比色分析的基本原理
比色分析的基本原理朗伯比尔定律,吸光度,消光度,吸光系数

比色分析的基本原理(朗伯-比尔定律,吸光度,消光度,吸光系数)( 关键词:比色分析,吸光光度法,光电比色法,分光光度法,朗伯-比尔定律,吸光度,消光度,吸光系数)比色分析是基于溶液对光的选择性吸收而建立起来的一种分析方法,又称吸光光度法。
有色物质溶液的颜色与其浓度有关。
溶液的浓度越大,颜色越深。
利用光学比较溶液颜色的深度,可以测定溶液的浓度。
根据吸收光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等。
比色分析具有简单、快速、灵敏度高等特点,广泛应用于微量组分的测定。
通常中测定含量在10-1~10-4mg·L-1的痕量组分。
比色分析如同其他仪器分析一样,也具有相对误差较大(一般为1%~5%)的缺点。
但对于微量组分测定来说,由于绝对误差很小,测定结果也是令人满意的。
在现代仪器分析中,有60%左右采用或部分采用了这种分析方法。
在医学学科中,比色分析也被广泛应用于药物分析、卫生分析、生化分析等方面。
一、物质的颜色和光的关系光是一种电磁波。
自然是由不同波长(400~700nm)的电磁波按一定比例组成的混合光,通过棱镜可分解成红、橙、黄、绿、青、蓝、紫等各种颜色相连续的可见光谱。
如把两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色。
图8-1中处于同一直线关系的两种色光(如绿与紫、黄与蓝)互为补色。
当白光通过溶液时,如果溶液对各种波长的光都不吸收,溶液就没有颜色。
如果溶液吸收了其中一部分波长的光,则溶液就蜈现透过溶液后剩余部分光的颜色。
例如,我们看到KMnO4溶液在白光下呈紫红色,就是因为白光透过溶液时,绿色光大部分被吸收,而其他各色都能透过。
在透过的光中除紫红色外都能两两互补成白色,所以KMnO4溶液呈现紫红色。
同理,CuSO4溶液能吸收黄色光,所以溶液呈蓝色。
由此可见,有色溶液的颜色是被吸收光颜色的补色。
吸收越多,则补色的颜色越深。
比较溶液颜色的深度,实质上就是比较溶液对它所吸收光的吸收程度。
比色法原理

比色法原理比色法是一种常用的分析化学方法,它通过比较待测物质与标准溶液的吸光度,来确定待测物质的浓度。
比色法的原理基于光的吸收特性,利用物质对特定波长光的吸收来进行分析测定。
下面我们将详细介绍比色法的原理及其应用。
首先,比色法的原理基于比较待测物质与标准溶液的吸光度。
在比色法中,通常会选择一种特定波长的光作为测定光源,这种光会被待测物质吸收,而标准溶液的吸光度则作为参照。
通过测量两者的吸光度差异,可以确定待测物质的浓度。
其次,比色法的原理还涉及到兰伯-比尔定律。
兰伯-比尔定律是比色法的基础,它指出溶液中溶质的浓度与其吸光度成正比。
换句话说,溶液中溶质的浓度越高,其吸光度也会越大。
利用兰伯-比尔定律,我们可以建立起待测物质浓度与吸光度之间的数学关系,从而实现浓度的定量分析。
另外,比色法的原理还包括色度法和分光光度法两种。
色度法是利用肉眼观察待测物质与标准溶液在特定波长下的颜色深浅来进行分析,而分光光度法则是通过光电比色计测量待测物质与标准溶液的吸光度。
这两种方法在实际应用中都有各自的优势,可以根据具体情况选择合适的方法进行分析。
在实际应用中,比色法被广泛应用于各种领域,如环境监测、食品安全、医药化工等。
比色法具有操作简便、分析速度快、准确度高等优点,因此受到了广泛的重视和应用。
总的来说,比色法是一种基于光的吸收特性进行分析测定的方法,其原理基于比较待测物质与标准溶液的吸光度差异。
通过兰伯-比尔定律以及色度法和分光光度法的应用,比色法在实际分析中具有重要的意义和广泛的应用前景。
希望本文能够帮助大家更好地理解比色法的原理及其应用。
00 生物化学实验--常用生物化学实验技术及原理-比色分析技术

比色分析技术分光光度法是利用单色器(主要是棱镜)获得单色光来测定物质对光吸收能力的方法。
物质对不同波长的光波具有选择吸收的特性,分光光度法就是基于物质的这种特性而建立起来的分析方法,它是光谱分析技术中最基本和最常用的方法,因其具有灵敏、准确、快速、简便、选择性好等特点而被广泛应用。
一、比色分析的基本原理比色分析技术是利用物质对光的吸收作用来对物质进行定性或定量分析的技术。
分光光度法是光谱分析技术中最常用的一种,应用最多的是紫外 - 可见光分光光度法。
(一)吸光度与透光度当一束光线通过均匀、透明的溶液时可出现三种情况:一部分光被散射,一部分光被吸收,另有一部分光透过溶液。
设入射光强度为I 0 ,透射光强度为I ,I 和I 0 的比值称为透光度( transmittance ,T ),即T =,其数值小于 1 。
T 与 100 的乘积称为百分透光度,以 %T 表示。
透光度的负对数称为吸光度 (absorbance , A) 。
其表达式为:A =-LgT =-Lg =Lg(二) Lambert-Beer 定律Lambert-Beer 定律指出当一束单色的辐射能通过介质或溶液后,有一部分被吸收,其辐射能的吸收与溶液中吸收物质的浓度和溶液厚度的乘积成正比。
Lambert-Beer 定律适用于可见光、紫外光、红外光和均匀非散射的液体。
Lambert-Beer 定律是描述溶液吸光度同溶液浓度和溶液液层厚度之间关系的基本定律,该定律是分光分析的理论基础。
其表达式为:A =KLC式中,A ——吸光度;K ——吸光系数;L ——溶液厚度,称为光径;C ——溶液浓度。
根据 Lambert-Beer 定律,当液层厚度单位为 cm ,浓度单位为 mol/L 时,吸光系数K 称为摩尔吸光系数(ε)。
ε的意义是:当液层厚度为 l cm ,物质浓度为 l mol/L 时,在特定波长下的吸光度值。
ε是物质的特征性常数。
在一定条件(入射光波长、温度等)下,特定物质的ε不变,这是分光光度法对物质进行定性的基础。
利用比色法进行化学分析的基本原理与应用

利用比色法进行化学分析的基本原理与应用化学分析是化学领域中的一项重要技术,它可以帮助我们了解物质的组成和性质。
在化学分析中,比色法是一种常用的方法,它基于物质溶液的颜色变化来确定其化学组成。
本文将介绍比色法的基本原理和应用。
一、比色法的基本原理比色法是利用物质溶液的吸收光谱特性来分析物质的方法。
当物质溶液中存在特定的化学物质时,它们会吸收特定波长的光,使溶液的颜色发生变化。
这种颜色变化与物质的浓度成正比关系,因此可以通过测量溶液的吸光度来确定物质的浓度。
在比色法中,常用的测量仪器是分光光度计。
分光光度计可以发出一束特定波长的光,并测量经过溶液后的光强度。
通过比较溶液前后的光强度差异,可以得到溶液的吸光度。
吸光度与物质的浓度成正比关系,因此可以利用比色法计算出物质的浓度。
二、比色法的应用比色法在各个领域都有广泛的应用。
以下将介绍几个常见的应用案例。
1. 环境监测比色法可以用于环境监测中对水质的分析。
例如,可以利用比色法测定水中重金属离子的浓度。
重金属离子对人体健康有害,因此对水中重金属的浓度进行监测是必要的。
通过比色法可以快速、准确地测定水中重金属的浓度,为环境保护提供重要的数据支持。
2. 食品安全检测比色法在食品安全检测中也有广泛的应用。
例如,可以利用比色法测定食品中的添加剂含量。
食品添加剂是为了改善食品质量和口感而添加的物质,但过量使用会对人体健康造成危害。
通过比色法可以准确测定食品中添加剂的浓度,保证食品的安全性。
3. 药物分析比色法在药物分析中也扮演着重要的角色。
例如,可以利用比色法测定药物中的活性成分含量。
药物的活性成分决定了其疗效,因此对药物中活性成分的含量进行准确测定是药物质量控制的关键。
通过比色法可以快速、准确地测定药物中活性成分的含量,确保药物的质量。
三、比色法的优缺点比色法作为一种常用的化学分析方法,具有以下优点和缺点。
优点:1. 操作简单,不需要复杂的仪器设备。
2. 分析速度快,可以快速得到结果。
简述比色法的原理与应用

简述比色法的原理与应用1. 原理比色法是一种常用的分析化学方法,通过测量溶液在特定波长下的吸光度来确定溶液中所含物质的浓度。
其基本原理是利用溶液中所含物质对特定波长的光的吸收特性进行定量分析。
比色法的原理主要包括以下几个方面:1.比尔定律:比尔定律是比色法的基础,它表明溶液的吸光度与溶液中物质的浓度成正比。
根据比尔定律,吸光度和浓度之间存在线性关系:– A = εlc其中,A为吸光度,ε为摩尔吸光度,l为光程长度,c为溶液中物质的浓度。
根据比尔定律,我们可以通过测量溶液的吸光度来确定物质的浓度。
2.选择合适的波长:比色法需要选择合适的波长来测量溶液的吸光度。
通常情况下,每种物质对光的吸收都有特定的波长范围,确定了波长范围后可以选择适当的光源和检测器。
3.样品制备:对于液体样品,需要将其制备成透明溶液,以保证光线能够充分透过样品。
对于固体样品,通常需要进行适当的溶解或萃取处理,以提取出样品中需要分析的物质。
4.校准与标准曲线:为了得到准确的浓度结果,需要先进行校准。
通常使用已知浓度的标准溶液进行校准,得到一个标准曲线,然后根据待测样品的吸光度值和标准曲线进行浓度计算。
2. 应用比色法广泛应用于各个领域的分析实验中,特别在生物化学、环境监测、食品安全等领域中具有重要的地位。
以下是比色法在不同领域的一些常见应用:2.1 生物化学•蛋白质测定:比色法可以用于测定蛋白质的浓度,常用的方法有Lowry法、Bradford法和BCA法等。
这些方法都是基于蛋白质与染色剂的化学反应产生可比色化合物,通过测量产物的吸光度来确定蛋白质的浓度。
•DNA测定:比色法在分子生物学中也有广泛应用,如用于DNA的浓度测定、纯度检测和PCR产物的定量等。
常用的方法包括吸光度法、荧光染料法和琼脂糖凝胶电泳法等。
2.2 环境监测•水质监测:比色法常用于测定水中各种污染物的浓度,如有机物、重金属和酸碱度等。
吸光度法可以快速、准确地测定水样中目标物质的浓度,对于环境监测和水质评估具有重要意义。
比色法的原理及应用实例

比色法的原理及应用实例1. 比色法的原理比色法是一种常用的分析测试方法,其原理是通过比较待测物质溶液的颜色与已知浓度标准溶液间的颜色深浅差异,来确定待测物质的浓度。
比色法适用于多种化学分析实验,如水质分析、药物分析、食品检测等。
具体而言,比色法的原理基于光的吸收特性。
溶液中的化合物可以吸收特定波长的光线,其吸收程度与溶液中化合物的浓度成正比。
通常,比色法使用可见光波长范围内的光进行测量,并使用比色皿或光电比色计来记录吸光度或透过率。
比色法的步骤如下: 1. 准备待测物质溶液和浓度已知的标准溶液。
2. 使用比色皿将待测溶液和标准溶液分别置入。
3. 使用光电比色计或其他仪器测量两种溶液在指定波长下的吸光度或透过率。
4. 比较待测溶液和标准溶液的吸光度或透过率,根据差异判断待测溶液中目标化合物的浓度。
2. 应用实例比色法在许多领域都有广泛的应用,以下是一些具体的应用实例:2.1 水质分析在水质分析中,比色法可用于测量水中各种化学物质的浓度,如氯离子、亚硝酸盐、硝酸盐等。
例如,可以通过比色法来监测饮用水中的氯离子浓度,以确保水质符合卫生标准。
2.2 食品检测比色法在食品检测中也有重要应用。
例如,可以使用比色法检测食品中的某些添加剂或污染物的浓度。
例如,可通过比色法检测果汁中的维生素C含量,以评估食品的营养价值。
2.3 药物分析在药物分析中,比色法常用于测量药物中活性成分的浓度。
这对于药物合成和质量控制至关重要。
比色法能够准确测量药物中的活性成分,确保药物的质量符合药学要求。
2.4 环境监测比色法也被广泛应用于环境监测领域。
例如,可以使用比色法来测量大气中有害气体的浓度,如二氧化硫、一氧化碳等。
这有助于监测和评估环境的污染程度。
2.5 化学实验比色法在化学实验中也有多种应用。
例如,可以使用比色法来确定某些化学反应的终点,监测反应的进程。
此外,比色法还可用于确定不同化合物的浓度,对于开展定量分析实验非常有用。
比色法的原理及应用
比色法的原理及应用比色法是一种广泛应用于化学分析的色谱分离技术,它利用样品溶液的颜色与溶液中所含分析物的浓度之间存在的关系来定量测量分析物的浓度。
比色法在医疗诊断、环境监测、食品安全等领域中广泛应用。
下面将详细介绍比色法的原理及其应用。
比色法的原理是基于比色分析原理和比色剂的选择。
比色分析原理是指物质在特定条件下溶液中吸收或透射特定波长的光线,产生一定颜色。
光强度与溶液中物质浓度成正比,通过测量吸收光强度的变化,可以得到分析物的浓度。
比色剂的选择关系到测定的准确性和灵敏度。
比色剂必须与所要测量的分析物有较强的化学反应性,能够生成稳定的彩色络合物或化合物,且比色剂本身不应影响所要测量的物质的吸收光谱。
比色剂的选择往往基于以色谱法或化学实验的经验规律。
比色法的应用非常广泛。
在医疗诊断领域,比色法常用于血糖测定、肾功能评估、血红蛋白测定等项目。
例如,血糖测定中常用的试剂盒中含有一种比色剂,在加入过氧化物酶(催化酶)的作用下,葡萄糖会与比色剂发生反应生成带有颜色的产物,通过测量产物的光密度,可以得到血糖的浓度。
在环境监测领域,比色法可以用来测定水中重金属、有机污染物的浓度。
例如,测定水中铁离子浓度时,可以使用邻苯二酚作为比色剂,铁离子与邻苯二酚发生化学反应形成紫色络合物,通过测量液体的吸光度可以得到铁离子的浓度。
在食品安全领域,比色法主要用于检测食品中的添加剂、残留物或污染物。
例如,测定食品中的亚硝酸盐含量时,可以使用苯酚作为比色剂,亚硝酸盐与苯酚反应生成红色化合物,通过测量产物的光密度可以得到亚硝酸盐的浓度。
此外,比色法还应用于化学实验室中的定量分析、质量控制等方面。
比色法通过简单、快速、经济的特点,成为了化学分析中必不可少的一种技术手段。
总之,比色法是一种基于吸光度的分析技术,通过测量样品溶液的颜色与所含分析物的浓度之间的关系,来定量测量分析物的浓度。
比色法广泛应用于医疗诊断、环境监测和食品安全等领域。
比色分析
为了提高测定的灵敏度和准确度,减少分析误差,必须选择合适的反应条件和分析条 件。
A=-lgT=kbc
(7-5)
式7-5即为朗伯-比尔定律的数学表达式。它是分光光度法定量分析的依据。
其中k为吸光系数(absorptivity)。在溶液的组成量度c用mol⋅L-1,液层厚度b以cm为单位
时,则吸光系数称为摩尔吸光系数(molar absorptivity),常用符号ε表示,其单位为L⋅mol-
人眼能感觉到的光的波长大约在400∼700nm之间,称为可见光。白光是一种混合光, 若将白光通过棱镜,便可分解为红、橙、黄、绿、青、蓝、紫等七种颜色的光。这种单一
波长的光叫单色光。各种单色光的近似波长范围如表7-2。 表7-2 各种色光的近似波长范围颜色λFra biblioteknm红
620∼760
橙
590∼620
黄
560∼590
光灯
棱镜
器
WFD-7型
国产751型分光光度计,是最早使用的分光光度计之一,其光学系统图如图7-6所示
。
图7-6 751型分光光度计光学系统立体图
由光源发出的连续辐射光线,射到聚光镜上,会聚后再经过平面镜转角90°,反射至 入射狭缝,由此入射到单色器内,狭缝正好位于球面准直镜的焦面上,当入射光经过准直 镜反射后就以一束平行光射向棱镜(该棱镜背面度铝),光线进入棱镜后,进行散射,入射 角在最小偏向角,入射光在铝面上反射后是依原路稍偏转一个角度后反射回来。这样从棱 镜色散出来的光再经过准直镜反射后,就会聚集在出射狭缝上,出射狭缝和入射狭缝是一 体的。
单色光是很不容易得到的。它通常是包含一定波长范围的有限宽度的谱带。若所含的波长
范围越宽,则单色光越不纯。单色光不纯将导致吸收系数值改变,从而使测定结果发生偏
比色分析的基本原理
(朗伯-比尔定律,吸光度,消光度,吸光系数)(关键词:比色分析,吸光光度法,光电比色法,分光光度法,朗伯-比尔定律,吸光度,消光度,吸光系数)比色分析是基于溶液对光的选择性吸收而建立起来的一种分析方法,又称吸光光度法。
有色物质溶液的颜色与其浓度有关。
溶液的浓度越大,颜色越深。
利用光学比较溶液颜色的深度,可以测定溶液的浓度。
根据吸收光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等。
比色分析具有简单、快速、灵敏度高等特点,广泛应用于微量组分的测定。
通常中测定含量在10-1〜10-4mg-L-1的痕量组分。
比色分析如同其他仪器分析一样,也具有相对误差较大(一般为1%- 5%的缺点。
但对于微量组分测定来说,由于绝对误差很小,测定结果也是令人满意的。
在现代仪器分析中,有60%左右采用或部分采用了这种分析方法。
在医学学科中,比色分析也被广泛应用于药物分析、卫生分析、生化分析等方面。
一、物质的颜色和光的关系光是一种电磁波。
自然是由不同波长(400~ 700nm)的电磁波按一定比例组成的混合光,通过棱镜可分解成红、橙、黄、绿、青、蓝、紫等各种颜色相连续的可见光谱。
如把两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色。
图8-1中处于同一直线关系的两种色光(如绿与紫、黄与蓝)互为补色。
当白光通过溶液时,如果溶液对各种波长的光都不吸收,溶液就没有颜色。
如果溶液吸收了其中一部分波长的光,则溶液就蜈现透过溶液后剩余部分光的颜色。
例如,我们看到KMn0溶液在白光下呈紫红色,就是因为白光透过溶液时,绿色光大部分被吸收,而其他各色都能透过。
在透过的光中除紫红色外都能两两互补成白色,所以KMnO4溶液呈现紫红色。
同理,CuS04溶液能吸收黄色光,所以溶液呈蓝色。
由此可见,有色溶液的颜色是被吸收光颜色的补色。
吸收越多,则补色的颜色越深。
比较溶液颜色的深度,实质上就是比较溶液对它所吸收光的吸收程度。
比色分析法(一)
比色分析法(一)1.概述许多化合物是有色彩的,例如根离子(MnO4-)是紫红色,硫氰化铁(FeCNS2+)配位化合离子是血红色等。
当含有这种有色化合物的溶液浓度转变时,溶液色彩的深浅也就随着转变。
溶液越浓,色彩越深,因此,可以利用比较和测量溶液色彩的深浅来打算溶液中有色化合物的浓度。
这种利用被测定的组分,在一定条件下与试剂作用产生有色化合物,然后测量有色溶液色彩的深浅并与标准溶液相比较,从而测定组分含量的分析办法,称为比色分析法。
比色分析法是一种广泛应用于测定微量及痕量组分的办法,具有较高的敏捷度。
它测定的浓度下限可达10-7g/ml。
假如被测定组分的含量更低(10-8~10-9g/ml),可通过浓集、萃取、共沉淀等办法后再用比色法来测定。
测定低含量组分时,比色法的相对误差通常为1%~5%。
因为特效试剂的应用以及比色条件的挑选,可以削减分别手续,从而加快测定的速度。
此外,测量仪器的不断改进,使测定的精确度也逐步提高。
因此,对于某些微量和痕量组分的测定,比色分析法是一种精确、敏捷、迅速而又简便的办法。
在比色分析中,干扰离子的影响往往可以按照物质对光汲取的差异性,如挑选适当的波长或加入掩蔽剂等办法予以消退。
比色分析法按照的化学反应是显色(或褪色)反应。
用于比色的发色反应,必需是生成的有色产物与被测组分之间具有某种定量关系。
比色分析法作为一种分析办法,除了要求以发色反应作为基础外,还需要有测量有色产物色彩深度的办法,因此,把握比色分析必需了解显色反应和测量办法两个方面。
2.基本原理 (1)有色化合物溶液显色的原理。
各种溶液会显示各种不同的色彩,其缘由是因为它们对光的汲取具有挑选性。
具有同一波长的光芒,称为单色光;含有多种波长组合而成的光芒称为混合色光。
白光事实上是波长在400~750nm的电磁波,即由紫、蓝、青、绿、黄、橙、红等光按一定比例混合而成。
例如,黄色光与蓝色光可以混合为白光,这两种光色称为互补色。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(朗伯-比尔定律,吸光度,消光度,吸光系数)
( 关键词:比色分析,吸光光度法,光电比色法,分光光度法,朗伯-比尔定律,吸光度,消光度,吸光系数 )
比色分析是基于溶液对光的选择性吸收而建立起来的一种分析方法,又称吸光光度法。
有色物质溶液的颜色与其浓度有关。
溶液的浓度越大,颜色越深。
利用光学比较溶液颜色的深度,可以测定溶液的浓度。
根据吸收光的波长范围不同以及所使用的仪器精密程度,可分为光电比色法和分光光度法等。
比色分析具有简单、快速、灵敏度高等特点,广泛应用于微量组分的测定。
通常中测定含量在10-1~10-4mg·L-1的痕量组分。
比色分析如同其他仪器分析一样,也具有相对误差较大(一般为1%~5%)的缺点。
但对于微量组分测定来说,由于绝对误差很小,测定结果也是令人满意的。
在现代仪器分析中,有60%左右采用或部分采用了这种分析方法。
在医学学科中,比色分析也被广泛应用于药物分析、卫生分析、生化分析等方面。
一、物质的颜色和光的关系
光是一种电磁波。
自然是由不同波长(400~700nm)的电磁波按一定比例组成的混合光,通过棱镜可分解成红、橙、黄、绿、青、蓝、紫等各种颜色相连续的可见光谱。
如把两种光以适当比例混合而产生白光感觉时,则这两种光的颜色互为补色。
图8-1中处于同一直线关系的两种色光(如绿与紫、黄与蓝)互为补色。
当白光通过溶液时,如果溶液对各种波长的光都不吸收,溶液就没有颜色。
如果溶液吸收了其中一部分波长的光,则溶液就蜈现透过溶液后剩余部分光的颜色。
例如,我们看到KMnO4溶液在白光下呈紫红色,就是因为白光透过溶液时,绿色光大部分被吸收,而其他各色都能透过。
在透过的光中除紫红色外都能两两互补成白色,所以KMnO4溶液呈现紫红色。
同理,CuSO4溶液能吸收黄色光,所以溶液呈蓝色。
由此可见,有色溶液的颜色是被吸收光颜色的补色。
吸收越多,则补色的颜色越深。
比较溶液颜色的深度,实质上就是比较溶液对它所吸收光的吸收程度。
表8-1列出了溶液的颜色与吸收光颜色的关系。
表8-1 溶液的颜色与吸收光颜色的关系
二、朗伯-比尔(Lambert-Beer)定律
当一束平行单色光(只有一种波长的光)照射有色溶液时,光的一部分被吸收,一部分透过溶液(图8-2)。
图8-2 光吸收示意图
设入射光的强度为I0,溶液的浓度为c,液层的厚度为b,透射光强度为I,则
(8-1)
式中lgI0/I 表示光线透过溶液时被吸收的程度,一般称为吸光度(A)或消光度(E)。
因此,上式又可写为:
A=Kcb(8-2)
上式为朗伯-比尔定律的数学表示式。
它表示一束单色光通过溶液时,溶液的吸光度与溶液的浓度和液层厚度的乘积成正比。
式中,K为吸光系数,当溶液浓度c和液层厚度b的数值均为1时,A=K,即吸光系数在数值上等于c 和b均为1时溶液的吸光度。
对于同一物质和一定波长的入射光而言,它是一个常数。
比色法中常把称为透光度,用T表示,透光度和吸光度的关
系如下:
(8-3)
当c以mol·L-1为单位时,吸光系数称为摩尔吸光系数,用ε表示,其单位是L·mol-1·cm-1。
当c 以质量体积浓度(g·ml-1)表示时,吸光系数称为百分吸光系数,用E1%1cm表示,单位是ml·g-1·cm-1。
吸光系数越大,表示溶液对入射光越容易吸收,当c有微小变化时就可使A有较大的改变,故测定的灵敏度较高。
一般ε值在103以上即可进行比色分析。
如果测定某种物质对不同波长单色光的吸收程度,以波长为横坐标,吸光度为纵坐标作图可得一条曲线,即物质对光的吸收曲线,可准确地描述物质对光的吸收情况。
图8-3是几种不同浓度的KMnO4溶液的吸收曲线,溶液对波长525nm附近的绿光吸收量最强,而对其他波长的光吸收较弱。
光吸收程度最大处的波长叫做吸收波长,用λmax表示。
不同浓度的KMnO4溶液所得的吸收曲线,最大吸收波长都一致,只是相应的光被吸收的程度不同。
吸收曲线可作为比色分析中波长选定的依据,测定时一般选择λmax 的单色光作为入射光。
这样即使被测物质含量较低也可得到较大的吸光度,因而可使分析的灵每度较高。
若所测定的溶液无色,可在测定前加入适当的显色剂,通过与待测成分的化学反应使溶液晱色即可测定此待测成分。
例如,已知在525nm处KnO4溶液的ε=2235L· mol-1·cm-1,若用2cm比色皿,为使所测得的透光率介于20%~65%之间,溶液的浓度范围应是多少?
图8-3 KMnO4液的吸收光谱曲线
解:若T=20%
则
则c=-lg65%/2235*=*10-5(mol·L-1)。