系统仿真与matlab实验报告
线性系统理论Matlab实践仿真报告

线性系统理论Matlab实验报告1、本题目是在已知状态空间描述的情况下要求设计一个状态反馈控制器,从而使得系统具有实数特征根,并要求要有一个根的模值要大于5,而特征根是正数是系统不稳定,这样的设计是无意义的,故而不妨设采用状态反馈后的两个期望特征根为-7,-9,这样满足题目中所需的要求。
(1)要对系统进行状态反馈的设计首先要判断其是否能控,即求出该系统的能控性判别矩阵,然后判断其秩,从而得出其是否可控;判断能控程序设计如下:>> A=[-0.8 0.02;-0.02 0];B=[0.05 1;0.001 0];Qc=ctrb(A,B)Qc =0.0500 1.0000 -0.0400 -0.80000.0010 0 -0.0010 -0.0200Rc=rank(Qc)Rc =2Qc =0.0500 1.0000 -0.0400 -0.80000.0010 0 -0.0010 -0.0200得出结果能控型判别矩阵的秩为2,故而该系统是完全可控的,故可以对其进行状态反馈设计。
(2)求取状态反馈器中的K,设的期望特征根为-7,-9;其设计程序如下:>> A=[-0.8 0.02;-0.02 0];B=[0.05 1;0.001 0];P=[-7 -9];k=place(A,B,P)k =1.0e+003 *-0.0200 9.00000.0072 -0.4500程序中所求出的k即为所求状态反馈控制器的状态反馈矩阵,即由该状态反馈矩阵所构成的状态反馈控制器能够满足题目要求。
2、(a)要求求该系统的能控型矩阵,并验证该系统是不能控的。
设计程序:>> A=[0 1 0 0 0;-0.1 -0.5 0 0 0;0.5 0 0 0 0;0 0 10 0 0;0.5 1 0 0 0];>> B=[0;1;0;0;0];>> C=[0 0 0 1 0];>> Qc=ctrb(A,B)Qc =0 1.0000 -0.5000 0.1500 -0.02501.0000 -0.5000 0.1500 -0.0250 -0.00250 0 0.5000 -0.2500 0.07500 0 0 5.0000 -2.50000 1.0000 0 -0.1000 0.0500>> Rc=rank(Qc)Rc =4从程序运行的结果可得,系统能控型判别矩阵的秩为4,而系统为5阶系统,故而就验证了该系统为不可控的。
自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析)一、实验目的学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点1、 系统的典型响应有哪些2、 如何判断系统稳定性3、 系统的动态性能指标有哪些 三、实验方法(一) 四种典型响应1、 阶跃响应:阶跃响应常用格式:1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。
2、),(Tn sys step ;表示时间范围0---Tn 。
3、),(T sys step ;表示时间范围向量T 指定。
4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。
2、 脉冲响应:脉冲函数在数学上的精确定义:0,0)(1)(0〉==⎰∞t x f dx x f其拉氏变换为:)()()()(1)(s G s f s G s Y s f ===所以脉冲响应即为传函的反拉氏变换。
脉冲响应函数常用格式: ① )(sys impulse ; ②);,();,(T sys impulse Tn sys impulse③ ),(T sys impulse Y =(二) 分析系统稳定性 有以下三种方法:1、 利用pzmap 绘制连续系统的零极点图;2、 利用tf2zp 求出系统零极点;3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.四、实验内容 (一) 稳定性1. 系统传函为()27243645232345234+++++++++=s s s s s s s s s s G ,试判断其稳定性2. 用Matlab 求出253722)(2342++++++=s s s s s s s G 的极点。
%Matlab 计算程序num=[3 2 5 4 6];den=[1 3 4 2 7 2];G=tf(num,den);pzmap(G);p=roots(den)运行结果: p =+ - + -P ole-Zero MapReal AxisI m a g i n a r y A x i s-2-1.5-1-0.500.5-1.5-1-0.50.511.5图1-1 零极点分布图由计算结果可知,该系统的2个极点具有正实部,故系统不稳定。
控制工程实训课程学习总结基于MATLAB的系统建模与仿真实验报告

控制工程实训课程学习总结基于MATLAB 的系统建模与仿真实验报告摘要:本报告以控制工程实训课程学习为背景,基于MATLAB软件进行系统建模与仿真实验。
通过对实验过程的总结,详细阐述了系统建模与仿真的步骤及关键技巧,并结合实际案例进行了实验验证。
本次实训课程的学习使我深入理解了控制工程的基础理论,并掌握了利用MATLAB进行系统建模与仿真的方法。
1. 引言控制工程是一门应用广泛的学科,具有重要的理论和实践意义。
在控制工程实训课程中,学生通过实验来加深对控制系统的理解,并运用所学知识进行系统建模与仿真。
本次实训课程主要基于MATLAB软件进行,本文将对实验过程进行总结与报告。
2. 系统建模与仿真步骤2.1 确定系统模型在进行系统建模与仿真实验之前,首先需要确定系统的数学模型。
根据实际问题,可以选择线性或非线性模型,并利用控制理论进行建模。
在这个步骤中,需要深入理解系统的特性与工作原理,并将其用数学方程表示出来。
2.2 参数识别与估计参数识别与估计是系统建模的关键,它的准确性直接影响到后续仿真结果的可靠性。
通过实际实验数据,利用系统辨识方法对系统的未知参数进行估计。
在MATLAB中,可以使用系统辨识工具包来进行参数辨识。
2.3 选择仿真方法系统建模与仿真中,需要选择合适的仿真方法。
在部分情况下,可以使用传统的数值积分方法进行仿真;而在其他复杂的系统中,可以采用基于物理原理的仿真方法,如基于有限元法或多体动力学仿真等。
2.4 仿真结果分析仿真结果的分析能够直观地反映系统的动态响应特性。
在仿真过程中,需对系统的稳态误差、动态响应、鲁棒性等进行综合分析与评价。
通过与理论期望值的比较,可以对系统的性能进行评估,并进行进一步的优化设计。
3. 实验案例及仿真验证以PID控制器为例,说明系统建模与仿真的步骤。
首先,根据PID控制器的原理以及被控对象的特性,建立数学模型。
然后,通过实际实验数据对PID参数进行辨识和估计。
《MATLAB与控制系统仿真》实验报告

《MATLAB与控制系统仿真》实验报告一、实验目的本实验旨在通过MATLAB软件进行控制系统的仿真,并通过仿真结果分析控制系统的性能。
二、实验器材1.计算机2.MATLAB软件三、实验内容1.搭建控制系统模型在MATLAB软件中,通过使用控制系统工具箱,我们可以搭建不同类型的控制系统模型。
本实验中我们选择了一个简单的比例控制系统模型。
2.设定输入信号我们需要为控制系统提供输入信号进行仿真。
在MATLAB中,我们可以使用信号工具箱来产生不同类型的信号。
本实验中,我们选择了一个阶跃信号作为输入信号。
3.运行仿真通过设置模型参数、输入信号以及仿真时间等相关参数后,我们可以运行仿真。
MATLAB会根据系统模型和输入信号产生输出信号,并显示在仿真界面上。
4.分析控制系统性能根据仿真结果,我们可以对控制系统的性能进行分析。
常见的性能指标包括系统的稳态误差、超调量、响应时间等。
四、实验步骤1. 打开MATLAB软件,并在命令窗口中输入“controlSystemDesigner”命令,打开控制系统工具箱。
2.在控制系统工具箱中选择比例控制器模型,并设置相应的增益参数。
3.在信号工具箱中选择阶跃信号,并设置相应的幅值和起始时间。
4.在仿真界面中设置仿真时间,并点击运行按钮,开始仿真。
5.根据仿真结果,分析控制系统的性能指标,并记录下相应的数值,并根据数值进行分析和讨论。
五、实验结果与分析根据运行仿真获得的结果,我们可以得到控制系统的输出信号曲线。
通过观察输出信号的稳态值、超调量、响应时间等性能指标,我们可以对控制系统的性能进行分析和评价。
六、实验总结通过本次实验,我们学习了如何使用MATLAB软件进行控制系统仿真,并提取控制系统的性能指标。
通过实验,我们可以更加直观地理解控制系统的工作原理,为控制系统设计和分析提供了重要的工具和思路。
七、实验心得通过本次实验,我深刻理解了控制系统仿真的重要性和必要性。
MATLAB软件提供了强大的仿真工具和功能,能够帮助我们更好地理解和分析控制系统的性能。
基于MATLAB控制系统仿真实验报告

tf 4
y0
0 1
6、求出 G1(s)
2 (s2 2s 1) 与 G2 (s)
1 (2s3
3s2
1)
的单位阶跃响应,并分别
求出状态空间模型。
解:(1) G1(s) 2 (s2 2s 1) 的状态空间模型求解如下:
function shiyan2 b1=[2];
D(z)
0.62(1 0.136z 1)(1 0.183z (1 0.045z 1)(1 0.53z 1)
1 )
分别用仿真算法得到系统在单位阶跃输入作用下的响应,系统在单位速度输
入是的输出响应。
解:(1)首先将 W1(s)转换为 W1(z),采样周期 T=0.2s,程序清单如下: function shiyan42 num=[10];den=[0.005 0.15 1 0]; ts=0.2;[nc,dc]=c2dm(num,den,ts)
INTRO(注意:intro 为一个用 MATLAB 语言编写的幻灯片程序,主要演示
常用的 MATLAB 语句运行结果。)
然后,根据现实出来的幻灯片右面按钮进行操作,可按 START——NEXT—
—NEXT 按钮一步步运行,观察。
3、自编程序并完成上机编辑,调试,运行,存盘:
(1)用 MATLAB 命令完成矩阵的各种运算,例如:
5、利用 ode23 或 ode45 求解线性时不变系统微分方程 y(t) Ay(t) ,并绘制出 y(t)
曲线,式中
A
0.5
1
1 0.5
t t0 t 如下: function xdot=fun21(t,x) A=[-0.5 1;-1 -0.5]; xdot=A*x; function fzsy22 t0=0;tf=4;tol=1e-6; x0=[0;1];trace=1; [t,x]=ode23('fun21',t0,tf,x0,tol,trace); plot(t,x) 得到的实验结果如下图所示:
仿真软件操作实验报告(3篇)

第1篇实验名称:仿真软件操作实验实验目的:1. 熟悉仿真软件的基本操作和界面布局。
2. 掌握仿真软件的基本功能,如建模、仿真、分析等。
3. 学会使用仿真软件解决实际问题。
实验时间:2023年X月X日实验地点:计算机实验室实验器材:1. 仿真软件:XXX2. 计算机一台3. 实验指导书实验内容:一、仿真软件基本操作1. 打开软件,熟悉界面布局。
2. 学习软件菜单栏、工具栏、状态栏等各个部分的功能。
3. 掌握文件操作,如新建、打开、保存、关闭等。
4. 熟悉软件的基本参数设置。
二、建模操作1. 学习如何创建仿真模型,包括实体、连接器、传感器等。
2. 掌握模型的修改、删除、复制等操作。
3. 学会使用软件提供的建模工具,如拉伸、旋转、镜像等。
三、仿真操作1. 设置仿真参数,如时间、步长、迭代次数等。
2. 学习如何进行仿真,包括启动、暂停、继续、终止等操作。
3. 观察仿真结果,包括数据、曲线、图表等。
四、分析操作1. 学习如何对仿真结果进行分析,包括数据统计、曲线拟合、图表绘制等。
2. 掌握仿真软件提供的分析工具,如方差分析、回归分析等。
3. 将仿真结果与实际数据或理论进行对比,验证仿真模型的准确性。
实验步骤:1. 打开仿真软件,创建一个新项目。
2. 在建模界面,根据实验需求创建仿真模型。
3. 设置仿真参数,启动仿真。
4. 观察仿真结果,进行数据分析。
5. 将仿真结果与实际数据或理论进行对比,验证仿真模型的准确性。
6. 完成实验报告。
实验结果与分析:1. 通过本次实验,掌握了仿真软件的基本操作,包括建模、仿真、分析等。
2. 在建模过程中,学会了创建实体、连接器、传感器等,并能够进行模型的修改、删除、复制等操作。
3. 在仿真过程中,成功设置了仿真参数,启动了仿真,并观察到了仿真结果。
4. 在分析过程中,运用了仿真软件提供的分析工具,对仿真结果进行了数据分析,并与实际数据或理论进行了对比,验证了仿真模型的准确性。
MATLABSimulink和控制系统仿真实验报告

MATLAB/Simulink与控制系统仿真实验报告姓名:喻彬彬学号:K031541725实验1、MATLAB/Simulink 仿真基础及控制系统模型的建立一、实验目的1、掌握MATLAB/Simulink 仿真的基本知识;2、熟练应用MATLAB 软件建立控制系统模型。
二、实验设备电脑一台;MATLAB 仿真软件一个三、实验内容1、熟悉MATLAB/Smulink 仿真软件。
2、一个单位负反馈二阶系统,其开环传递函数为210()3G s s s =+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
3、某控制系统的传递函数为()()()1()Y s G s X s G s =+,其中250()23s G s s s+=+。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
4、一闭环系统结构如图所示,其中系统前向通道的传递函数为320.520()0.11220s G s s s s s+=+++,而且前向通道有一个[-0.2,0.5]的限幅环节,图中用N 表示,反馈通道的增益为1.5,系统为负反馈,阶跃输入经1.5倍的增益作用到系统。
用Simulink 建立该控制系统模型,用示波器观察模型的阶跃响应曲线,并将阶跃响应曲线导入到MATLAB 的工作空间中,在命令窗口绘制该模型的阶跃响应曲线。
四、实验报告要求实验报告撰写应包括实验名称、实验内容、实验要求、实验步骤、实验结果及分析和实验体会。
五、实验思考题总结仿真模型构建及调试过程中的心得体会。
题1、(1)利用Simulink的Library窗口中的【File】→【New】,打开一个新的模型窗口。
(2)分别从信号源库(Sourse)、输出方式库(Sink)、数学运算库(Math)、连续系统库(Continuous)中,用鼠标把阶跃信号发生器(Step)、示波器(Scope)、传递函数(Transfern Fcn)和相加器(Sum)4个标准功能模块选中,并将其拖至模型窗口。
控制系统matlab仿真实验报告1

r= 3.1583 -0.0831 + 2.9088i -0.0831 - 2.9088i -2.6044 -0.3876
4.创建两个字符串,并使用函数将两个字符串进行连接
>> a='Hello' a= Hello >> b=' World !' b= World ! >> c=strcat(a,b) c= Hello World ! %连接
>> E=A*B %矩阵相乘 E= 19 43 22 50 %矩阵乘方
>> F=A^2 F= 7 10 15 22
3.矩阵运算,方程组求解和多项式运算
1)求矩阵的逆,特征值和特征向量:创建一个2维矩阵,并求它的 逆,特征值和特征向量 >> A=rand(3,3) A= 0.8462 0.6721 0.6813 0.5252 0.8381 0.3795 0.2026 0.0196 0.8318 >> B=inv(A) %求逆 B= 2.9596 -2.3417 -1.3557 -1.5445 2.4281 0.1573 -0.6846 0.5132 1.5288 >> [X,d]=eig(A) X= %特征向量 -0.7510 -0.8135 -0.3483 -0.6246 0.5268 -0.6320 -0.2142 0.2464 0.6922
d= %对角线为特征值 1.5996 0 0 0 0.2046 0 0 0 0.7119 2)方程组求解:创建一个方程组,并用2种以上的方法求解 >> A=rand(3,3) A= 0.5028 0.7095 0.4289 0.3046 0.1897 0.1934 0.6822 0.3028 0.5417
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
d 2 y t F t f dy t k y t dt 2 m m dt m
然后以此式为核心建立系统模型。
- 12 -
控制科学与工程系
实验报告
【小结】
本实验让我进一步掌握了运用 matlab 和 simulink 建立模型并进行仿真的方法。通过以上 实验的动手实践我可以熟练的用 simulink 建立模型,进行模型的复制、粘贴、命名,建立子系 统,设置仿真参数等基本操作。 Matlab 的仿真功能非常强大,越深入了解我越觉得还有许多技巧我没有掌握,我希望通 过更多的课程设计了解那些常用的仿真功能。
kp
=10, k i =3, kd =2。要
kp
、k i 、kd 通过 subsystem 参数输入
-4-
控制科学与工程系
实验报告
k
R(s)
p
k
i
1 s
s3 7s2 24s24 s4 10s3 35s2 50s24
C(s)
kd
du / dt
图
2
-5-
控制科学与工程系
实验报告
[3] 建立如图 3 所示控制系统的 Simulink 模型,并用示波器(Scope)观测其单 位阶跃响应曲线。
ka 2, kb 1 。
input
output Ka
G(s)
-
Kb
图5 具体要求如下: (1)采用自顶向下的设计思路。 (2)对虚线框中的控制器采用子系统技术。 (3)用同一示波器显示输入信号 input 与输出信号 output。 (4)输出数据 output 到 MATLAB 工作空间,并绘制图形。
控制科学与工程系
实验报告
实验报告
实验项目名称 所属课程名称 实 验 日 期
Simulink 熟悉及其应用 系统仿真与 matlab 2012 年 10 月 25 日
班 学 姓 成
级 号 名 绩
自动化 1003 班 U201013680 张京林
-1-
控制科学与工程系
实验报告
实验概述: 【实验目的及要求】 本部分的目的在于学习 matlab 中有关 simulink 的正确使用及其应用,包括: simulink 的基本使用、模型的建立、模型的复制剪切粘贴、命名等、线的基本使 用、子系统的建立、属性的设置、参数的设置与应用、simulink 仿真运行参数的 设置等。 通过该实验,要求能够做到不查参考书,能熟练编写基本的 simulink 应用。 【实验环境】 (使用的软件) 微机 Windows XP Matlab 7.0 实验内容: [1] 建立如图 1 所示系统结构的 Simulink 模型,并用示波器(Scope)观测其单 位阶跃和斜坡响应曲线。
Sin(t)
1 0
10 s ( s 1)( s 2)
-1
C(t)
-
图
4
-8-控制科学与工程系实验报告[5]
图 5 所示为简化的飞行控制系统、试建立此动态系统的 simulink 模型并进行
简单的仿真分析。其中, G s
25 ,系统输入 input 为单位阶跃曲线, s s 0.8
图6
弹簧-质量-阻尼器机械位移系统示意图
提示: (1)首先根据牛顿运动定律建立系统的动态方程,如下式所示:
d 2 y t dy t m f ky t F t dt 2 dt
(2)由于质量块的位移 y t 未知, 故在建立系统模型时. 使用积分模块 Integrator 对位移的微分进行积分以获得位移 y t ,且积分器初估值均为 0。 为建立系统模型.将系统动态方程转化为如下的形式:
- 13 -
控制科学与工程系
实验报告
指导教师评语及成绩: 评语:
成绩:
指导教师签名: 批阅日期:
说明: 1、 将每一道题的程序、建立的模型放置在该题目下方; 2、 小结部分为对本次实验的心得体会、思考和建议。
- 14 -
R(t)
10
-
1 s
10
-
1 s
C(t)
1.414
图
1
-2-
控制科学与工程系
实验报告
单位阶跃:
-3-
控制科学与工程系
实验报告
单位斜坡:
[2] 建立如图 2 所示 PID 控制系统的 Simulink 模型,对系统进行单位阶跃响 应仿真,用 plot 函数绘制出响应曲线。其中 求 PID 部分用 subsystem 实现,参数 来实现。
R(t)
4
8
8 s
+
400 s
+
43 0.00167 s 1
0.168 0.017 s 1
14.35 s
13.514
0.0873
0.0132
图3
-6-
控制科学与工程系
实验报告
-7-
控制科学与工程系
实验报告
[4] 建立如图 4 所示非线性控制系统的 Simulink 模型并仿真,用示波器观测 c(t)值,并画出其响应曲线。
-9-
控制科学与工程系
实验报告
子系统:
- 10 -
控制科学与工程系
实验报告
用同一示波器显示输入信号 input 与输出信号 output:
输出数据 output 到 MATLAB 工作空间,并绘制出的波形:
- 11 -
控制科学与工程系
实验报告
[6] 图 6 所示为弹簧—质量—阻尼器机械位移系统。 请建立此动态系统的 Simulink 仿真模型,然后分析系统在外力 F(t)作用下的系统响应(即质量块的位移 y(t))。其 中质量块质量 m=5kg,阻尼器的阻尼系数 f=0.5,弹簧的弹性系数 K=5;并且质量 块的初始位移与初始速度均为 0。 说明:外力 F(t)由用户自己定义,目的是使用户对系统在不同作用下的性能有 更多的了解。