滑动轴承

合集下载

认识滑动轴承和滚动轴承轴承

认识滑动轴承和滚动轴承轴承

刚性好——
成对的向心、推力轴承组合
轴支承跨距大——
自动调心轴承
装拆要求
经济性要求
单列向心球轴承最便宜滚子轴承较贵;精度越高越贵。
4.滚动轴承固定方法
5.滚动轴承固定方法(内圈固定方法)
5.滚动轴承固定方法(外圈固定方法)
6.轴承的安装和拆卸
6.轴承的安装和拆卸
装 小型轴承——手锤+辅助套筒 中小型轴承——液压机压内圈 中大型轴承——温差法(加热80-100度)
轴承
一、轴承的功用:是支承轴及轴上零件
二、轴承的分类 1.根据摩擦性质
滑动摩擦轴承(滑动轴承)
滚动摩擦轴承(滚动轴承)
2.按受载方向不同
向心轴承:
向心推力轴承:同时承受径向、轴向载荷
推力轴承:
承受径向力
承受轴向力
径向滑动轴承
滚动轴承 (向心轴承)
滚动轴承 (推力轴承)
推力滑动轴承
§5-2 轴承
拆 ①配合松的小型轴承——手锤+铜棒敲内圈 ②压力法——拉杆拆卸器(拉马)
d=代号×5(mm)
代号 04~96
例: 说明6208、71210等轴承代号的含义。
6208 为深沟球轴承,尺寸系列(0)2(宽度系列0,直径系列2),内径40 mm,精度P0级; 71210 为角接触球轴承,尺寸系列12(宽度系列1,直径系列2),内径50 mm
4.滚动轴承类型的选择 选择原则:轴承载荷、转速、刚性及调心性能要求、装拆要求、经济性
轴承衬
油沟的形式 滑动轴承安装维护要点
滚动轴承
滚动轴承的结构
1
2
3
4
5
滚动轴承的配合
材料
(二)滚动轴承的代号

第十三章 滑动轴承

第十三章  滑动轴承

2、磨料磨损

定义及机理:
从外部进入摩擦面间的游离硬颗粒或金属表 面较硬的微峰在较软材料的表面上犁刨出很 多沟纹,使金属表面材料脱落,脱落下来的 部分金属粉末又成为新的游离颗粒,这样的 微切削过程就叫磨料磨损。

影响磨损的因素:
材料的硬度和磨粒的尺寸与硬度。
(一般情况下,材料的硬度越高,耐磨性越好;金属 的磨损量随磨粒平均尺寸的增加而增大,随磨粒硬 度的增高而加大。)
4、腐蚀磨损
摩擦副受到空气中的酸或润滑油、燃油 中残存的少量无机酸(如硫酸)及水份 的化学作用或电化学作用,在相对运动 中造成表面材料的损失叫做腐蚀磨损。
三、润滑剂

润滑剂的作用:
在相对运动的表面间加入润滑剂,可以 降低摩擦,减少磨损,提高效率,延长 机体寿命,同时还有冷却、防腐、密封 等作用。
粘温特性与粘压特性
影响润滑油粘度的主要因素是温度 和压力,其中温度的影响最显著;
一般温度越高,粘度越小;压力增 大,粘度增大(5000kPa)。

2 油性:
润滑油在金属表面上的吸附能力。油 性好的润滑油,其油膜吸附力大且不 易破。 3 极压性能: 润滑油中的活性分子与摩擦表面形成 抗磨损和耐高压的化学反应膜称为极 压性能。
根据摩擦表面间存在润滑剂的情况,摩擦 又分为: 干摩擦; 边界摩擦; 液体摩擦; 混
干摩擦是指表面间无任何润滑剂或保护膜的纯金属 接触时的摩擦。此时,摩擦系数最大,f>0.3,伴 随有大量的摩擦功损耗和严重的磨损,在滑动轴承 中表现为强烈的升温,甚至把轴瓦烧毁。所以在滑 动轴承中不允许出现干摩擦。
3、固体润滑剂
常用固体润滑剂:
无机化合物、有机化合物、金属以及金属 化合物等。如石磨、二硫化钼、聚四氟乙 烯、酚醛树脂等。

滑动轴承

滑动轴承

机械设计
第十章 滑动轴承 第九章
31
四、承载能力和索氏数S0
β— 轴承包角,轴瓦连续包围轴颈所对应的角度。(P221)
φ— 从 OO 起至任意 膜厚处的油膜角。
α1+α2— 承载油膜角
φ1— 油膜起始角 φ2— 油膜终止角 p=pmax处:h=h0,φ=φ0
机械设计
第十章 滑动轴承 第九章
32
(P222 式10-19)
流出 流入
Δt— 油温升 Δt = t2-t1
1 1 t m (t 1 t 2 ) t 1 t 75C 平均温度: 2 2
33
积分一次得任意φ处的油膜压力pφ:
p dp
1
6
2


1
(cos cos0 ) d 3 (1 cos )
在φ1至φ2区间内,沿外载荷方向单位宽度的油膜力为:
F1 p cos[180 ( )]rd
1 2
对有限宽轴承,若不计端泄,油膜承载力F为:
p 0 x
,油压为增函数;
可见,对收敛形油楔,油楔内各处油压大
于入口、出口处油压→正压力→承载。
e e
e e
e e
h>h0 p>0 x
p x =0
h<h0 p x <0
p 静止件 x =0 p=0
e e
机械设计 ※若二板平行:
p x
第十章 滑动轴承 第九章
26
任何截面处h=h0, =0 ,不能产生高于出口、入口处的 油压→不能承载。 v
8
2、推力轴承(方法同径向轴承)(自学) 结构:空心、实心、单环、多环
实心式:

滑动轴承概述

滑动轴承概述

滑动轴承概述轴承轴承支承轴及轴上零件,保证轴的旋转精度。

根据轴承工作的摩擦性质,可分为滑动轴承和滚动轴承。

滑动轴承具有工作平稳、无噪音、径向尺寸小、耐冲击和承载能力大等优点。

而滚动轴承是标准零件,成批量生产成本低,安装方便,广泛应用。

对于初学者来讲,滚动轴承的类型选择;寿命计算;组合设计是比较难掌握。

因此,滚动轴承的寿命计算和组合设计是本章讨论的重点。

§11—1 滑动轴承概述一、滑动轴承的类型滑动轴承按其承受载荷的方向分为:(1)径向滑动轴承,它主要承受径向载荷。

(2)止推滑动轴承,它只承受轴向载荷。

滑动轴承按摩擦(润滑)状态可分为液体摩擦(润滑)轴承和非液体摩擦(润滑)轴承。

(1)液体摩擦轴承(完全液体润滑轴承)液体摩擦轴承的原理是在轴颈与轴瓦的摩擦面间有充足的润滑油,润滑油的厚度较大,将轴颈和轴瓦表面完全隔开。

因而摩擦系数很小,一般摩擦系数=0.001~0.008。

由于始终能保持稳定的液体润滑状态。

这种轴承适用于高速、高精度和重载等场合。

(2)非液体摩擦轴承(不完全液体润滑轴承)非液体摩擦轴承依靠吸附于轴和轴承孔表面的极薄油膜,单不能完全将两摩擦表面隔开,有一部分表面直接接触。

因而摩擦系数大,=0.05~0.5。

如果润滑油完全流失,将会出现干摩擦。

剧烈摩擦、磨损,甚至发生胶合破坏。

二、滑动轴承的特点优点:(1)承载能力高;(2)工作平稳可靠、噪声低;(3)径向尺寸小;(4)精度高;(5)流体润滑时,摩擦、磨损较小;(6)油膜有一定的吸振能力缺点:(1)非流体摩擦滑动轴承、摩擦较大,磨损严重。

(2)流体摩擦滑动轴承在起动、行车、载荷、转速比较大的情况下难于实现流体摩擦;(3)流体摩擦、滑动轴承设计、制造、维护费用较高。

§11—2 滑动轴承的结构和材料一、径向滑动轴承1.整体式滑动轴承整体式滑动轴承结构如图所示,由轴承座1和轴承衬套2组成,轴承座上部有油孔,整体衬套内有油沟,分别用以加油和引油,进行润滑。

机械设计8—滑动轴承

机械设计8—滑动轴承

3. 许用油膜厚度[h] ] 在其他条件不变的情况下, 在其他条件不变的情况下,外载荷 F↑,动压润滑轴承的 ↑ hmin↓ ,轴承、轴颈表面的微观凸峰可能直接接触,而不能实现 轴承、轴颈表面的微观凸峰可能直接接触, 液体润滑。 液体润滑。 显然,要想实现液体润滑,应满足如下条件: 显然,要想实现液体润滑,应满足如下条件: hmin ≥ [h]= S ( Rz1 + Rz2 ) ] 式中: 式中: S — 安全因数 , S ≥2,一般可取 S=2 一般可取 RZ1,RZ2 —轴颈和轴承孔表面粗糙度,µm 轴颈和轴承孔表面粗糙度, 轴颈和轴承孔表面粗糙度
特点
应用
2.极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的、极微型的、极简单的场合;如自动化办公设备等。 极大型的 3.结构上要求剖分的场合;如曲轴用轴承。 结构上要求剖分的场合; 结构上要求剖分的场合 如曲轴用轴承。 4.受冲击与振动的场合;如轧钢机。 受冲击与振动的场合;如轧钢机。 受冲击与振动的场合
ψ = δ /r → δ = ψ . r =0.001x60 = 0.06mm x χ = 1-[h]/δ = 1 -9.6x10-3/0.06 = 0.84 - ] x
查表12-7,B/d = 108/120=0.9 得到 , / 查表 /
χ
Cp
0.80 3.067
0.85 4.459
插值计算:Cp = 4.181
§8-2 径向滑动轴承的主要类型
一、整体式 结构简单,成本低, 间隙无法 结构简单,成本低,但间隙无法 补偿,且只能从轴端装入, 补偿,且只能从轴端装入,适用 低速、轻载或间歇工作的场合。 低速、轻载或间歇工作的场合。 无法用于曲轴。 无法用于曲轴。 二、对开式(剖分式) 对开式(剖分式)

精品课件-滑动轴承

精品课件-滑动轴承

工程中常用运动粘度,单位是:St(斯)或 cSt(厘斯),量
纲为(m2/s);
润滑油的牌号于运动粘度有一定的对应关系,如:牌号为LAN10的油在40℃时的运动粘度大约为10 cSt。(具体说明)
◆ 选择原则: (1)压力大、温度高、载荷冲击变动大——粘度大的润滑油
(2)滑动速度大 ——粘度较低的润滑油 (3)散热差,工作温度高——粘度较高的润滑油 (4)粗糙或未经跑合的表面——粘度较高的润滑油 2、润滑脂
(7)良好的工艺性和导热性,并应具有抗腐蚀性能。
常 金属材料
轴承合金、铜合金、铸铁、铝基合金。
用 轴
多孔质金属材料
多孔铁、多孔质青铜。
承 材
非金 属材料
酚醛树脂、尼龙、聚四氟乙烯。

轴承材料是指在轴承结构中直接参与摩擦部分的材料,如轴瓦 和轴承衬的材料。轴承材料性能应满足以下要求:
◆ 减摩性:材料副具有较低的摩擦系数。
及轴颈直径
,用下式验算:
B-轴承宽度,mm。根据宽径比B/d确定,推荐B/d=0.5~1.5 [p]-轴瓦材料的许用压强,MPa,其值见表15-1和15-2
2.验算轴承的pv值 pv值越高,轴承温升越高,越容易引起边界油膜的破裂,
按下式验算:
式中 n---轴的转速,r/min [pv]—轴瓦材料的许用值,其值见表15-1和表15-2.
此外还应有足够的强度和抗腐蚀能力、良好的导热性、工艺性 和经济性。
类型 特点 应用
轴承合金
锡基轴承合金 铅基轴承合金
嵌入性和摩擦顺应性 最好 ,易于轴颈磨合, 但强度低,价格较贵。
重载、中高速场合。
类型 特点 应用
铜合金
锡青铜 铅青铜 铝青铜

滑动轴承

滑动轴承

液体动力润滑径向滑动轴承的设计计算
二、径向滑动轴承形成流体动力润滑时的状态
F

液体动力润滑径向滑动轴承的设计计算3
F
F
a
o1 o
D d
o1 o o
o1
h m in
e
初 始

◆ ◆


稳定工作状态
演示
轴承的孔径D和轴颈的直径d名义尺寸相等;直径间隙Δ是公差形成的。
轴颈上作用的液体压力与F相平衡,在与F垂直的方向,合力为零。 轴颈最终的平衡位置可用φa和偏心距e来表示。
◆ 轴承工作能力取决于hlim,它与η、ω、Δ和F等有关,应保证hlim≥[h]。
液体动力润滑径向滑动轴承的设计计算
三、径向滑动轴承的几何关系和承载量系数 最小油膜厚度:hmin= δ-e = rψ(1-χ) 其中: 相对间隙,ψ = δ / r = Δ / d ψ—
液体动力润滑径向滑动轴承的设计计算4
径向滑动轴承的典型结构2
轴承盖
下轴瓦
轴承座
对开式轴承(剖分轴套)
对开式轴承(整体轴套)

点:结构复杂、可以调整磨损而造成的 间隙、安装方便。
(虚拟演示)
应用场合:低速、轻载或间歇性工作的机器中。
滑动轴承的典型结构
三、止推滑动轴承的结构
F F
a a
径向滑动轴承的典型结构3
止推滑动轴承由轴承座和止推轴颈组成。常用的轴颈结构形式有:
润滑脂牌号表
滑动轴承润滑剂的选择
二、润滑油及其选择
◆ ◆ ◆
滑动轴承润滑剂的选择2

点: 有良好的流动性,可形成动压、静压或边膜界润滑膜。
适用场合:不完全液体滑动轴承和完全液体润滑滑动轴承。 选择原则:主要考虑润滑油的粘度。 转速高、压力小时,油的粘度应低一些;反之,粘度应高一些。 高温时,粘度应高一些;低温时,粘度可低一些。

第十二章滑动轴承

第十二章滑动轴承

二、摩擦状态 1.干摩擦 固体表面直接接触,因而 →功耗↑ 磨损↑ 不许出现干摩擦! 2.边界摩擦 运动副表面有一层厚度<1 μ m 的薄油膜, 不足以将两金属表面分开,其表面微观高峰 部分仍将相互搓削。
vv
温度↑ →烧毁轴瓦
v
比干摩擦的磨损轻, f ≈ 0.1~0.3 3.液体摩擦 有一层压力油膜将两金属表面隔开,彼此不 直接接触。 摩擦和磨损极轻, f ≈ 0.001~0.01
v
在一般机器中,处于以上情况的混合状态。 边界摩擦
f
混合摩擦 液体摩擦
o
摩擦特性曲线
η n/p
称无量纲参数η n/p 为轴承特性数η -动力粘度, p-压强, n-每秒转数。
三、磨损 典型的磨损过程 1、磨合磨损过程 在一定载荷作用下形成一 个稳定的表面粗糙度,且在以 后过程中,此粗糙度不会继续 改变,所占时间比率较小。
二、轴瓦的结构
厚壁轴瓦 卷制轴套 薄壁轴瓦 轴瓦非承载区内表面开有进油口和油沟,以利于润滑油均匀分布 在整个轴径上。 进油孔 油沟 F
整体轴套
油沟形式
d
宽径比 B/d----轴瓦宽度与轴径直径之比, 是重要参数。 液体润滑摩擦的滑动轴承: 非液体润滑摩擦的滑动轴承: B/d=0.5~1 B/d=0.8~1.5
常采用自动调心式轴承,一般 B/d=0.5~1.5。
2、止推(推力)滑动轴承 作用:用来承受轴向载荷 结构特点:由轴承座和止推轴颈组成
a)实心式
b)空心式
c)单环式
d)多环式
§12-2
滑动轴承的失效形式、轴(轴承衬)瓦材料、结构 和轴承润滑
一、失效形式: 1、磨粒磨损 2、刮伤 3、胶合 4、疲劳剥落 5、腐蚀
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

16.6.2径向滑动轴承中动压润滑状 态的形成
图16-24 径向滑动轴承动压油膜的形成
16.6.3动压润滑径向滑动轴承的几何关系
图16-25 径向轴承的几何关系
图16-26
不同宽径比时沿轴承周向和轴向的压力分布
16.7.1 流体静压润滑轴承(简称静压轴承)
图16-27 液体静压径向轴承的工作原理
第16章 滑动轴承
16.1 机械中的摩擦,磨损与润 滑
• 16.1.1 摩擦与摩擦状态
a)干摩擦
b)边界摩擦
c)流体摩擦
d)混合摩擦
*16.1.2 机械中的磨损
图16-2 机械零件的磨损曲线
16.3 滑动轴承的结构型式与润滑方法
• 16.3.1 .径向滑动轴承的结构
图16-3 整体式径向滑动轴承
图16-10
卷制轴套
图16-11 对开式厚壁轴瓦
图16-12 对开式薄壁轴瓦
2.轴瓦的定位

图16-13 销钉定位
图16-14 止动螺钉定位
3. 油孔与油沟
图16-15 单轴向油槽开在最大油膜厚度位置
图16-16
双轴向油槽开在轴承剖分面上
图16-17 周向油槽对轴承承载能力的影响
图 16-18
不完全液体润滑轴承常用油槽形式
16.3.4. 润滑方式
a )针阀式油杯 b)油芯油杯 图16-19 滴油润滑
图16-20 油环润滑
图16-21 旋盖式油脂杯
16.5.2.推力滑动轴承的设计计算
图16-22 推力轴承 a)、b)单环推力轴承
c)多环推力轴承
16.6.1液体动压润滑的基本方程
图16-23 动压润滑原理示意
图16-4 剖分式径向滑动轴承
图16-5 间隙可调式滑动轴承 图16-6 自动调心式径向滑动轴承 1.轴瓦 2.轴 3,5螺母 4.轴承座
图16-7 多油楔式滑动轴承 a)椭圆轴承 b)三油楔轴承 c)四油楔轴承 d)三可倾瓦轴承
16.3. 2 推力滑动轴承的结构
16.3.3轴瓦结构
图16-9 整体轴套
相关文档
最新文档