =,()()()2cos2sin 2sin sin 1F x f x g x x x x x λλλ=+=+=-++ ,令()0F x =,可得22sin sin 10x x λ--=,令[]sin 1,1t x =∈-,得22210,Δ80t t λλ--==+>,【则关于t 的二次方程2210t t λ--=必有两不等实根12t t 、,则1212t t =-,则12t t 、异号,(i )当101t <<且201t <<时,则方程1sin x t =和2sin x t =在区间()()*0,πNn n ∈均有偶数个根,从而方程22sin sin 10x x λ--=在()()*0,πNn n ∈也有偶数个根,不合乎题意;(ii )当11t =-时,则212t =,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上无实数根,方程2sin x t =在区间()1348π,1349π上有两个实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2024个根,不合乎题意,(iii )当11t =,则212t =-,当()0,2πx ∈时,1sin x t =只有一根,2sin x t =有两根,所以,关于x 的方程22sin sin 10x x λ--=在()0,2π上有三个根,由于202336741=⨯+,则方程22sin sin 10x x λ--=在()0,1348π上有36742022⨯=个根,由于方程1sin x t =在区间()1348π,1349π上只有一个根,方程2sin x t =在区间()1348π,1349π上无实数解,因此,关于x 的方程22sin sin 10x x λ--=在区间()0,1349π上有2023个根,合乎题意;此时,1122λ-+=,1λ=,综上所述:1,1349n λ==.22. 已知二次函数()f x 满足:()()224132,log 231x f x x x g x ⎛⎫+=++=+ ⎪-⎝⎭(1)求()f x 的解析式;(2)求()g x 的单调性与值域(不必证明);(3)设()ππ2cos cos2,22h x x m x x ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,若()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦,求实数m 的值.【答案】(1)()2f x x x =+ (2)在()0,∞+上单调递减,值域是()1,+∞.(3)1-【解析】【分析】(1)利用换元法,令1t x =+,代入化简即可求出函数的解析式;(2)可设4231x u =+-,利用复合函数的单调性,即可判定函数的单调性,进而求得值域;(3)由(2)知,()12g =,()12f =,结合()(),f x g x 的单调性可知当1x ≥时,()()2,01f x g x x ≥≥<<时,()()2f x g x <<,由()()f h x g h x ⎡⎤⎡⎤≥⎣⎦⎣⎦恒成立,即为()1h x ≥恒成立,设[]cos 0,1x t =∈,只需不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,讨论m 的取值范围即可求解.【小问1详解】由题意()2132f x x x +=++,令1t x =+,则1x t =-,有()()22(1)312f t t t t t =-+-+=+,故()2f x x x =+【小问2详解】函数()24log 231x g x ⎛⎫=+⎪-⎝⎭,由420031x x +>⇒>-,即定义域为()0,∞+,且4231x u =+-在()0,∞+上单调递减及2log y u =单调递增所以()24log 231x g x ⎛⎫=+ ⎪-⎝⎭在()0,∞+上单调递减.因为()0,x ∞∈+,42231x u =+>-,所以()g x 的值域是()1,∞+【小问3详解】结合(2)结论知()24log 231x g x ⎛⎫=+⎪-⎝⎭在()0,∞+上单调递减且()12g =,又()2f x x x =+在()0,∞+上单调递增且()12f =故当1x ≥时,()()2,01f xg x x ≥≥<<时,()()2f x g x <<,由()()()1f h x g h x h x ⎡⎤⎡⎤≥⇒≥⎣⎦⎣⎦恒成立,即()22cos 2cos 11x m x +-≥在ππ,22x ⎡⎤∈-⎢⎥⎣⎦上恒成立,设[]cos 0,1x t =∈,则不等式()22210mt t m +-+≥在[]0,1t ∈上恒成立,①当0m =时,不等式化为210t -≥,显然不满足恒成立;②当0m >时,将0=t 代入得()10m -+≥,与0m >矛盾;③当0m <时,只需()()10,1,12210,1,m m m m m m ⎧-+≥≤-⎧⎪⇒⇒=-⎨⎨+-+≥≥-⎪⎩⎩,综上,实数m 的值为-1.【点睛】关键点点睛:本题考查了换元法求函数的解析式,函数的单调性,解题的关键是根据函数的单调性得出()1h x ≥,转化为二次不等式恒成立,考查了分类讨论的思想.。
北京市海淀区2023-2024学年高一上学期期末考试 数学 Word版含答案

海淀区高一年级练习数 学考生须知:1.本试卷共6页,共三道大题,26道小题,满分150分,考试时间120分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在答题卡上,用黑色字迹签字笔作答.4.考试结束,请将本试卷交回.一、选择题:共14小题,每小题4分,共56分.在每小题列出的四个选项中,选出符合题目要求的一项1.已知全集{}2,1,0,1,2U =--,集合{}2,1,0A =--,则U A = ( )A .{}1,2,3B .{}1,2C .()0,2D .()1,22.某学校有高中学生1500人,初中学生1000人.学生社团创办文创店,想了解初高中学生对学校吉祥物设计的需求,用分层抽样的方式随机抽取若干人进行问卷调查,已知在初中学生中随机抽取了100人,则在高中学生中抽取了( )A .150人B .200人C .250人D .300人3.命题“,20x x ∃∈+≤R ”的否定是( )A .,20x x ∃∈+>RB .,20x x ∃∈+<RC .,20x x ∀∈+>RD .,20x x ∀∈+<R 4.方程组202x y x x +=⎧⎨+=⎩解集是( )A .()(){}1,1,1,1--B .()(){}1,1,2,2-C .()(){}1,1,2,2--D .()(){}2,2,2,2-- 5.某部门调查了200名学生每周的课外活动时间(单位:h ),制成了如图所示的频率分布直方图,其中课外活动时间的范围是[]10,20,并分成[)[)[)[)[]10,12,12,14,14,16,16,18,18,20五组.根据直方图,判断这200名学生中每周的课外活动时间不少于14h 的人数是( )A .56B .80C .144D .1846.若实数a ,b 满足a b >,则下列不等式成立的是( )A .a b >B .a c b c +>+C .22a b >D .22ac bc >7.函数()22x f x x =+的零点所在的区间为( )A .()2,1--B .()1,0-C .()0,1D .()1,28.在同一个坐标系中,函数()()()log ,,x a a f x x g x a h x x -===的部分图象可能是( )A .B .C .D .9.下列函数中,既是奇函数,又在()0,+∞上单调递减的是( )A .()f x x =B .()f x x x =-C .()11f x x 2=+ D .()3f x x = 10.已知0.1232,log 3,log 2a b c ===,则实数a ,b ,c 的大小关系是( )A .c a b >>B .c b a >>C .a c b >>D .a b c >>11.已知函数()1212x f x a =-+,则“1a =”是()f x 为奇函数的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件12.已知函数()()2log 12f x x x =++-,则不等式()0f x <的解集为A .(),1-∞B .()1,1-C .()0,1D .()1,+∞13.科赫(Koch )曲线是几何中最简单的分形,科赫曲线的产生方式如下:如图,将一条线段三等分后,以中间一段为边作正三角形并去掉原线段生成1级科赫曲线“”,将1级科赫曲线上每一线段重复上述步骤得到2级科赫曲线,同理可得3级科赫曲线……在分形中,一个图形通常由N 个与它的上一级图形相似,且相似比为r 的部分组成.若1D r N=,则称D 为该图形的分形维数.那么科赫曲线的分形气维数是( )A .2log 3B .3log 2C .1D .32log 2 14.已知函数()2,,x a x a f x x x a +≤⎧=⎨>⎩,若存在非零实数0x ,使得()()00f x f x -=-成立,则实数a 的取值范围是( )A .(],0-∞B .1,4⎛-∞⎤ ⎥⎝⎦ C .[]4,0 D .12,4⎡-⎤⎢⎥⎣⎦ 二、填空题:共6小题,每小题5分,共30分15.函数()()lg 1f x x =-的定义域是__________.16.已知幂函数()f x 经过点()2,8,则函数()f x =___________.17.农科院作物所为了解某种农作物的幼苗质量,分别从该农作物在甲、乙两个不同环境下培育的幼苗中各随机抽取了15株幼苗进行检测,量出它们的高度如下图(单位:cm ):记该样本中甲、乙两种环境下幼苗高度的中位数分别为a ,b ,则a b -=___________.若以样本估计总体,记甲、乙两种环境下幼苗高度的标准差分别为12,s s ,则1s ____2s (用“<,>或=”连接).18.已知函数()4f x x a x=+-没有零点,则a 的一个取值为_______;a 的取值范围是___________.19.已知函数()22,0,0x x x f x x ⎧≥⎪=⎨-<⎪⎩,则()f x 的单调递增区间为________;满足()4410f x <⨯的整数解的个数为____________(参考数据:lg 20.30≈)20.共享单车已经逐渐成为人们在日常生活中必不可少的交通工具.通过调查发现人们在单车选择时,可以使用“Tullock 竞争函数”进行近似估计,其解析式为()()[],0,1,01aa a x S x x a x x =∈>+-(其中参数a 表示市场外部性强度,a 越大表示外部性越强).给出下列四个结论:①()S x 过定点11,22⎛⎫ ⎪⎝⎭; ②()S x 在[]0,1上单调递增;③()S x 关于12x =对称; ④取定x ,外部性强度a 越大,()S x 越小.其中所有正确结论的序号是______________.三、解答题:共64分,解答应写出文字说明,演算步骤或证明过程.21.(本小题12分)化简求值:(I )()10.530.204640.13π927-⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭ (II )5log 333325log 2log 59-+ 22.(本小题12分)已知一元二次方程22320x x +-=的两个实数根为12,x x求值:(I )2212x x +;(II )1211x x + 23.(本小题9分)国务院正式公布的《第一批全国重点文物保护单位名单》中把重点文物保护单位(下述简称为“第一批文保单位”)分为六大类.其中“A :革命遗址及革命纪念建筑物”、“B :石窟寺”、“C :古建筑及历史纪念建筑物”、“D :石刻及其他”、“E :古遗址”、“F :古墓葬”,北京的18个“第一批文保单位”所在区分布如下表:(I )某个研学小组随机选择北京市“第一批文保单位”中的一个进行参观,求选中的参观单位恰好为“C :古建筑及历史纪念建筑物”的概率;(II )小王同学随机选择北京市“第一批文保单位”中的“A :革命遗址及革命纪念建筑物”中的一个进行参观:小张同学随机选择北京市“第一批文保单位”中的“C :古建筑及历史纪念建筑物”中的一个进行参观.两人选择参观单位互不影响,求两人选择的参观单位恰好在同一个区的概率;(III )现在拟从北京市“第一批文保单位”中的“C :古建筑及历史纪念建筑物”中随机抽取2个单位进行常规检查,记抽到海淀区的概率为1P ,抽不到海淀区的概率记为2P ,试判断1P 和2P 的大小(直接写出结论).24.(本小题9分)已知集合{}25320,22|A x x x B x x ⎧⎫=--<=-≥⎨⎬⎩⎭(I )求,R A B A B ;(II )记关于x 的不等式()222440x m x m m -+++≤的解集为M ,若B M R =,求实数m 的取值范围.25.(本小题11分)已知函数()()()ln 1ln 1f x x k x =-++,请从条件①、条件②这两个条件中选择一个作为已知,解答下面的问题:条件①:()()0f x f x +-=条件②:()()0f x f x --=注:如果选择条件①和条件②分别解答,按第一个解答记分.(I )求实数k 的值;(II )设函数()()()11k F x x x =-+,判断函数()F x 在区间上()0,1的单调性,并给出证明;(III )设函数()()2k g x f x x k =++,指出函数()g x 在区间()1,0-上的零点的个数,并说明理由.26.(本小题11分)已知函数()()(),,f x g x h x 的定义域均为R ,给出下面两个定义:①若存在唯一的x ∈R ,使得()()()()f g x h f x =,则称()g x 与()h x 关于()f x 唯一交换;②若对任意的x ∈R ,均有()()()()f g x h f x =,则称()g x 与()h x 关于()f x 任意交换.(I )请判断函数()1g x x =+与()1h x x =-关于()2f x x =是唯一交换还是任意交换,并说明理由;(II )设()()()22()20,1f x a x a g x x bx =+≠=+-,若存在函数()h x ,使得()g x 与()h x 关于()f x 任意交换,求b 的值;(III )在(II )的条件下,若()g x 与()f x 关于()11x x e x e ω-=+唯一交换,求a 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一上学期期末测试题
及答案
Revised by Petrel at 2021
2007年度高一上学期期末测试题
仙村中学 林凯
一. 选择题(每题5分,共50分)
1.已知集合{}1,2,3A =,集合B 满足{}1,2,3A B =,则集合B 的个数为( ) A 3 B 6 C 8 D 9 (改编自必修112P B 组1)
2.{}{}|34,|2A x x B x x =-<≤=<-,则A B =( ) (改编自必修18P 例5)
3.已知函数(1)(0)()0(0)(1)(0)x x x f x x x x x +>⎧⎪
==⎨⎪-<⎩
,则()f e =( ) A 0 B (1)e e - C e D (1)e e + (改编自必修145P B 组4) 4.已知1
12
2
4x x
-+=,则1
x x -+=( )
A 16
B 14
C 8
D 6 (改编自必修160P B 组2)
5.已知函数()f x 是定义在R 上的偶函数,当0()(1)x f x x x ≥=-时,,则当
0()x f x <=时,( )
(改编自必修139P A 组6) 6
.函数()f x =
)
(改编自必修174P A 组7)
7.已知一个几何体它的主视图和左视图上都是一个长为4,宽为2的矩形,俯视图是一个半径为2的圆,则此几何体的表面积为( ) (改编自必修213P )
8.直线4430x y +-=的倾斜角为( ) (改编自必修295P 2)
9.求过点(3,2)P ,并与直线420x y +-=垂直的直线的方程为( ) 10.若2
13
log
x <,则x 的取值范围为( ) (改编自必修175P B 组2) 二. 填空题(每题5分,共20分) 11.函数2
2x y a
+=-过定点 (改编自必修156P 指数函数的性质)
12.lg 42lg5+= (改编自必修168P 3)
13.圆心为点P (2,2)-,且过点(1,2)-的圆的方程为 (改编自必修2124P 2) 14.已知(1,2,3),(6,7,8)A B ,则||AB = (改编自必修2138P 1) 答题卡
11 12 13 14
三.解答题(6题,共80分,要写出必要的文字说明)
15.(12分)已知集合{}{}|16,|44A x x x B x x =<-≥=-<≤或,求
,,(),()R R A B A B A B A B C C (改编自必修112P A 组10) 16.(14分)已知三角形的三个顶点(2,3),(1,1),(1,2)A B C ---,求 (1)AB 边的方程 (2)BC 边中线的方程
(3)AC 边高线的方程(改编自必修289P A 组2)
17.(12分)已知圆C 和y 轴相切,圆心在03=-y x 上,且被直线x y =截得的弦长为
72,求圆C 的方程。
(改编自必修2
132
P
A 组6)
18.(14分)如图,长方体1111D C B A ABCD -中,1==AD AB ,21=AA ,点P 为1DD 的中点。
(1)求证:直线1BD ∥平面PAC ; (2)求证:平面PAC ⊥平面1BDD ;
(改编自必修274P B 组1)
19.(14分)已知2
()31215f x x x =+- (1)求()f x 的零点
(2)求()f x 在[3,3]-+的最值
(3)证明()f x 在[2,)+∞上是增函数。
(改编自必修139P A 组2) 20.(14分)已知2
()1
2
x
f x m =-++
(1)判断()f x 的单调性
(2)是否存在实数m 使()f x 为奇函数( 改编自必修183P B 组3) 参考答案 CDDBD BCADD
11.(-2,-1) 13.2
2
25(2)(2)x y +=-+
14. 15.解.{}|44A B x x =-<≤ 3分 {}|46A B x x x =≤≥或 6分 {}|16R A x x C =-≤< 7分 {}()14R A B x C =-≤≤ 9分 {}|44R B x x x C =≤->或 10分
P
D 1
C 1
B 1
A 1
D
C
B
A
{}
)|14R
A
B x x x C
=≤->-或 12分
16.解.(1)AB 边的方程为
313
212
y x ---=
-- 2分 即450x y --= 4分
(2)BC 边的中点坐标为(0,3
2-), 5分
则BC 边的中线方程为303
322
2y x --=
--- 7分 即6790x y -+= 9分 (3)AC 边的斜率1235
123
k --==-- 10分 211
3
5
k k -=
=- 11分 AC 边高线的方程为3
1(1)5y x +=-- 13分
即3520x y ++= 14分 17.解设圆心坐标为(3,)y y , 1分 则圆心到y x =
的距离为|d y =
= 3分 又因为圆C 与y 轴相切,则|3|r y = 5分
由题意知2
2
2
(|3|)|)
y y += 7分
1y ∴=± 8分
当1y =时,圆心为(3,1),则圆C 的方程为22
9(3)(1)x y +=-- 10分 当1y =-时,圆心为(-3,-1),则圆C 的方程为2
2
9(3)(1)x y +=++ 12分 18.证明(1)设AC 与BD 的交点为O,连接PO,则 2分 1PO B D 4分 又PO ⊆平面PAC 5分 ∴直线1B D 平面PAC 6分
(2)
1111ABCD C A B D -为长方体
1D D ∴⊥平面ABCD
1D AC D ∴⊥ 9分 又AB=AD=1
DB AC ∴⊥ 12分 而1D
DB D D =
AC ∴⊥平面1BD D 13分 又AC ⊆平面PAC
∴平面PAC ⊥平面1BD D 14分 19.解(1)2
312150x x +-=
121,5x x ∴==- 3分 ∴()f x 的零点为1和-5 4分 (2)它的对称轴为2x =- 5分
(3)14
(2)27(3)48
f f f -=--=-= 7分
当2x =-时,()f x 的最小值为-27 8分 当3x =时,()f x 的最大值为48 9分
(3)证明:在[2,)+∞上任取两个实数12,x x ,则122,2,x x ≥≥且12x x <, 10分
122
2
11222
2
12121212121212()()
31215(31215)3()12()3()()12()3()(4)
f f x x x x x x x x x x x x x x x x x x x x -=+--+-=-+-=-++-=-++ 12分
∴()f x 在[2,)+∞上是增函数 14分
20.解(1)任取两个实数12,x x ,且12x x <则 2分
12211
2
1
2
12()()2
2
()1
1
2
21
1
2()(1)(1)
2
2
2
22222f f m m x x x x x x x x x x -=-+--+++=
-++-=
++ 5分
而1210,1022x x +>+>
12()()f f x x ∴< 6分
∴()f x 是增函数 7分
(2)假设存在m 使()f x 为奇函数,则 8分
()()0f x f x +-= 9分
既2
2
01
1
2
2
x
x
m m --
+-
+=++ 11分
1m ∴= 14分。