数学选修2-1第三章电子教材
高中数学选修2-1精品课件:§3.2 第3课时 用空间向量解决空间角

所成的角
=
|a·b| |a||b|
范围 0,π2
直线与平面 所成的角
设直线l与平面α所成的角为θ,l的方向向量为a, 平面α的法向量为n,则sin θ=_|_co_s_〈__a_,__n_〉__|_
=
|a·n| |a||n|
0,π2
二ห้องสมุดไป่ตู้角
设二面角α-l-β为θ,平面α,β的法向量分别 为n1,n2,则|cos θ|= |cos〈n1,n2〉| = |n1·n2|
|n1||n2|
[0,π]
思考辨析 判断正误
SIKAOBIANXIPANDUANZHENGWU
1.两条异面直线所成的角与两直线的方向向量所成的角相等.( × ) 2.直线与平面所成的角等于直线与该平面法向量夹角的余角.( × ) 3.二面角的大小就是该二面角两个面的法向量的夹角.( × ) 4.若二面角两个面的法向量的夹角为120°,则该二面角的大小等于60°或 120°.( √ )
(3)求平面的法向量n; →
(4)设线面角为 θ,则 sin θ=|P→A·n|. |PA||n|
跟 踪 训 练 2 如 图 所 示 , 三 棱 柱 ABC - A1B1C1 中 , CA = CB , AB = AA1 , ∠BAA1=60°. (1)证明:AB⊥A1C;
证明 取AB的中点O,连接OC,OA1,A1B. 因为CA=CB,所以OC⊥AB. 由于AB=AA1,∠BAA1=60°, 故△AA1B为等边三角形,所以OA1⊥AB. 因为OC∩OA1=O,所以AB⊥平面OA1C. 又A1C⊂平面OA1C,故AB⊥A1C.
(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正 弦值.
数学第三章1.1椭圆及其标准方程课件(北师大版选修2-1)

(2)由于椭圆的焦点在 y 轴上, ∴设它的标准方程 为ya22+xb22= 1(a>b>0).
由于椭圆经过点 (0, 2)和 (1, 0),
∴
a42+b02= a02+b12=
11, ,∴ab22= =
4, 1.
故所求椭圆的标准 方程为y2+ x2= 1. 4
【名师点评】 本例中的解法体现了求椭圆 方程的一般方法,通过“定位”与“定量” 两个过程可求得所求椭圆的方程.
93
法二:由已知,设椭圆的方程是 Ax2+By2=1
(A>0, B>0, A≠ B),
故6A+B=1, ⇒ 3A+2B=1,
A=1, 9
B= 1, 3
即所求的椭圆的标 准方程是x2 +y2 = 1. 93
椭圆定义及标准方程的应用
已知椭例圆2的焦点是F1(-1,0),F2(1,0), P为椭圆上一点,且|F1F2|是|PF1|和|PF2|的等 差中项. (1)求椭圆的方程; (2)若点P在第二象限,且∠PF1F2=120°,求 △PF1F2的面积.
第三章 圆锥曲线与方程
•§1 椭 圆 •1.1 椭圆及其标准方程
学习导航
学习目标
重点难点 重点:椭圆的定义及其标准方程. 难点:椭圆的标准方程的推导过程.
新知初探思维启动
1.椭圆的定义 (1)椭圆的定义 平面内到两个定点F1,F2的距离之和等于常数 (大于|F1F2|)的点的集合叫作椭圆. 这两个定点F1,F2叫作椭圆的焦点,两个焦点 F1,F2间的距离叫作椭圆的焦距.
25 16
4.若方程xa22-ya2=1 表示焦点在 y 轴上的椭圆, 则 a 的取值范围是______. 解析:∵a2>0,xa22-ya2=1 即xa22+-y2a=1, ∴-a>a2,-1<a<0.
2020版高中数学人教B版选修2-1课件:3.1.2 空间向量的基本定理 (2)

第三章空间向量与立体几何3.1.2空间向量的基本定理高中数学选修2-1·精品课件引入课题平面向量中包含哪些基本定理形式?能否将平面向量的定理推广到空间向量?其形式又会有怎样的变化?知识点一:共线向量定理规定:零向量与任意向量共线.1.共线向量:如果表示空间向量的有向线段所在直线互相平行或重合,则这些向量叫做共线向量(或平行向量),记作 a ∥b .2.共线向量定理:对空间任意两个向量 a ,b (b ≠0),a ∥b 的充要条件是存在实数λ使 a =λb .推论:如果l 为经过已知点A 且平行已知非零向量 a 的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式OP =OA +t a ,其中 a 叫做直线l 的方向向量.探究点:三点共线如何利用共线向量定理判定三点共线?AC BOAC=λABOC−OA=λ(OB−OA) OC=(1−λ)OA+λOBA、B、C三点共线⇔OC=xOA+yOB(其中O为空间中任意一点,且x+y=1)特别有:当B为线段AC的中点时OB=12(OA+OC)例1 如图所示,已知空间四边形ABCD,E、H分别是边AB、AD的中点,F、G分别是CB、CD上的点,且CF=23CB,CG=23CD.利用向量法证明四边形EFGH是梯形.[思路探索]只需证EH∥FG,且EH≠FG即证EH∥FG,且|EH|≠|FG|利用BD构建EH与FG的关系∵E、H分别是边AB、AD的中点,∴AE=12AB,AH=12AD,EH=AH−AE=12AD−12AB=12(AD−AB)=12BD=12(CD−CB)=12(32CG−32CF)=34(CG−CF)=34FG,∴EH∥FG,且|EH|≠|FG|,又F不在EH上,∴四边形EFGH是梯形.证明:跟踪训练1.设两非零向量e1、e2不共线,AB=e1+e2,BC=2e1+8e2,CD=3(e1-e2).试问:A、B、D是否共线,请说明理由.解:∵BD=BC+CD=(2e1+8e2)+3(e1-e2)=5(e1+e2),∴BD=5AB又∵B为两向量的公共点,∴A、B、D三点共线.知识点二:共面向量共面向量:平行于同一平面的向量,叫做共面向量.想一想,为什么?说明:空间任意两个向量都是共面向量,但空间任意三个向量既可能是共面的,也可能是不共面的.探究点:共面向量定理1.若 a 与b 为不共线的两个向量, p 、 a 、b 共面,p 能被 a 、b 唯一表示吗?想一想,为什么?存在唯一有序实数对(x , y ) p =x a +y b2.若存在唯一有序实数对(x , y ),使 p =x a +yb ,则 p 、 a 、b 共面吗?ab xayb p 平行四边形的对角线三个向量共面共面向量定理如果两个向量a 、b 不共线,则向量p 与a 、b共面的充要条件是:存在唯一的有序实数对(x , y )使p =x a +y b .知识点四:四点共面类似于共线向量定理可以判定三点共线,利用共面向量定理怎样判定四点共面?AP =mAB +nAC系数和等于1APCBOOP −OA =m(OB −OA)+n(OC −OA )OP =1−m −n OA +mOB +nOCP 、A 、B 、C 四点共面⇔OP =xOA +yOB +zOC (其中O 为空间中任意一点,且x +y +z =1)例2 如图所示,P是平面四边形ABCD所在平面外一点,连结PA,PB,PC,PD,点E,F,G,H分别是△PAB,△PBC,△PCD,△PDA的重心,分别延长PE,PF,PG,PH,交对边于M,N,Q,R,并顺次连结MN,NQ,QR,RM.应用向量共面定理证明:E、F、G、H四点共面.[思路探索]只需找到EF,EG,EH的线性关系证明:∵E、F、G、H分别是所在三角形的重心,∴M、N、Q、R为所在边的中点,顺次连结M、N、Q、R,所得四边形为平行四边形,且有PE=23PM,PF=23PN,PG=23PQ,PH=23PR.∵MNQR为平行四边形,∴EG=PG−PE=23PQ-23PM=23MQ=23(MN+MR)=23(PN−PM)+23(PR−PM)=23(32PF−32PE)+23(32PH−32PE)=EF+EH.∴由共面向量定理得E、F、G、H四点共面.2.已知平行四边形ABCD,从平面AC外一点O引向量OE=k OA,OF=k OB,OG=k OC,OH=k OD=k,求证:(1)四点E、F、G、H共面;(2)平面EG∥平面AC.证明:(1)因为四边形ABCD是平行四边形,所以AC=AB+AD,EG=OG−OE=k OC-k OA=k AC=k(AB+AD)=k(OB−OA+OD−OA)=OF−OE+OH−OE=EF+EH.所以E、F、G、H共面.(2)EF=OF−OE=k(OB−OA)=k AB,且由第(1)问的证明中知EG=k AC,于是EF∥AB,EG∥AC.且EF∩EG=E,AB∩AC=A,所以平面EG∥平面AC.知识点五:空间向量基本定理如果三个向量a, b, c不共面,那么对空间任一向量p,存在唯一有序实数组{x,y,z},使得p=x a+y b+z c.{a, b, c}为空间中的一个基底a, b, c叫做基向量.cabx ay bz c p(1)任意不共面的三个向量都可做为空间的一个基底.(2)基底不同,对于向量的分解形式不同.典例分析解:例3 若{a ,b , c }是空间的一个基底,判断{a +b ,b + c , c +a }能否作为该空间的一个基底.假设a +b ,b + c , c +a 共面,则存在实数λ,μ使得a +b =λ(b + c )+μ( c +a ),∴a +b =μa +λb +(λ+μ) c .∵{a ,b ,c }为基底,∴a ,b ,c 不共面,∴a +b ,b + c , c +a 不共面.∴{a +b ,b + c , c +a }可以作为空间一个基底.∴λ=1,μ=1,λ+μ=0,此方程组无解.是否共面3.以下四个命题中正确的是________.①空间的任何一个向量都可用三个给定向量表示;②若{a,b,c}为空间的一个基底,则a,b,c全不是零向量;③如果向量a,b与任何向量都不能构成空间的一个基底,则一定有a与b共线;④任何三个不共线的向量都可构成空间的一个基底.【解析】因为空间中的任何一个向量都可用其他三个不共面的向量来表示,故①不正确;②正确;由空间向量基本定理可知只有不共线的两向量才可以做基底,故③正确;空间向量基底是由三个不共面的向量组成的,故④不正确.【答案】②③例4空间四边形OABC 中,M ,N 是△ABC ,△OBC 的重心,设OA =a ,OB =b ,OC = c ,用向量a ,b , c 表示向量OM ,ON ,MN .AC BO PNMac b如图,取BC 中点P ,则A 、M 、P ,O 、N 、P 分别共线,连结AP ,OP .AM =OA +AM =a +23AP=a +23×12(AB +AC ),解:利用线性运算,结合图形,对向量进行分解=a+13(OB-OA)+13(OC-OA)=a+13b-13a+13c-13a=13a+13b+13c.ON=23OP=23×12(OB+OC)=13b+13c.MN=ON-OM=13b+13c-13b-13c-13a=-13a.A CBOPNMa cb4.如图,四棱锥P-OABC的底面为一矩形,PO⊥平面OABC,设OA=a,OC=b,OP=c,E,F分别是PC和PB的中点,试用a,b,c表示BF,BE,AE,EF.解:连结BO,则BF=12BP=12(BO+OP)=12(c-b-a)=-12a-12b+12c.BE=BC+CE=-a+12CP=-a+12(CO+OP)=-a-12b+12c.AE=AP+PE=AO+OP+(PO+OC)=-a+c+12(-c+b)=-a+12b+12c.EF=12CB=12OA=12a.归纳小结1.用好已有的定理及推论:如共线向量定理、共面向量定理及推论等,并能运用它们证明空间向量的共线和共面的问题. 2.在解决空间向量问题时,结合图形,以图形为指导不但事半功倍,更是迅速解题的关键!D1.下列命题中正确的个数是()①若a与b共线,b与c共线,则a与c共线②向量a、b、c共面即它们所在的直线共面③若a∥b,则存在惟一的实数λ,使a=λb A.1B.2 C.3 D.02.已知三角形ABC中,AB|AB|+AC|AC|=AD|AD|则D点位于( )A.BC边的中线上B.BC边的高线上C.BC边的中垂线上D.∠BAC的平分线上D3.已知{a,b,c}是空间向量的一个基底,则可以与向量p=a+b,q=a-b构成基底的向量是()DA.a B.b C.a+2b D.a+2c4.设OABC是四面体,G1是△ABC的重心,G是OG1上的一点,且OG=3GG1,若OG=x OA+y OB+z OC,则(x,y,z)为()A.(14,14,14) B.(34,34,34)C.(13,13,13) D.(23,23,23)A再见。
人教版高中数学选修2-1教学课件:第三章1-3

数学 (RA) –选修2-1 -GZ
④向量的模或长度:向量的大小叫作向量的模或向量的长 度. ⑤零向量:长度为 0 的向量. ⑥单位向量:长度为 1 的向量. 议一议:如何理解有向线段与向量的关系?两个向量能否比 较大小?(抢答)
数学 (RA) –选修2-1 -GZ
【解析】向量可用有向线段来表示,但有向线段不是向量,它 只是向量的一种表示方法.空间向量是具有大小与方向的量,两 个向量之间只有等与不等之分,而无大小之分.
数学 (RA) –选修2-1 -GZ
重点:空间向量的有关概念及线性运算法则;共线、共面向量 的判定及应用. 难点:共线、共面向量的判定定理、判定方法及应用. 学法指导:学习本课时内容可先复习必修 4 中关于平面向量 的相关知识,这样可通过类比平面向量来学习空间向量,但要注 意空间向量的独特之处,比如共面的判定等.向量共面的判定及 应用是本课时的一个重难点,要结合导学案中所提供的例题去熟 练掌握.
数学 (RA) –选修2-1 -GZ
预学 3:共线向量和共面向量的概念及定理 (1)共线向量:若表示空间向量的有向线段所在的直线互相 平行或重合,则这些向量叫作共线向量或平行向量,读作 a 平行于 b,记作 a∥b. 共线向量定理:对空间任意两个向量 a,b(b≠0),a∥b 的充要 条件是量,叫作共面向 量. 共面向量定理:如果两个向量 a,b 不共线,那么向量 p 与向量 a,b 共面的充要条件是存在唯一的有序实数对(x,y),使 p=xa+yb.
数学 (RA) –选修2-1 -GZ
预学 2:空间向量的加、减、数乘运算的运算法则及满足 的运算律 加法运算的法则: 平行四边形法则
三角形法则
减法运算的法则:三角形法则
数学 (RA) –选修2-1 -GZ
人教版高中数学选修2-1教学课件:第三章第3课时

f (x -������x )-f (x ) 的值是( ������ x Δ������ →0
).
B.
1
2 x
C.-
x 2
D.
x 2
数学(RA) 选修1-1
【解析】 ������������������
������ (������ -������ )-������ (������ ) ������
数学(RA) 选修1-1
第 3 课时 几个常用函数的导数及其公式
知识 目标 能力 目标 素养 目标
1.通过实际例子,掌握几个常见函数的导数 2.通过分析实际问题,能够应用导数公式解决问题 通过对导数公式和其他知识的综合,培养学生综合处理问题的能 力 通过对导数公式和其他知识的综合,培养学生整合各种知识、综 合分析问题的数学素养
=2 ������ .
1
∴f'(1)=2.
数学(RA) 选修1-1
预学 3:基本初等函数的导数公式 (1)c'=0(c 为常数);(2)(xα)'=αxα-1(α∈R); (3)(ax)'=axln a(a>0,a≠1),特别地(ex)'=ex;
1 (4)(logax)'=������ ln ������ (a>0,a≠1),特别地(ln 1 x)'=������ ; 1 . co s 2 x
1 -2 (2)y'= x '=(������ )'= ������ 3 . 3 1 (3)y'=(log2x)'=x ������������ 2.
3 1 3
1 ������
数学(RA) 选修1-1
预学 4:利用导数的定义求导与导数公式求导的区别 导函数的定义本身就是函数求导的最基本方法,但导函数是由极限 定义的,所以函数求导总是要归结为求极限,这在运算上很麻烦,有时甚 至很困难,但是用导函数的定义推导出常见函数与基本初等函数的求导 公式后,就可以用公式直接求函数的导数了.
2021最新人教版高二数学选修2-1电子课本课件【全册】

0002页 0084页 0120页 0193页 0308页 0360页 0396页 0398页 0418页 0488页 0514页 0541页 0567页
第一章 常用逻辑用语 1.2 充分条件与必要条件 1.4 全称量词与存在量词 复习参考题 2.1 曲线与方程 探究与发现 为什么截口曲线是椭圆 2.3 双曲线 2.4 抛物线 阅读与思考 复习参考题 3.1 空间向量及其运算 3.2 立体几何中的向量方法 复习参考题
2021最新人教版高二数学选修2-1 电子课本课件【全册】
1.3 简单的逻辑联结词
2021最新人教版高二数学选修2-1 电子课本课件【全册】
第一章 常用逻辑用语
2021最新人教版高二数学选修2-1 电子课本课件【全册】
1.1 命题及其关系
2021最新人教版高二数学选修2-1 电子课本课件【全册】
1.2 充分条件与必要条件
数学北师大选修2-1课件:第三章 圆锥曲线与方程 习题课1

A.1������62 + ���9���2=1 B.1������62 + ���1���22=1
C.���4���2 + ���3���2=1
D.���3���2
+
������2 4
=1
解析:因为|F1F2|是|PF1|与|PF2|的等差中项,所以
|PF1|+|PF2|=2|F1F2|=4>|F1F2|,点P的轨迹是以F1,F2为焦点的椭圆,
反思感悟解决直线与椭圆的位置关系问题,一般采用代数法,即 将直线方程与椭圆方程联立,通过判别式Δ的符号决定位置关系.同 时涉及弦长问题时,往往采用设而不求的办法,即设出弦端点的坐 标,利用一元二次方程根与系数的关系,结合弦长公式进行求解.
首页
X 新知导学 INZHIDAOXUE
D 答疑解惑 AYIJIEHUO
D 答疑解惑 AYIJIEHUO
D 当堂检测 ANGTANGJIANCE
直线与椭圆的位置关系问题 【例2】 已知椭圆4x2+y2=1及直线y=x+m. (1)当直线和椭圆有公共点时,求实数m的取值范围; (2)求被椭圆截得的最长弦所在的直线方程. 思维点拨:(1)将直线方程与椭圆方程联立,根据判别式Δ的符号,建 立关于m的不等式求解;(2)利用弦长公式建立关于m的函数关系式, 通过函数的最值求得m的值,从而得到直线方程.
圆方程
������2 ������2
+
������������22=1
(a>b>0)联立,消去y(或x),得到关于x(或y)的一元二
次方程,记该方程的判别式为Δ.那么:若Δ>0,则直线与椭圆相交;若
Δ=0,则直线与椭圆相切;若Δ<0,则直线与椭圆相离.
2020最新人教版高二数学选修2-1(B版)电子课本课件【全册】

1.2 基本逻辑联结词 1.2.1 “且”与“或”
2020最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
1.2.2 “非”(否定)
2020最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
1.3 充分条件、必要条件与命
题的四种形式
1.3.1
推出与充分条件、必要条件
2020最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
第一章 常用逻辑用语
2020最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
10最新人教版高二数学选修2- 1(B版)电子课本课件【全册】
1.1.2 量词
2020最新人教版高二数学选修2 -1(B版)电子课本课件【全册】
目录
0002页 0083页 0163页 0188页 0217页 0254页 0277页 0293页 0323页 0365页 0394页 0458页 0508页 0548页 0586页 0676页 0705页
第一章 常用逻辑用语 1.1.2 量词 1.2.2 “非”(否定) 本章小结 第二章 圆锥曲线与方程 2.1.2 由曲线求它的方程、由方程研究曲线的性质 2.2.2 椭圆的几何性质 2.3.2 双曲线的几何性质 2.4.2 抛物线的几何性质 本章小结 第三章 空间向量与立体几何 3.1.2 空间向量的基本定理 3.1.4 空间向量的直角坐标运算 3.2.2 平面的法向量与平面的向量表示 3.2.4 二面角及其度量 本章小结 附录 部分中英文词汇对照表