缸内直喷技术

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、缸内直喷技术简介



缸内直喷又称FSI,FSI(Fuel Stratified Injection)燃料分层喷射技术代表着传统汽油引擎的一个发展方向。传统的汽油发动机是通过电脑采集凸轮位置以及发动机各相关工况从而控制喷油嘴将汽油喷入进气歧管。但由于喷油嘴离燃烧室有一定的距离,汽油同空气的混合情况受进气气流和气门开关的影响较大,并且微小的油颗粒会吸附在管道壁上,所以希望喷油嘴能够直接将燃油喷入汽缸。FSI就是大众集团开发的用来改善传统汽油发动机供油方式的不足而研制的缸内直接喷射技术,先进的直喷式汽油发动机采用类似于柴油发动机的供油技术,通过一个活塞泵提供所需的100bar以上的压力,将汽油提供给位于汽缸内的电磁喷射器。然后通过电脑控制喷射器将燃料在最恰当的时间直接注入燃烧室,其控制的精确度接近毫秒,其关键是考虑喷射器的安装,必须在汽缸上部留给其一定的空间。由于汽缸顶部已经布置了火花 极为环保的大众1.4TSI发动机
塞和多个气门,
已经相当紧凑,所以将其布置在靠近进气门侧。由于喷射器的加入导致了对设计和制造的要求都相当的高,如果布置不合理、制造精度达不到要求导致刚度不足甚至漏气只能得不偿失。另外FSI引擎对燃油品质的要求也比较高,目前国内的油品状况可能很难达到FSI引擎的要求,所以部分装配了FSI的进口高尔夫出现了发动机的水土不服。 此外,FSI技术采用了两种不同的注油模式,即分层注油和均匀注油模式。发动机低速或中速运转时采用分层注油模式。此时节气门为半开状态,空气由进气管进入汽缸撞在活塞顶部,由于活塞顶部制作成特殊的形状从而在火花塞附近形成期望中的涡流。当压缩过程接近尾声时,少量的燃油由喷射器喷出,形成可燃气体。这种分层注油方式可充分提高发动机的经济性,因为在转速较低、负荷较小时除了火花塞周围需要形成浓度较高的油气混合物外,燃烧室的其它地方只需空气含量较高的混合气即可,而FSI使其与理想状态非常接近。当节气门完全开启,发动机高速运转时,大量空气高速进入汽缸形成较强涡流并与汽油均匀混合。从而促进燃油充分燃烧,提高发动机的动力输出。电脑不断的根据发动机的工作状况改变注油模式,始终保持最适宜的供油方式。燃油的充分利用不仅提高了燃油的利用效率和发动机的输出而且改善了排放。






2、汽车发动机新技术---缸内直喷式

近年来,当代汽车汽车飞速发展,汽车新技术不断涌现和应用,带动汽车性能不断改善。下面就现代缸内直喷式汽油机进行简单介绍。
汽油机的发展经

历了100多年的漫长历史,其中具有里程碑意义的发展阶段无不是以油气混合方式和机理的变迁为标志的。
早期的化油器式汽油机依靠化油器喉口气流流速增加所产生的真空度将汽油吸出被高速进气空气流雾化以及汽油油滴本身的蒸发而与空气形成可燃混合汽。油气混合比(空燃比=进气空气质量/燃油质量)取决于化油器喉口的设计和量孔直径,负荷的调节是由节气门的开度来调节进入汽缸的油气混合汽量来实现的,因此属于混合汽外部形成的量调节方式,且没有任何反馈控制。由于汽油-空气混合汽能在相当宽的空燃比范围内点燃,这种不太精确的控制对早期汽油机的正常运行并不存在什么问题。
但是,随着世界工业化的发展,汽车成为不可或缺的主要交通工具,而作为汽车主要动力的这种化油器式汽油机废气中的有害成分(C O、H C和N O X等)对大气造成了污染,而燃烧产物二氧化碳又产生“温室效应”导致全球气候变暖。随着汽车数量的与日俱增,对人类生存环境的危害日趋加剧,因此汽车的节能减排已成为全球刻不容缓需要解决的重要问题。
汽油缸内直接喷射从油气混合机理上可以解决变工况(如车辆加速时)和冷启动时油气混合不足的问题。早期的缸内直喷式汽油机因喷射技术水平的限制,喷雾油滴的直径约为80μm。计算表明,一滴这样大小的油滴在200℃空气中需要大约55ms才能完全蒸发。如果发动机的转速为1500r/min的话,这段时间相当于495°CA(曲轴转角)。显然,蒸发时间过长,在这种情况下油气混合不能主要依靠喷雾来实现。随着汽油喷射技术的进步,现代缸内直喷式汽油机应用的汽油泵的供油压力已达到5~12MPa,又采用带旋流的喷油嘴,雾化性能得以提高,喷雾的油滴直径约为20μm,喷雾锥角可达50~100°,常压下的贯穿度约为100mm 。此时一滴20μm 的油滴在上述同样情况下仅需3.4 ms或31°CA就能完全蒸发,因而汽油的蒸发和与空气的混合可主要依靠喷雾来实现,再加上缸内空气运动的辅助,变工况(如车辆加速时)和冷启动时不再需要过量喷油,冷启动喷油量得以大大减少(图1),有害物排放也将大为降低。同时,由于汽油直接喷入汽缸内,消除了进气道喷射时形成壁面油膜的弊病,特别是在发动机尚未暖机的状态下,因而能改善变工况时对空燃比的控制,不但能改善车辆的加速响应性,而且还能降低此时的有害物排放。
此外,缸内直接喷射还可带来很多其它好处,从而有利于降低燃油耗,达到节能和减少温室气体二氧化碳排放的目标。例如:汽油在缸内直接喷射时油滴主要依靠从缸内空气中吸热而非从壁面吸热,因而能使混合汽的温

度降低和体积减小,从而有利于提高充气效率,降低爆震倾向和提高压缩比。计算表明,在汽油油滴蒸发完全依靠从空气中吸热或者完全依靠从壁面吸热这两种极端情况下,缸内混合汽的体积在空燃比为12.5时将相差大约7%,而混合汽的温度在上止点前将相差大约50℃。因此,与进气道喷射汽油机相比,缸内直喷式汽油机的充气效率提高了10%,同时爆震倾向也大为降低,表现在受爆震限制的点火时刻可提前若干曲轴转角,因而压缩比可提高1.5~2,有利于提高汽油机的热效率,降低燃油耗(约2%)。特别是有利于汽油机采用增压,并应用较高的压缩比,克服了由于增压汽油机压缩比较小而对部分负荷燃油耗所带来的不利影响,同时提高了增压汽油机在2500r/min以下低转速范围内的增压压力,1200r/min时的扭矩能够提高25%,大大改善汽油机的低速扭矩特性和车辆的行驶性能。此外,由于汽油直接喷入汽缸内,可实现稀薄混合汽分层燃烧,使得低负荷工况时的空燃比可提高到40以上,从而无需关小节气门来限制进气量,采用像柴油机那样的质调节方式,基本上避免了发动机在换气过程中的泵气损失,有利于降低燃油耗。同时,在高空燃比情况下,由于混合汽物性的改变、绝热指数的增加以及混合汽分层致使热损失减少,使得发动机的热效率进一步提高。由于汽车发动机经常在低负荷工况下运行,因此分层混合汽燃烧的直喷式汽油机可使平均燃油耗降低15~20%。在欧洲机动车排放组合循环(MVEG)行驶试验中,其燃油耗明显低于进气道喷射汽油机已达到了相当于非直喷式柴油机的燃油耗水平(图2)



图3示出了现代汽油机各种技术改进措施的节油潜力。可以清楚地看出,作为单一措施汽油缸内直接喷射蕴藏着最大的节油(即降低CO2排放量)的潜力。这种效果一方面是由于发动机的无节流运行降低了换气损失,另一方面由于充量分层运行,燃烧在燃烧室中央进行,周围有隔热的空气层而减少了壁面热损失,同时全负荷时的爆震倾向降低,因而发动机能够以较高的压缩比运行。这些措施在发动机整个特性曲线场范围内对燃油耗都起到了有利的作用。而燃烧室内的充量运动也使得在以化学计量比混合汽运转的范围内具有较高的EGR兼容性,因而在该 运转范围内也能够获得节油效果。
综上所述,无论是从节能和减排的角度,还是从提高汽油机动力性能的角度来看,现代缸内直喷式汽油机在进气道喷射技术的基础上,又将汽油机技术向前推进了一大步,从而成为世界汽油机发展历史上又一个重要的里程碑,不言而喻同样是我国汽车汽油机的重要的发展方向。

上海大众EA888发动机为例,说起EA888,可谓大众的明星发动机。大众在中国一直以来背负着“桑塔纳发动机用30年”的王八壳子,就是EA888给揭掉的。先进的直喷涡轮增压技术,全球最佳发动机的头衔让大众从一干自然吸气引擎(NA机)中脱颖而出,扬眉吐气。值得一提的是,在外国大众汽车中搭载的EA888引擎还带有稀燃技术以进步降低油耗,但在引入中国后被大众阉割。EA888的身上具备了多种大众潜心研究多年的核心高科技,其核心的核心就是缸内直喷技术。普通自然进气发动机,燃料和空气的预混合是在进气歧管内的,油压(汽油)只有3bar左右。等到活塞冲程下行吸气,预混合的混合气进一步混合,在燃烧室的高温下进一步雾化,以达到更好的空混比,最后被火花塞引燃推动活塞。这样产生的油气混合物的浓度,气缸各个不同部位的油气混合比很难做到精确的控制,燃烧效率无法提高的很多。而缸内直喷顾名思义就是把燃油以极高的压力使其雾化喷入缸内,它不同于自然吸气发动机,将汽油直接喷入缸内,这里没有进气道的预混合,且进气压力比非涡轮的要大,能达到更精确的混合比,更好的控制气缸内的混合物的浓度和分布,提高燃油效率和扭矩。但是普通油泵3bar喷油压力是无法直接喷入缸内的,就算喷进去,也来不及混合无法点燃,换句话说就是无法工作的。这中间就需要一个特殊的部件——共轨高压油泵。所谓高压油泵主要的作用就是产生高压油;采用三个径向布置的柱塞泵油元件产生高压油。低压燃油泵(3-6bar)将燃油输入高压油泵,高压油泵将燃油加压至 100-150bar送入高压油轨,最后由共轨油嘴喷入气缸,完成一个燃料的传递和加压工作,根据大众EA888引擎官方设计文档,高压共轨泵的正常工作压力为725.1 psi (50 个大气压) 到2175.5psi (150 个大气压),极限承压200个大气压!事实上,最早把燃油加压喷入,以获得油气混合物实现充分燃烧的设计,并非出现在汽车上。而是来自于美国波音公司幻影工作室——这个专为国防部设计炸弹的工作室发现,普通炸药之所以威力总比设计时候的小,原因就在于炸药无法和空气充分燃烧。如果在炸弹爆炸瞬间,先释放出高压油气混合物(被称作云爆剂),再点燃,那就就能获得比常规武器威力大得多的炸弹。1公斤云爆剂就相当于3.2公斤TNT炸药的威力。根据这一原理,美军设计出了被称作炸弹之母(MOAB)的“掩体粉碎机”云爆弹。1991年2月13日下午4点,伊拉克巴格达阿米里亚防空洞。幻影工作室设计的“掩体粉碎机”穿透几十米的地面和钢筋水泥墙体,将防空洞炸出一个大洞,火光伴着爆炸产

生的巨大压力把人体撕成碎片甩到墙壁上。五分钟后,第二颗“掩体粉碎机”从炸开的大洞直接钻进防空洞内,剧烈的爆炸产生冲天大火,将烧焦的尸体在墙壁上形成人形图案。大火造成4500度的高温,转眼间把没炸死的老人、孩子烧成灰烬。防空洞的自动灭火装置自行启动,喷出了高压水龙,大水瞬间被高温加热至沸腾,将防空洞下一层受伤的人全部烫死。
既然油气混合物能有如此惊人的杀伤力,那在汽车上引入显然也会获得更高的动力和更省油的表现。根据云爆弹原理,大众为高压泵设计了一个非常精巧的结构,通过进气阀的凸轮轴来为油泵提供动力,这样很好的解决了油泵和进气阀之间的正时问题,也提高了燃油效率;同时作为一个纯机械的结构,这个高压泵具备了非常高的可靠性,大众(博世)甚至还设计了一个内部保护回路防止油压过高。可惜的是,大众和博世的设计尽管确保了机械自身的可靠性,但高压燃油轨(Rail)里的高压燃料是无法保护的,为了保证发动机运转的顺畅性,燃油轨中必须保持一定的压力。这个在平时是没有问题的,问题就出在了碰撞上。当发动机受到巨大的外力撞击时,位于发动机前部的高压共轨喷射系统就成了发动机首先受到撞击的部分。

未来汽车设计的发展必然随着汽车技术的进步而日新月异,众多设计师的艺术风格也会更广泛更强烈地体现在汽车设计之中,而给予人们更加广泛的选择。高科技下,个性鲜明、更加人性化的汽车将是21世纪汽车产业发展的必然,因为它符合人类对文化、个性的追求和需要。因此,加大对概念汽车的设计的重视和投入,将对我国汽车产业的发展起到极大的推进作用。
作为当代的大学生,肩负着建设祖国的重任,今天的我们应该努力勤奋学习,掌握好科学文化知识,为将来祖国的繁荣富强贡献自己的一份力。



3、汽车发动机新技术---缸内直喷式技术及发展趋势


摘要:缸内直喷技术是一种新型进气燃烧技术,它采用的是一种类似于柴油发动机的供油/气原理,通过一个活塞泵提供约100bar以上的压力,将汽油供给位于气缸内的电磁喷射器。然后通过电脑控制喷射器将燃料在最恰当的时间直接注入气缸内燃烧,由于其控制的精确度接近毫秒,所以能最有效的将油气混合比调整至最佳状态,从而保证了汽油的充分燃烧,动力损失降为最低。
关键词:汽油机、缸内直喷技术、分层燃烧,燃油经济性
1.缸内直喷技术的发展历程
汽油机的发展经历了100多年的漫长历史,其中具有里程碑意义的发展阶段无不是以油气混合方式和机理的变迁为标志的。上世纪50年代,德国

研制出了二冲程直喷汽油机,限于当时机械制造技术和电控水平较低,其性能和排放并不理想。90年代后,缸内直喷汽油机的研究有了较大的进展。缸内直喷汽油机改变了预混合汽油机的混合机理,可采用稀薄分层燃烧技术,降低HC等有害排放。直喷方式的油滴蒸发主要依靠空气吸热而非壁面吸热,降低了混合气温度和体积,可降低爆燃倾向,提高发动机压缩比。此外,GDI汽油机还具有瞬态响应好,易于实现精确的空燃比控制,具有快速的冷起动和减速快速断油能力等特点。这些方面GDI汽油机都明显优于进气道喷射汽油机。为此许多外国汽车公司和研究机构都成功开发出了自己的GDI发动机机型。1996年,日本的三菱公司率先采用立式进气道与弯曲顶面活塞。在进气行程中吸入的空气通过立式进气道被吸入气缸,形成强烈的滚流。喷射的燃油经曲面形的燃烧室壁面引导被送到位于气缸中央的火花塞附近,形成稳定的燃烧。开发的汽油直喷发动机应用于运动型轿车Galant上,其油耗和二氧化碳的排放比同功率的传统汽油车降低了30%。随后,装备了GDI发动机的中级轿车Carisma投放到西欧市场。2000年底,大众公司研发了稀燃直喷式汽油机Lupo PSI,其高行驶功率下的百公里燃油消耗仅4. 9L,是世界上第一辆5L汽油机汽车。实验表明,Lupo PSI的燃油消耗与同输出功率的进气道喷射汽油机相比,降低了34%。2004年,奥迪公司研发了2. 0T-FSI燃油分层直接喷射增压汽油机。随后为A级轿车研发了1. 8T-FSI高性能发动机, 2007年初装备到新款奥迪A3轿车上。2005年配备在全新奥迪A4 2. 0T上的TFSI涡轮增压汽油直喷发动机被权威杂志评为全球十大发动机第一名,代表了世界汽车发动机技术的顶尖水平。日本丰田公司的GDI发动机使用了可变涡流技术,通过缸内气流运动的组织,在火花塞周围形成可点燃的混合气。为了降低NOx排放,在使用EGR的同时采用了NOx吸附催化反应器。试验结果表明,装有该发动机的汽车油耗为17. 4Km/L,而相应的装有PFI发动机的汽车油耗为13Km/L,节油达34%左右。美国福特公司的GDI发动机采用均质的当量燃空比附近的混合气,利用传统的三元催化反应器,降低了排放处理方面的困难。稳态试验表明,部分负荷下,汽油机的燃油经济性有5%的提高,而怠速时能提高10%。
2.缸内直喷技术的技术现状
现代的GDI发动机燃油供给系统设计,为了达到分层稀薄混合气所要求的喷雾质量和灵活的喷油定时,均采用了精度高、响应快的柔性电控手段。高压共轨喷射系统加电磁驱动喷油器被认为是满足缸内灵活喷射要求的喷射系统之一。该系统由低压输油泵、燃油压力传感器

、喷油压力控制阀、高压油泵、蓄压燃油轨、喷油器等组成。电动低压输油泵把燃油从油箱输送到高压油泵,高压油泵由发动机凸轮轴驱动,将低压油泵送来的压力约0.35MPa的燃油压力增高到8~12MPa,并送往蓄压燃油轨,充满各缸喷油器的油腔。当ECU令喷油器的电磁线圈通电使针阀打开时,汽油就通过喷嘴喷人气缸。GDI发动机需要形成高质量的混合气,除了依靠进气涡流外,对喷油器的喷雾质量要求很高。由于燃油蒸发混合的时闻很短,要求喷雾要微粒化,一般缸内直接喷射的平均油粒直径在20~25μm,为此,喷油压力要维持在4~13MPa。为了实现油气均匀混合,必须使喷雾广泛分散在整个燃烧室。另外,如果喷雾在直线方向上的运动过强,则燃油会直接喷射在气缸壁上,形成油滴沿壁流下,不利于混合气的形成,还会冲洗润滑油膜,破坏润滑性能。因此,喷油器应能保证喷射出来的汽油微粒的速度在喷射直线方向上急剧衰减,而圆周运动方向上的油粒应尽量保持高速运动,这样才有利于混合气的形成。燃油喷射系统中,喷油器的结构形式对喷雾质量的影响很大。由于汽油机的喷射压力远低于柴油机,如采用多孔喷油器,其喷嘴容易在工作中积碳堵塞,雾化分层不好,燃烧时火焰传播不稳定,因此GDI发动机上一般不采用多孔喷油器。目前在GDI发动机上得到广泛应用的是内开式旋流喷油器,只有一个喷孔,工作油压为5.0—10MPa,其内部设有燃油旋流腔,它可以通过涡流比的选择而实现较好的喷雾形态和合适的贯穿度的配合,且喷束方向便于调整,方便了在气缸内的布置。
GDI发动机燃油喷射模式可以分为单阶段喷射模式和多阶段喷射模式。单阶段喷射模式是指在中小负荷时,燃油在压缩行程后期喷入,实现混合气分层稀燃并采用质调节以避免节流阀的节流损失,从而使GDI汽油机达到与柴油机相当的经济性;在大负荷和全负荷时,燃油在进气行程中喷人气缸,实现均质预燃和燃烧,以保持汽油机升功率高的特点。多阶段喷射模式是指在进气行程中先喷入所需燃料的1/4,形成极稀的均质混合气,其余燃料在压缩行程后期再次喷入,形成分层混合气。火花塞点火时,首先在浓混合气处形成较强的火焰,然后向稀混合气空间迅速传播。应用该技术可实现发动机从中小负荷到大负荷的平稳过渡,降低气缸内的气体温度,抑制爆燃的产生。
燃烧系统的设计是GDI发动机的关键技术。要成功实现中小负荷时的分层稀燃和大负荷时的均质预混,就需要进行燃油喷束、气流运动和燃烧室形状的优化合理配合。已经开发的GDI发动机燃烧系统。按喷油器和火花塞的

相对位置和混合气的组织形式可以有3种类型。“喷束引导法”“壁面引导法”“气流引导法”。
3.缸内直喷技术研究开发方向
现在GDI技术尚处于逐步成熟时期,各种问题的出现是必然的,但GDI的研究一定要在确保动力性能的基础上尽可能的“节能减排”。而从当前的形式来看低碳问题又是中之重。稀燃催化器的开发将直接影响到GDI汽油机排放问题的解决。目前开发的有稀燃催化还原型NOx催化器、NOx搜捕型等。但这些催化器都不同程度的存在转化率低、工作温度范围窄、控制复杂、性能不如传统的三元催化器等问题,还需深入研究。二次燃烧是指在进行正常分层燃烧的怠速运转时,除了在压缩行程后期喷油外,在膨胀行程后期再次喷入少量燃油,在缸内高温、高压气体的作用下点火燃烧并使排气温度提高。三菱汽车公司采用二次燃烧和反应式排气管技术,较好地降低HC和NOx排放。

相关文档
最新文档