直方图均衡化计算
颜色校正算法

颜色校正算法一、引言颜色校正算法是计算机图形学中的一个重要技术,旨在修正由于光照、摄像设备、显示器等因素引起的颜色偏差。
在计算机图像处理和计算机视觉领域,颜色校正算法被广泛应用于图像增强、图像重建、色彩匹配等方面。
本文将介绍几种常见的颜色校正算法及其原理。
二、直方图均衡化直方图均衡化是一种简单而有效的颜色校正算法。
它通过对图像的像素值分布进行调整,使图像的亮度分布更加均匀。
具体步骤如下:1. 计算图像的灰度直方图,统计每个像素值的频率。
2. 计算累积直方图,即将每个像素值的频率累加起来。
3. 根据累积直方图,计算每个像素值的映射关系。
4. 将原始图像的每个像素值根据映射关系进行替换,得到校正后的图像。
三、颜色空间转换颜色校正算法中常用的一种方法是进行颜色空间的转换。
最常见的颜色空间是RGB和HSV。
RGB颜色空间由红、绿、蓝三个分量组成,而HSV颜色空间由色相、饱和度和亮度三个分量组成。
通过将图像从RGB颜色空间转换到HSV颜色空间,可以更好地调整图像的色彩和亮度。
具体步骤如下:1. 将RGB图像转换为HSV图像。
2. 根据需要调整HSV图像的色相、饱和度和亮度分量。
3. 将调整后的HSV图像转换回RGB图像。
四、灰度世界假设灰度世界假设是一种基于图像平均亮度的颜色校正方法。
该方法假设图像中的物体颜色在整个图像中具有相同的平均亮度。
具体步骤如下:1. 计算图像的平均亮度,可以根据图像的RGB分量或HSV分量进行计算。
2. 根据计算得到的平均亮度,调整图像的RGB分量或HSV分量,使其平均亮度与整个图像的平均亮度一致。
五、颜色映射颜色映射是一种基于颜色直方图的颜色校正算法。
它将原始图像和目标图像的颜色直方图进行比较,通过调整原始图像的颜色分布来实现校正。
具体步骤如下:1. 计算原始图像和目标图像的颜色直方图,并进行归一化处理。
2. 计算原始图像和目标图像的累积直方图。
3. 根据累积直方图,计算每个像素值的映射关系。
图像处理中直方图均衡化的使用教程

图像处理中直方图均衡化的使用教程图像处理中的直方图均衡化是一种常用的增强图像对比度的方法。
通过对图像的像素值进行重新分布,直方图均衡化可以使图像中的明暗区域更具有对比度,从而提高图像的质量和清晰度。
本文将介绍直方图均衡化的原理、应用场景以及具体的步骤。
1. 直方图均衡化的原理直方图均衡化的原理基于对图像的灰度级进行重新分布。
它通过将原始图像的像素值映射到新的像素值上,使得直方图在整个灰度范围内得到均匀分布。
这样就能够增强图像中的低对比度区域,提高图像的视觉效果。
2. 直方图均衡化的应用场景直方图均衡化在图像处理领域有着广泛的应用。
下面列举了一些常见的应用场景:- 增强图像的对比度:直方图均衡化可以使得图像中的亮度值更加均匀分布,提高图像的对比度,使得图像变得更加清晰。
- 增强图像的细节:直方图均衡化通过增强图像中的低对比度区域,可以使得细节更加显著,提高图像的可视化效果。
- 降低图像的噪声:直方图均衡化可以将图像中的噪声分布均匀化,从而减少噪声对图像质量的影响。
3. 直方图均衡化的步骤下面是使用直方图均衡化对图像进行处理的具体步骤:步骤 1: 将彩色图像转换为灰度图像如果原始图像是彩色图像,我们需要将其转换为灰度图像。
这是因为直方图均衡化是针对灰度级进行处理的。
步骤 2: 计算原始图像的像素值分布使用图像处理工具,计算原始图像中每个像素值的出现频率。
这样可以得到一个直方图,该直方图显示了原始图像中像素值的分布情况。
步骤 3: 计算累积分布函数通过对原始图像的直方图进行累积求和,得到一个累积分布函数。
该函数显示了每个像素值的累积出现频率。
步骤 4: 计算新的像素值根据累积分布函数,计算每个像素值的新的映射像素值。
这个计算公式可以根据具体的图像处理工具而有所不同。
步骤 5: 创建均衡化后的图像使用新的像素值替换原始图像中的像素值,将得到的图像称为均衡化后的图像。
4. 注意事项在使用直方图均衡化时,需要考虑以下几个注意事项:- 直方图均衡化可能会改变图像的整体亮度。
直方图均衡化计算

直方图均衡化计算直方图均衡化是基于灰度直方图的图像增强的一种方法,还有另外一种方法是直方图规定化。
均衡化的目的是将原始图像的直方图变为均衡分布的的形式,将一非均匀灰度概率密度分布图像,通过寻求某种灰度变换,变成一幅具有均匀概率密度分布的目的图像。
具体原理如下:1、连续灰度级:假定:r代表灰度级,P(r)为概率密度函数。
r值已经过归一化处理,灰度值范围在[0,1]之间。
r与P(r)之间的关系如下:非均匀分布的连续灰度直方图均衡化的目的是将上面的非均匀分布变成如下图所示的均匀分布:均匀分布的连续灰度直方图我们接下来要做的是要找到一种变换S=T(r)使直方图变平直,为使变换后的灰度仍保持从黑到白的单一变化顺序,且变换范围与原先一致,以避免整体变亮或变暗,需要有如下规定:(1)在0 <= r <= 1中,T(r)是单调递增函数,且0 <= T(r) <= 1;(2)反变换r=(s),(s)也为单调递增函数,且0 <= s <= 1。
直方图均衡化变换公式推导图示因为灰度变换不影响像素的位置分布,而且也不会增减像素数目,所以有如下的推导公式:2、离散灰度级:设一幅图像的像素总数为n,分为L个灰度级,其中::表示第K个灰度级出现的个数。
:第K个灰度级出现的概率。
(0<=<=1, k=0,1,2,...,L-1),公式如下:计算的基本步骤如下:(1)求出图像中所包含的灰度级,一般都经过归一化处理,范围在[0,1]之间,也可以定在[0,L-1]之间。
(2)统计各灰度级的像素数目(k=0,1,2,...,L-1)。
(3)计算图像直方图。
(4)计算变换函数,即:(5)用变换函数计算映射后输出的灰度级。
(6)统计映射后新的灰度级的像素数目。
(7)计算输出图像的直方图。
根据上面推导出来的公式以及计算步骤,我们可以结合栗子来加深理解~~~eg:设图像有64*64=4096的像素,有8个灰度级,灰度分布如下所示:由上图我们知道该图像的,和,下一步我们要做的就是通过变换函数求,即:依次可求得,,,,。
图像直方图均衡化原理

图像直方图均衡化原理
图像直方图均衡化是一种常用的图像增强方法,通过调整图像的像素灰度分布,使得图像的对比度增强、细节更加清晰。
其原理主要分为以下几个步骤:
1. 统计像素灰度值的分布:首先,对待处理的图像,统计每个灰度级别的像素点数量,得到原始图像的灰度直方图。
2. 计算累计分布函数:根据灰度直方图,计算每个灰度级别对应的累计分布函数,即该灰度级别及其之前的像素点的累积数量比例。
3. 灰度映射:对于每个像素点,将其灰度值通过累计分布函数进行映射,得到新的灰度值。
通常情况下,可以通过线性映射或非线性映射来实现,使得图像的灰度分布变得更加均匀。
4. 重构图像:将经过灰度映射处理后的灰度值替换原始图像中的对应像素点的灰度值,从而得到均衡化后的图像。
通过图像直方图均衡化处理,可以提高图像的对比度,使暗部和亮部细节更加突出,同时抑制了图像中灰度级别分布不均匀的问题。
这种方法在图像增强、图像分析等领域都有广泛应用。
直方图均衡化原理

直方图均衡化原理直方图均衡化是一种用于增强图像对比度的经典方法,它通过重新分布图像的像素值来实现增强图像的对比度和亮度。
在本文中,我们将介绍直方图均衡化的原理,包括其基本概念、算法步骤和应用场景。
直方图均衡化的基本概念是通过重新分布图像的像素值,使得原始图像的像素值分布更加均匀,从而增强图像的对比度和亮度。
这种方法的核心思想是将原始图像的灰度直方图进行变换,使得变换后的直方图更加平坦,从而实现对比度的增强。
直方图均衡化的算法步骤可以简单概括为以下几步,首先,计算原始图像的灰度直方图,即统计图像中每个像素值的出现次数;然后,根据原始图像的灰度直方图计算累积分布函数(CDF),用于描述像素值的累积分布情况;接着,根据CDF对原始图像的像素值进行映射,得到变换后的图像;最后,根据映射后的像素值重新构建图像,实现对比度增强。
直方图均衡化的应用场景非常广泛,包括但不限于医学图像处理、遥感图像处理、数字摄影等领域。
在医学图像处理中,直方图均衡化可以帮助医生更清晰地观察病灶,提高诊断准确性;在遥感图像处理中,直方图均衡化可以增强图像的细节信息,提高图像的可视化效果;在数字摄影中,直方图均衡化可以改善照片的曝光不足或曝光过度的问题,提高照片的质量。
总之,直方图均衡化作为一种经典的图像增强方法,具有重要的理论意义和实际应用价值。
通过重新分布图像的像素值,直方图均衡化可以有效地增强图像的对比度和亮度,提高图像的质量和可视化效果。
在实际应用中,我们可以根据具体的需求选择合适的直方图均衡化算法,从而实现对图像的有效增强和优化。
希望本文对直方图均衡化的原理有所了解,对读者有所帮助。
如果您对直方图均衡化还有其他疑问或者需要进一步的了解,欢迎继续阅读相关的文献资料或者咨询相关领域的专业人士。
感谢您的阅读!。
直方图的均衡化

三、例题演示
设有1幅64x64,8bit灰度图像,其直方 图见图1,所用均衡化变换函数(即累积 直方图)见图2,均衡化后的直方图见图 3。
直方图均衡化计算列表
序号
运算
1 列出原始图灰度级Sk,k=0,1,…7
0
1
2
2 统计原始直方图各灰度级象素数Nk 790 1023 850
3 用式1计算原始直方图(图1)
对图像空间域点的增强过程是通过增强函数t=EH(s)来完成的, t、s分别为目标图像和原始图像上的像素点(x,y)处的灰度值。
在进行均衡化处理时,增强函数EH需要满足两个条件: 1)、增强函数EH(s)在0≤s≤L-1的范围内是一个单调递增函数,
这个条件保证了在增强处理时没有打乱原始图像的灰度排列次序; 2)、对于0≤s≤L-1应当有0≤EH(s)≤L-1,它保证了变换过程
0 sk 1
k=0,1,…L-1
公式(2)
根据该方程可以由原图像的各像素灰度值直接得到直方图均衡化后各 像素的灰度值。
在实际处理变换时,一般先对原始图像的灰度情况进行统计分析,并
计算出原始直方图分布,然后根据计算出的累计直方图分布 t k ,按式 tkint[(L1)tk0.5]对其取整扩展并得出原灰度s k 到 t k 的灰度映
%step1:get histogram
for i=1:m;
for j=1:n;
k=plane(i,j);
tmhist(k)=tmhist(k)+1;
end
end
四、直方图均衡化的原理程序(lm2.m)
%step2:get cdf
cdf(1)=tmhist(1);
for i=2:256
▪ 其实在MATLAB中,用imhist函数求图像直方图,histeq函数可 以实现直方图均衡化操作(histogram equalization)。
图像增强算法(直方图均衡化、拉普拉斯、Log、伽马变换)

图像增强算法(直⽅图均衡化、拉普拉斯、Log、伽马变换)⼀、图像增强算法原理图像增强算法常见于对图像的亮度、对⽐度、饱和度、⾊调等进⾏调节,增加其清晰度,减少噪点等。
图像增强往往经过多个算法的组合,完成上述功能,⽐如图像去燥等同于低通滤波器,增加清晰度则为⾼通滤波器,当然增强⼀副图像是为最后获取图像有⽤信息服务为主。
⼀般的算法流程可为:图像去燥、增加清晰度(对⽐度)、灰度化或者获取图像边缘特征或者对图像进⾏卷积、⼆值化等,上述四个步骤往往可以通过不同的步骤进⾏实现,后续将针对此⽅⾯内容进⾏专题实验,列举其应⽤场景和处理特点。
本⽂章是⼀篇综合性⽂章,算是⼀篇抛砖引⽟的⽂章,有均衡化、提⾼对⽐度、降低对⽐度的算法。
1.1 基于直⽅图均衡化的图像增强图像对⽐度增强的⽅法可以分为两种:直接对⽐度增强⽅法,间接对⽐度增强⽅法。
直⽅图拉伸和直⽅图均衡化是常见的间接对⽐度增强⽅法。
直⽅图拉伸是利⽤对⽐度拉伸对直⽅图进⾏调整,扩⼤前景和背景灰度的差别,这种⽅法可以通过线性和⾮线性的⽅法来实现,其中ps中就是利⽤此⽅法提⾼对⽐度;直⽅图均衡化则是利⽤累积函数对灰度值进⾏调整,实现对⽐度的增强。
直⽅图均衡化处理原理:将原始图像的灰度图从⽐较集中的某个灰度区间均匀分布在整个灰度空间中,实现对图像的⾮线性拉伸,重新分配图像像素值。
算法应⽤场景:1、算法的本质是重新分布图像的像素值,增加了许多局部的对⽐度,整体的对⽐度没有进⾏太⼤改变,所以应⽤图像为图像有⽤数据的对⽐度相近是,例如:X光图像,可以将曝光过度或曝光不⾜照⽚进⾏更好的显⽰,或者是背景及前景太亮或太暗的图像⾮常有⽤。
2、算法当然也有缺点,具体表现为:变换后的图像灰度级减少,某些细节减少;某些图像有⾼峰值,则处理后对⽐度不⾃然的过分增强。
算法实现特点:1、均衡化过程:直⽅图均衡化保证在图像像素映射过程中原来的⼤⼩关系保持不变,即较亮的区域依旧较亮,较暗的依旧较暗,只是对⽐度增加,不能明暗颠倒;保证像素映射函数的值域在0和255之间。
直方图

j 0 j 0 k k
nj n
乘以n,再四舍五 入取整
44
说明
由于数字图像灰度取值的离散性,通过四 舍五入使得变换后的灰度值出现了归并现 象,从而致使变换后的图像并非完全均匀 分布,但是相比原始直方图要均匀得多
直方图修正
2.直方图规定化/直方图匹配 在某些情况下,并不一定需要具有均匀直 方图的图像,有时需要具有特定的直方图 的图像,以便能够增强图像中某些灰度级。 直方图规定化方法就是针对上述思想提出 来的。 直方图规定化是使原图像灰度直方图变成 规定形状的直方图而对图像作修正的增强 方法
0.89
0.95 0.98 1.00
6/7
1 1 1
s3=6/7
985
0.24
s4=1
448
0.11
41
例:
原图像的直方图
均衡后图像的直方图
42
例:直方图均衡化示例
43
例:
思考问题: 若在原图像一行上连续8个像素的灰度值分 别为:0、1、2、3、4、5、6、7,则均衡 后,对应的灰度值为多少?
46
直方图规定化
可见,它是对直方图均衡化处理的一种有 效的扩展。直方图均衡化处理是直方图规 定化的一个特例 对于直方图规定化,下面仍从灰度连续变 化的概率密度函数出发进行推导,然后推 广出灰度离散的图像直方图规定化算法
47
直方图规定化
假设pr(r)和pz(z)分别表示已归一化的原始 图像灰度分布的概率密度函数和希望得到 的图像的概率密度函数 首先对原始图像进行直方图均衡化,即求 变换函数:
H Pi log2 Pi
i 0 L 1
17
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直方图均衡化(色调均化)
“图像(Image)>调整(Adjust)”菜单的功能
色调均化(Equalize)
Photoshop菜单:图像>调整>色调均化
公式:
(公式中Sk表示均衡化后的灰度值,∑表示总和,nj是原图中某个灰度色阶j 的像素数量,j的范围是0~k,N是图像像素总数。
)
“色调均化”命令重新分布图像中像素的亮度值,以便它们更均匀地呈现所有范围的亮度级。
使用此命令时,Photoshop尝试对图像进行直方图均衡化(Histogram Equalization),即在整个灰度范围中均匀分布每个色阶的灰度值。
当扫描的图像显得比原稿暗,而您想平衡这些值以产生较亮的图像时,可以使用“色调均化”命令。
配合使用“色调均化”命令和“直方图”命令,可以看到亮度的前后比较。
使用“色调均化”命令:
1. 选择菜单图像>调整>色调均化。
2. 如果已选择一个图像区域,在弹出的对话框中选择要均化的内容,然后点按“好”。
∙“仅色调均化所选区域”只均匀地分布选区的像素。
∙“基于所选区域色调均化整个图像”基于选区中的像素均匀分布所有图像的像素。
原理
直方图均衡化是一种灰度变换算法,所以我们重点研究灰度图像的直方图均衡化。
绝对的均匀
图A是一个黑白灰均匀渐变,0~255的每一个色阶的灰度数量都是相同的。
图B 的是图A的像素打乱了顺序随机分布的,每种灰度的数量都与图A的相同,因而它的直方图也与图A的相同。
图A和图B的直方图。
每种灰度数量是相同的,直方图呈一个黑色矩形。
近似的均匀
对于一般的图像,由于每种灰度的像素数量并不相同,我们没办法把每种灰度的分量调得像图A、B那么均匀,但是可以做到近似的均匀。
也就是说,把直方图横向平均分成几份之后,使每一份的像素数量大致相等。
下面是一幅图片的直方图,共有19200个像素,从左到右平均分成三份。
均衡化之后,每份的像素数量都在6400左右。
手工调整方法
我们拍摄或扫描的照片往往会由于光线太强或太弱,使图像对比度减弱,细节分辨不清。
这样的图像直方图灰度往往都集中在某一色阶范围之内,我们需要将这些灰度拉伸到整个灰度级上,并使它们在直方图中均匀的分布,以达到增强图像的目的。
现在我们要通过Photoshop的曲线调整(图像>调整>曲线)来把一幅图片的灰度分布调整均匀。
上图的直方图图形可以近似地看成三个高峰两个低谷。
先把曲线的起点和终点(黑白场)拉到与图形等宽,再通过曲线把两个低谷拉高一些,这时灰度分布就显得比较均匀了。
调整之后的图像和直方图。
直方图均衡化就是要通过某种算法来实现上面手工调整的效果。
算法
经典算法
下面以一幅3*2像素的简单图片(图C)为例,来说明灰度直方图均衡化的算法。
(图C)
图C的直方图:
注意看百分位(Percentile)这一项。
一般软件的百分位是当前色阶的像素数量÷总像素数量,而Photoshop不同,Photoshop显示的是当前色阶与前面色阶的所有像素数量÷总像素数量。
因此图C色阶为100时的百分位就是
(3+2)/6=5/6=83.33%,这个百分位其实就是我们要求的灰度值(范围0~1),把它转换成0~255的范围,要再乘255。
求出每个色阶的百分位之后,再乘255,就可以求出与其对应的灰度值来。
色阶数量出现频率百分位255*百分位
根据每个色阶的色阶->255*百分位的对应关系组成一个灰度映射表,然后根据映射表来修改原来图片每个像素的灰度值。
对于图C,用128替换50,用212替换100,用255替换200。
这样,灰度直方图的均衡化就完成了。
Photoshop的算法
经过经典算法均衡化的图片,最亮的像素值总是255,因为最后一级色阶(255)的百分位一定是100%。
而最暗的是由色阶0的数量决定的,像素值不一定是0。
Photoshop通过对比度拉伸的方法使最暗的像素值变为0,其它像素也相应变暗,最亮的像素保持255不变。
对比度拉伸后的效果可能会比经典算法稍显偏暗。
对比度拉伸的算法,类似于使用色阶调整命令把黑场设成Min时的效果,Min是指像素数量不为0的第一个色阶。
对比度拉伸的公式:C = (Level - Min) * Scale = (Level - Min) * 255 / (255-Min)
图C均衡化之后的灰度值分别是128、212、255,为了精确,我们使用保留2位小数的形式(127.50、212.42、255.00)来进行对比度拉伸的计算。
Min = 127.50 '均衡化之后的最小值
Scale = 255/(255-Min) = 2
(127.50-Min)*Scale = 0*2 = 0
(212.42-Min)*Scale = 84.92*2 = 170
(255.00-Min)*Scale = 127.5*2 = 255
'新的映射表:
50 -> 0
100 -> 170
200 -> 255
经典算法和Photoshop算法的直方图比较。
彩色算法
彩色的直方图均衡化其实就是对图像某个或多个颜色通道进行灰度直方图均衡化运算,常见的有以下几种方法:
1. 统计所有RGB颜色通道的直方图的数据并做均衡化运算,然后根据均衡
化所得的映射表分别替换R、G、B通道颜色值。
2. 分别统计R、G、B颜色通道的直方图的数据并做均衡化运算,然后根据
R、G、B的映射表分别替换R、G、B通道颜色值。
3. 用亮度公式或求RGB的平均值的方式计算亮度通道,然后统计亮度通道
的直方图的数据并做均衡化运算,然后根据映射表分别替换R、G、B通道颜色值。
Photoshop用的是第一种方法。
总结
直方图均衡化是灰度变换的一个重要应用,它高效且易于实现,广泛应用于图像增强处理中。
图像的像素灰度变化是随机的,直方图的图形高低不齐,直方图均衡化就是用一定的算法使直方图大致平和。
均衡化处理后的图象只能是近似均匀分布。
均衡化图象的动态范围扩大了,但其本质是扩大了量化间隔,而量化级别反而减少了,因此,原来灰度不同的象素经处理后可能变的相同,形成了一片的相同灰度的区域,各区域之间有明显的边界,从而出现了伪轮廓。
如果原始图像对比度本来就很高,如果再均衡化则灰度调和,对比度降低。
在泛白缓和的图像中,均衡化会合并一些象素灰度,从而增大对比度。
均衡化后的图片如果再对其均衡化,则图像不会有任何变化。
灰度直方图均衡化的算法,简单地说,就是把直方图的每个灰度级进行归一化处理,求每种灰度的累积分布,得到一个映射的灰度映射表,然后根据相应的灰度值来修正原图中的每个像素。
经典的直方图均衡化算法可能存在以下一些不足:
1. 输出图像的实际灰度变化范围很难达到图像格式所允许的最大灰度变化
范围。
2. 输出图像的灰度分布直方图虽然接近均匀分布, 但其值与理想值1/n仍有
可能存在较大的差异, 并非是最佳值。
3. 输出图像的灰度级有可能被过多地合并。
由于灰度的吞噬也易造成图像信
息的丢失。
为此人们提出了许多改进的直方图均衡算法,详细内容请参阅本文末尾提供的参考资料。
公式
要写论文的同学可能需要用数学的方式来描述,下面我把前面讲的内容概括成公式,以供参考。
概率密度函数(PDF)
为了计算方便,我们需要将直方图归一化,即把灰度范围由0~255变为0~1。
归一化后的直方图其实就是一个概率密度函数(PDF,probability density
function),均衡化就是令概率密度为1。
我们用Pr(r)来表示原图像的PDF,用Ps(s)表示均衡化之后的PDF,r、s分别代表均衡化前后的灰度值,r,s∈[0,1]。
根据概率论的知识,可得出:
公式中T-1(s)代表T(r)的逆变换函数。
因为我们要求的概率密度为1,即:
因此:
由此得出:
等式两边对r积分,即可得出PDF的均衡化公式:
公式中T(r)代表r的灰度变换函数,∫表示积分,w为假设变量。
累积分布函数(CDF)
对于图像而言,我们需要使用离散形式的公式(Discrete Formulation)。
某个灰度级像素出现的概率为:
Pr(rk)是原图像第k个灰度级像素出现的概率,rk是第k个灰度级,即当前色阶k,k∈[0,1]。
nk是rk像素数量。
N是图像像素总数(图像大小),N=∑knk。
图像的灰度直方图均衡化公式:
公式中,T(rk)来表示原图像的第k个灰度级的转换函数。
∑表示总和。
∑nj/N表示0~j个灰度级的像素数量总和与像素总数的比值,也就是前面讲过的百分位(当前色阶与前面色阶的所有像素数量÷总像素数量)。
∑Pr(rk)表示第0~k的灰度级出现概率累积相加。
因为s是归一化的数值(s∈[0,1]),要转换为0~255的颜色值,需要再乘上255,即S=∑Pr(rk)*255。
这个转换公式也被称为图像的累积分布函数(CDF,cumulative distribution function)。