OTDR常见曲线分析解读

合集下载

OTDR的使用及曲线分析解读

OTDR的使用及曲线分析解读
(OTDR的使用及曲线分析)
2010年4月12日
培训内容
一、光缆线路维护配备的仪表使用方 法及日常维护
2019/2/27
2
内容提要
1、OTDR的相关介绍 2、OTDR的工作原理 3、OTDR的常规使用
2019/2/27
3
内容提要
1、OTDR的相关介绍 2、OTDR的工作原理 3、OTDR的常规使用 4、光纤断点定位与误差分析 5、OTDR日常维护 6、其他应该注意事项
点)。
在电信部门为:双向平均损耗为0.08dB。

2019/2/27 17
OTDR的常规使用
2、接续门限值(第二极):
光纤冷接器作为连接器的连接损耗门限值。 一般清况下,超过该值,OTDR即认为光纤已到末 端。
2019/2/27
18
OTDR的常规使用
3、反射、非反射:
事件是光纤中引起轨迹从直线偏移的变动。可以分析为反射或非 反射。 反射事件:当一些脉冲能量被反射,例如在连接器上,反射事件发生。 反射事件在轨迹中产生尖峰信号(有一个急剧的上升和下降) 非反射事件:在光纤中有一些损耗但没有光反射的部分发生。非反射事
2019/2/27
22
OTDR的常规使用
7、背向散射:
此处背向散射的数据应为被测光纤背向散射的数据。 该数据与被测光纤背向散射实际值的偏差将直接影响到 OTDR对被测光纤损耗的测试精度。因此,该背向散射数 据的设置应与被测光纤实际的背向散射相一致。 背向散射的默认值为: SM(单摸):1550nm为–83.0dB、1310nm为–80.0dB、 MM (多模):1300nm为–74.0dB、850nm为–67.0dB、
射主要是瑞利散射,其损耗的大小与波长的4次方成反比,即随着波长的增加, 损耗迅速下降,瑞利散射的方向是分布与整个立体角的,其中一部分返回到 光纤的注入端,形成连续的后向散射回波,成为背向散射光或称为后向散射 光。光纤中某一点的后向回波可以反映出光纤中光功率的分布情况,椐此可 以测试出光纤的损耗。

OTDR常见曲线分析报告

OTDR常见曲线分析报告
这种情况一定要引起注意!曲线在末端没有任何反射峰就掉下 去了,如果知道纤芯原来的距离,在没有到达纤芯原来的距离, 曲线就掉下去了,这说明光纤在曲线掉下去的地方断了,或者 是光纤远端端面质量不好。
测试距离过长
这种情况是出现在测试长距离的纤芯时, OTDR 所不能达到的距离所 产生的情况,或者是距离、脉冲设置过小所产生的情况。如果出现这 种情况, OTDR 的距离、脉冲又比较小的话,就要把距离、脉冲调大, 以达到全段测试的目的,稍微加长测试时间也是一种办法。
现象:在整根光纤衰减合格,曲线大部分斜率均匀,但在菲涅尔反 射峰前沿有一小凹陷 原因:未端几米或几十米光纤受侧压; 对策:复绕观察有无变化
1310nm
1550nm
现象:1310nm光纤曲线平滑,光纤衰减斜率基本不变,衰减指标略微 偏高,但1550nm光纤衰减斜率增加,衰减指标偏高; 原因:束管内余长过短,光纤受拉伸; 对策:确认束管内的余长,增加束管内的余长
祝您成功!
正常曲线
A 为盲区, B 为测试末端反射峰。测试曲线为倾斜的,随着距离的增长,总 损耗会越来越大。用总损耗( dB )除以总距离( km )就是该段纤芯的平 均损耗( dB/Km )。
异常情况
原因:(1)仪表的尾纤没有插好,光脉冲根本打不出去; (2)断点位置比较进, OTDR 不足以测试出距离来;
幻峰(鬼影)的识别与处理
实峰
幻峰
图(a)
实峰
幻峰
图(b)
幻峰(鬼影)的识别 曲线上鬼影处未引起明 显损耗图(a);沿曲线 鬼影与始端的距离是强 反射事件与始端距离的 倍数,成对称状图(b)
消除幻峰(鬼影) 选择短脉冲宽度、在强 反射前端(如OTDR输出端 )中增加衰减。若引起鬼 影的事件位于光纤终结 ,可"打小弯"以衰减反 射回始端的光。

常见OTDR测试曲线解析

常见OTDR测试曲线解析

常见OTDR测试曲线解析常见OTDR测试曲线解析⼀、正常曲线⼀般为正常曲线图,A 为盲区,B 为测试末端反射峰。

测试曲线为倾斜的,随着距离的曾长,总损耗会越来越⼤。

⽤总损耗(dB )除以总距离(Km )就是该段纤芯的平均损耗(dB/Km )。

⼆、光纤存在跳接点中间多了⼀个反射峰,因为很有可能中间是⼀个跳接点,现城域⽹光缆中,⽐较常见。

如:现主⼲光缆由汇接局⾄光缆交接箱,当有需求时,需由光交接箱布放光缆⾄⽤户端,光交接箱就需跳纤联接,所以在测试这样的纤芯时,就会出现像图中这样的曲线图。

当然也会有例外的情况,总之,能够出现反射峰,很多情况是因为末端的光纤端⾯是平整光滑的。

端⾯越平整,反射峰越⾼。

例如在⼀次中断割接当中,当光缆砍断以后,测试的曲线应该如光路存在断点图所⽰,但当你再测试时,在原来的断点位置出现反射峰的话,那说明现场的抢修⼈员很有可能已经把该纤芯的端⾯做好了。

三、异常情况出现图中这种情况,有可能是仪表的尾纤没有插好,或者光脉冲根本打不出去,再有就是断点位置⽐较进,所使⽤的距离、脉冲设置⼜⽐较⼤,看起来就像光没有打出去⼀样。

出现这种情况,1、要检查尾纤连接情况;2 、就是把OTDR 的设置改⼀下,把距离、脉冲调到最⼩,如果还是这种情况的话,可以判断:1、尾纤有问题;2、OTDR 上的识配器问题;3、断点⼗分近,OTDR 不⾜以测试出距离来。

如果是尾纤问题,只要换⼀根尾纤就知道,不⾏的话就要试着擦洗识配器,或就近查看纤芯了。

四、⾮反射事件1、这种情况⽐较多见,曲线中间出现⼀个明显的台阶,多数为该纤芯打折,弯曲过⼩,受到外界损伤等因素,多为故障点。

2、若光纤模式、折射率不⼀样,接续时也会出现此情况,常见光纤G651光纤(标准单模光纤,B1光缆),G653光纤(⾊散位移光纤,B2光缆)。

造成这种现象的原因是由于接头两侧光纤的背向散射系数不⼀样,接头后光纤背向散射系数⼤于前段光纤背向散射系数,⽽从另⼀端测则情况正好相反,折射率不同也有可能产⽣增益现象。

常见OTDR测试曲线解析80569教学内容

常见OTDR测试曲线解析80569教学内容

常见OTDR测试曲线解析一、正常曲线一般为正常曲线图, A 为盲区, B 为测试末端反射峰。

测试曲线为倾斜的,随着距离的曾长,总损耗会越来越大。

用总损耗(dB )除以总距离(Km )就是该段纤芯的平均损耗(dB/Km )。

二、光纤存在跳接点中间多了一个反射峰,因为很有可能中间是一个跳接点,现城域网光缆中,比较常见。

如:现主干光缆由汇接局至光缆交接箱,当有需求时,需由光交接箱布放光缆至用户端,光交接箱就需跳纤联接,所以在测试这样的纤芯时,就会出现像图中这样的曲线图。

当然也会有例外的情况,总之,能够出现反射峰,很多情况是因为末端的光纤端面是平整光滑的。

端面越平整,反射峰越高。

例如在一次中断割接当中,当光缆砍断以后,测试的曲线应该如光路存在断点图所示,但当你再测试时,在原来的断点位置出现反射峰的话,那说明现场的抢修人员很有可能已经把该纤芯的端面做好了。

三、异常情况出现图中这种情况,有可能是仪表的尾纤没有插好,或者光脉冲根本打不出去,再有就是断点位置比较进,所使用的距离、脉冲设置又比较大,看起来就像光没有打出去一样。

出现这种情况,1、要检查尾纤连接情况; 2 、就是把OTDR 的设置改一下,把距离、脉冲调到最小,如果还是这种情况的话,可以判断:1、尾纤有问题;2、OTDR 上的识配器问题;3、断点十分近,OTDR 不足以测试出距离来。

如果是尾纤问题,只要换一根尾纤就知道,不行的话就要试着擦洗识配器,或就近查看纤芯了。

四、非反射事件1、这种情况比较多见,曲线中间出现一个明显的台阶,多数为该纤芯打折,弯曲过小,受到外界损伤等因素,多为故障点。

2、若光纤模式、折射率不一样,接续时也会出现此情况,常见光纤G651光纤(标准单模光纤,B1光缆),G653光纤(色散位移光纤,B2光缆)。

造成这种现象的原因是由于接头两侧光纤的背向散射系数不一样,接头后光纤背向散射系数大于前段光纤背向散射系数,而从另一端测则情况正好相反,折射率不同也有可能产生增益现象。

OTDR测试光缆曲线图解读

OTDR测试光缆曲线图解读

XX 光交-10号楼36芯中继段光纤后向散射信号曲线图片(1550nm波长)第(1)通道图片第(2)通道图片第(3)通道图片第(4)通道图片第(5)通道图片第(6)通道图片第(7)通道图片第(8)通道图片第(9)通道图片第(10)通道图片第(11)通道图片第(12)通道图片第(13)通道图片第(14)通道图片第(15)通道图片第(16)通道图片第(17)通道图片第(18)通道图片第(19)通道图片第(20)通道图片第(21)通道图片第(22)通道图片第(23)通道图片第(24)通道图片第(25)通道图片第(26)通道图片第(27)通道图片第(28)通道图片第(29)通道图片第(30)通道图片第(31)通道图片第(32)通道图片第(33)通道图片第(34)通道图片。

OTDR常见曲线分析大全--测试人员必备

OTDR常见曲线分析大全--测试人员必备

OTDR常见曲线分析大全--测试人员必备长度测量一般采用两点法,,将受测光纤与尾纤一端相接,尾纤一端连到OTDR上,调整出显示尾纤和受测光纤的后向散射峰。

其曲线见图方法:将光标A置于第一个菲涅尔反射峰前沿,将光标B置于第二个菲涅尔反射峰前沿,光标A与光标B之间的相对距离差就为被测光纤长度。

光纤衰减的测试方法:将光标A置于第一个菲涅尔反射峰后沿,曲线平滑的起点,将光标B置于第二个菲涅尔反射峰前沿,光标A与光标B间显示衰减系数就是光纤A、B间衰减系数,但非整根光纤的衰减系数。

典型的后向散射信号曲线a、输入端的Fresnel反射区(即盲区)b、恒定斜率区c、局部缺陷、接续或耦合引起的不连续性d、光纤缺陷、二次反射余波等引起的反射e、输出端的Fresnel反射盲区:决定OTDR所能测到最短距离和最接近距离,是由于活接头的反射引起OTDR接收机饱和所至,盲区通常发生在OTDR面板前的活接头反射,但也可以在光纤的其它地方发生,一般OTDR盲区为100m。

盲区分为衰减盲区和事件盲区衰减盲区:从反射点开始至接收机恢复到后向散射电平约0.5dB范围内的这段距离,这段距离就是OTDR能再次测试衰减和损耗的点.式中:D的长度就为衰减盲区的长度事件盲区:从OTDR接收到反射点到开始到OTDR恢复到最高反射点1.5DB以下这段距离,在这以后才能发现是否还有第二个反射点,但还不能测试衰减.式中:D1的长度就为事件盲区的长度。

影响盲区的因素:a、入射光的脉冲宽度、b、反射光的脉冲宽度、c、入射光的脉冲后端形状、d、所用脉冲越小,盲区越大。

消除盲区的方法:加尾纤(过渡纤),最好2KM以上接头损耗的测量方法:将光标定于曲线的转折处如图位置,然后选择测接头损耗功能键,便可测得接头损耗。

外部因素引起的可能曲线变化这里的外部因素指施加于光缆并传递至光纤的张力及侧向受力,还有温度的变化。

这些都会造成曲线弓形弯曲。

外部因素引起的弓形弯曲在外力作用下使曲线斜率改变。

几种OTDR异常曲线分析

几种OTDR异常曲线分析

几种OTDR异常曲线分析1.曲线平直但衰减大OTDR测试正常曲线应该是返回的信号电平符合线性变化,即曲线平直。

测试曲线平直,但整体衰减值偏大,对于此情形,首先应调查相应的本色光纤的衰减值。

通常情况下本色光纤经着色后,其衰减值几乎没有变化;如果本色光纤本身的衰减值偏大,可以根据着色光纤的衰减值,降级使用或做其他处理;如果本色光纤衰减值良好:首先,观察其表面排线是否良好,排线过紧(即收放线张力过大)会使光纤产生较大的内应力,进而造成着色光纤在1550nm波长产生较大的附加衰减;其次,检查其固化度,固化不良或固化过度均会造成光纤的衰减增大,通常检查固化度的简单方法是用丙酮擦拭。

2.曲线“弯曲”所谓的测试曲线弯曲即指不同位置光纤衰减分布不均匀。

在实际生产中,由于光纤材料成分不完全均匀,衰减值会有细微的偏差;另外,下机后的着色光纤在不同位置受到的内应力不尽相同,造成光纤各处衰减不完全相同,即OTDR测试曲线不再是平直的。

对于1550nm波长测试曲线“弯曲”的情况,首先应查看其在1310nm波长的测试曲线,再进行判断。

(a)如果1310nm波长的测试曲线良好,即线性变化。

通常将该光纤放置一段时间,或通过复绕处理等方法使其内应力释放。

造成该现象的原因是由于1550nm波长对应力变化比较敏感,因此在1550nm波长的测试曲线变化比较明显。

在生产中,如果连续出现这种情况,大多数是因为导轮或模具上有污物,造成光纤在着色中受力不均。

作业人员应及时清洗模具和擦拭导轮。

如果收放线张力不稳定,光纤抖动大同样会使光纤受力不均,导致测试曲线弯曲的现象,所以工艺人员应定期的对设备的收放线张力进行确认核对。

(b)如果1310nm波长的测试曲线不再成线性关系,而呈现“弯曲”状。

通常比较快捷的判断方法是询问作业人员,在生产中有无异常,比如掉轮,堵模现象。

如果是掉轮造成的:由于光纤在硬质物体上滑过,使光纤受损,必将在1310nm和1550nm波长的测试曲线均出现类似“弯曲”曲线。

光纤后向散射信号曲线-OTDR常见曲线分析

光纤后向散射信号曲线-OTDR常见曲线分析

正常曲线
A 为盲区, B 为测试末端反射峰。测试曲线为倾斜的,随着距离的增长,总 损耗会越来越大。用总损耗( dB )除以总距离( km )就是该段纤芯的平 均损耗( dB/Km )。
异常情况
原因:(1)仪表的尾纤没有插好,光脉冲根本打不出去; (2)断点位置比较进, OTDR 不足以测试出距离来;
正增益现象处理
正增益
正增益是由于在熔接点之后的光纤比熔接点之前的光纤产生更多的后向散 光而形成的。事实上,光纤在这一熔接点上是熔接损耗的。常出现在不同模场 直径或不同后向散射系数的光纤的熔接过程中,因此,需要在两个方向测量并
对结果取平均值作为该熔接损耗。
斜率变化,衰减线性增加
沿长度斜率增加,有限区域衰减线性增加
出现台阶,光纤局部压力上升:衰减局部加
波纹曲线图
指曲线有与脉冲频率相似的纹状态曲线。其产生原因有可能是受测光纤工 作频率与带宽频率刚好相同,此情况下, 改变测试脉宽,同时应从受测光纤的两 端进行测量
实际在测试中最常见的异常曲线、原理和对策
(2)二次反射余波在前端面产生反射; 对策:在这种情况下改变光纤测试量程、脉宽、重新做端面,再测试如 “小山峰”消失则为原因(2),如不消失则为原因(1)
现象:在光纤纤连接器、耦合器、熔接点处产生一个明显的增益; 原因:模场直径不匹配造成的; 对策:测试衰减和接头损耗必须双向测试,取平均值
现象:曲线斜率正常,光纤均匀性合格,但两端光纤衰减系数相差很大 原因:模场不均匀造成,一般为光纤拉丝引头和结尾部分; 对策:测试衰减必须双向测试,取平均值
现象:1310nm光纤曲线平滑,光纤衰减斜率基本正常,衰减指标 正常,但1550nm光纤衰减斜率严重不良,衰减指标严重偏高; 原因:束管内余长过长,光纤弯曲半径过小; 对策:确认束管内的余长,减少束管内的余长
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盲区分为衰减盲区和事件盲区 衰减盲区:从反射点开始至接收机恢复到后向散射电平约0.5dB范围内 的这段距离,这段距离就是OTDR能再次测试衰减和损耗的点.
仿真反射峰
DB/DIV
D
0.5dB
M/DIV
式中:D的长度就为衰减盲区的长度
事件盲区:从OTDR接收到反射点到开始到OTDR恢复到最高反射点 1.5DB以下这段距离,在这以后才能发现是否还有第二个反射点,但还 不能测试衰减.
光纤衰减的测试
第一个菲涅尔反射峰后沿
第二个菲涅尔反射峰前沿
DB/DIV
尾纤 A B
M/DIV
方法:将光标A置于第一个菲涅尔反射峰后沿,曲线平滑的起点,将光标B置于第
二个菲涅尔反射峰前沿,光标A与光标B间显示型的后向散射信号曲线
DB/DIV
对策:在这种情况下改变光纤测试量程、脉宽、重新做端面,再测试如
“小山峰”消失则为原因(2),如不消失则为原因(1)
现象:在光纤纤连接器、耦合器、熔接点处产生一个明显的增益;
原因:模场直径不匹配造成的;
对策:测试衰减和接头损耗必须双向测试,取平均值
现象:曲线斜率正常,光纤均匀性合格,但两端光纤衰减系数相差很大
图(b)
正增益现象处理
正增益
正增益是由于在熔接点之后的光纤比熔接点之前的光纤产生更多的后向散 光而形成的。事实上,光纤在这一熔接点上是熔接损耗的。常出现在不同模场
直径或不同后向散射系数的光纤的熔接过程中,因此,需要在两个方向测量并
对结果取平均值作为该熔接损耗。
现象:1310nm光纤曲线平滑,光纤衰减斜率基本正常,衰减指标
正常,但1550nm光纤衰减斜率严重不良,衰减指标严重偏高; 原因:束管内余长过长,光纤弯曲半径过小;
对策:确认束管内的余长,减少束管内的余长
现象:尾纤与过渡纤有部分曲线出现有规则的曲线不良,但被测 光纤后半部分曲线正常,整根被测光纤衰减指标基本正常; 原因:一般是由设备本身和测试方法综合造成的; 对策:关机,重新起动,对各个光纤接触部分进行清洁
种情况, OTDR 的距离、脉冲又比较小的话,就要把距离、脉冲调大, 以达到全段测试的目的,稍微加长测试时间也是一种办法。
幻峰(鬼影)的识别与处理
实峰
幻峰
图(a)
实峰 幻峰
幻峰(鬼影)的识别 曲线上鬼影处未引起明 显损耗图(a);沿曲线 鬼影与始端的距离是强 反射事件与始端距离的 倍数,成对称状图(b) 消除幻峰(鬼影) 选择短脉冲宽度、在强 反射前端(如OTDR输出端 )中增加衰减。若引起鬼 影的事件位于光纤终结 ,可"打小弯"以衰减反 射回始端的光。
正常曲线
A 为盲区, B 为测试末端反射峰。测试曲线为倾斜的,随着距离的增长,总 损耗会越来越大。用总损耗( dB )除以总距离( km )就是该段纤芯的平 均损耗( dB/Km )。
异常情况
原因:(1)仪表的尾纤没有插好,光脉冲根本打不出去;
(2)断点位置比较进, OTDR 不足以测试出距离来;
现象:光纤未端无菲涅尔反射峰,曲线斜率、衰减正常,无法确认光纤长度
原因:光纤未端面上比较脏或光纤端面质量差; 对策:清洗光纤未端面或重新做端面;
现象:曲线成明显弓形,衰减严重偏大或偏小,无菲涅尔反射峰;
原因:量程设置错误(不足被测光纤长度2倍以上); 对策:增大量程
现象:在曲线斜率恒定的曲线中间有一个“小山峰”(背向散射剧烈增 强所致) 原因:(1)光纤本身质量原因(小裂纹); (2)二次反射余波在前端面产生反射;
这种情况一定要引起注意!曲线在末端没有任何反射峰就掉下 去了,如果知道纤芯原来的距离,在没有到达纤芯原来的距离,
曲线就掉下去了,这说明光纤在曲线掉下去的地方断了,或者
是光纤远端端面质量不好。
测试距离过长
这种情况是出现在测试长距离的纤芯时, OTDR 所不能达到的距离所
产生的情况,或者是距离、脉冲设置过小所产生的情况。如果出现这
方法:(1) 要检查尾纤连接情况 (2) 把 OTDR 的设置改一下,把距离、脉冲调到最小,如果还是这种情 况 的话,可以判断 1 尾纤有问题; 如果是尾纤问题,更换尾纤。
非反射事件 (台阶)
台阶
这种情况比较多见,曲线中间出现一个明显的台阶,多数为该纤芯打折,弯 曲过小,受到外界损伤等因素造成。
曲线远端没有反射峰
仿真反射峰
1.5dB
DB/DIV
D1
M/DIV
式中:D1的长度就为事件盲区的长度。
影响盲区的因素:
a、入射光的脉冲宽度、
b、反射光的脉冲宽度、
c、入射光的脉冲后端形状、
d、所用脉冲越小,盲区越大。
消除盲区的方法:
加尾纤(过渡纤),最好2KM以上
接头损耗的测量
方法:将光标定于曲线的转折处如图位置,然后选择测接头损 耗功能键,便可测得接头损耗。
a
b
e c d
M/DIV
a、输入端的Fresnel反射区(即盲区)
b、恒定斜率区
c、局部缺陷、接续或耦合引起的不连续性 d、光纤缺陷、二次反射余波等引起的反射 e、输出端的Fresnel反射
盲区:决定OTDR所能测到最短距离和最接近距离,是由于活接头的反射引起OTDR接 收机饱和所至,盲区通常发生在OTDR面板前的活接头反射,但也可以在光纤的其它 地方发生,一般OTDR盲区为100m。
外部因素引起的可能曲线变化
这里的外部因素指施加于光缆并传递至光纤的张力及侧向受力,还有 温度的变化。这些都会造成曲线弓形弯曲。外部因素引起的弓形弯曲在外力 作用下使曲线斜率改变。如图所示,外力作用前曲线斜率恒定,在外力作用 下可出现如下情况之一:
曲线斜率不变,衰减不变
整个长度呈弓形弯曲,各处斜率不同:衰减 连续增加
斜率变化,衰减线性增加
沿长度斜率增加,有限区域衰减线性增加
出现台阶,光纤局部压力上升:衰减局部加
波纹曲线图
指曲线有与脉冲频率相似的纹状态曲线。其产生原因有可能是受测光纤工 作频率与带宽频率刚好相同,此情况下, 改变测试脉宽,同时应从受测光纤的两 端进行测量
实际在测试中最常见的异常曲线、原理和对策
深圳市特发信息股份有限公司电力光缆事业部
OTDR常见曲线分析
长度测量
一般采用两点法,,将受测光纤与尾纤一端相接,尾纤一端连到OTDR上, 调整出显示尾纤和受测光纤的后向散射峰。其曲线见图
方法: 将光标A置于第一个菲涅尔反射峰前沿,将光标B置于第二个
菲涅尔反射峰前沿,光标A与光标B之间的相对距离差就为被测光纤长 度。
原因:模场不均匀造成,一般为光纤拉丝引头和结尾部分; 对策:测试衰减必须双向测试,取平均值
现象:在整根光纤衰减合格,曲线大部分斜率均匀,但在菲涅尔反
射峰前沿有一小凹陷 原因:未端几米或几十米光纤受侧压;
对策:复绕观察有无变化
1310nm
1550nm
现象:1310nm光纤曲线平滑,光纤衰减斜率基本不变,衰减指标略微 偏高,但1550nm光纤衰减斜率增加,衰减指标偏高; 原因:束管内余长过短,光纤受拉伸; 对策:确认束管内的余长,增加束管内的余长
相关文档
最新文档