北师大版四年级上册数学《较复杂的行程问题》

合集下载

完整word版,高思导引四年级第十八讲行程问题三教师版

完整word版,高思导引四年级第十八讲行程问题三教师版

第18讲行程问题三内容概述运动过程较为复杂的行程问题,一般通过分段、比较等办法进行考虑,在往返问题中考虑多次相遇和多次追及的过程,需要注意从整体考虑两个对象的路程和或路程差,并从中找到规律.典型问题兴趣篇1.莉莉和莎莎一起从家去学校,莉莉步行,莎莎骑车.莎莎到学校后发现自己没带文具盒,便立刻骑车回家去取,到家取出文具盒后又马上骑向学校,结果她和莉莉一起到校.如果莉莉每分钟走53米,那么莎莎骑车每分钟行进多少米?答案:159详解:视从家到学校的路程为一个全程,由题意知道莎莎到校,再返回家,再到学校,一共走了三个全程,在同样时间内莉莉走了一个全程,即莎莎速度是莉莉的三倍53×3=1592.小燕上学时骑车,回家时步行,路上共用50分钟.如果往返都步行,则全程需要70分钟.求小燕往返都骑车所需的时间.答案:30分钟详解:视从家到学校的路程为一个全程,往返情况:骑车+步行=50步行+步行=70得知一个全程骑车比步行多用20分钟70-2×20=30分钟3.一天,小悦到离自己家4000米的表哥家去玩.早晨7:20时,小悦从家出发向表哥家走去,每分钟行60米,同时表哥骑车从家出发来接她.表哥到小悦家后才发现小悦已经走了,又立即返回去追.表哥骑车每分钟行260米.当表哥追上小悦后,带着她一起回表哥家,这时骑车速度变为每分钟骑175米.请问:当他们到达表哥家时还差几分钟就到8点了?答案:差4分钟详解:表哥从自己家到小悦家的时间是4000/260=200/13分,在这段时间小悦行走了4000/260×60=12000/13米同时这个距离也是表哥要返回去追小悦时两个人之间的路程差,路程差÷速度差=追及时间,所以追及时间是4000/260×60/(260-60)=60/13分;追上小悦时距离小悦家的路程为60/13×260=1200米,这时距离表哥家还有4000-1200=2800米,走这2800米的速度为175米/分所以用的时间是2800÷175=16分,因此本题所用总时间分三部分从表哥家到小悦家的时间200/13,追及时间60/13,回去时间16,共200/13+60/13+16=36分钟20+36=56分。

北师大版 小学数学四年级上学期 行程问题 相遇及追及

北师大版   小学数学四年级上学期   行程问题   相遇及追及

基础篇行程问题1、精讲例1 一辆汽车由甲城开往乙城,3小时后因车发生故障修了半个小时,然后每小时加速5千米继续行驶,再经过6小时准时到达乙城,甲、乙两城间的距离是多少千米?2、小林每天上学坐公交车,放学回家步行,共用100分钟,如果往返都坐车要40分钟,如果往返都步行要多少时间?3、从甲地到丙地要经过乙地,一辆汽车从甲地到乙地每小时行28千米,共行了196千米,从乙地到丙地每小时加速5千米,到达丙地时一共行了10小时。

求:甲地到丙地的距离?4、甲、乙两车同时从相距448千米的两地相向而行,甲每小时行52千米,乙每小时行48千米,途中甲因故停留1小时后,再继续开行,相遇时乙行了多少千米?5、两港相距482千米,甲、乙两快艇分别从A、B两港同时对开,行了2小时后,乙艇有事返回B港,接着又继续对开了3小时后两艇相遇。

甲艇每小时行50千米,乙艇每小时行多少千米?相遇及追及1、两辆汽车同时分别从相距500千米的A、B两地出发,相向而行,速度分别为每小时40千米与每小时60千米。

几小时后两车相遇?2、甲车在乙车前500千米,同时出发,速度分别为每小时40千米与60千米。

多少小时后,乙车追上甲车?3、甲车每小时行60千米,1小时后,乙车从同一地点出发追赶甲车。

如果乙车速度为每小时80千米,几小时后可以追上甲车?4、兄妹二人同时离家去900米远的学校上学。

哥哥每分钟走90米,妹妹每分钟走60米。

哥哥到校门时,发现忘记带课本,立即沿原路回家去取。

问哥哥与妹妹相遇时离学校有多远?5、甲乙两人分别从A、B两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,两人经过3小时相遇。

问A、B两地相距多少千米?6、小明和小华两家相距3千米,他俩同时从家出发相向而行,小明骑车每分钟行175米,小华步行每分钟行75千米,多少分钟后两人相遇?7、甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇。

北师大版 2024-2025学年四年级数学上册典型例题系列第三单元:行程问题“基础型”专项练习(原卷

北师大版 2024-2025学年四年级数学上册典型例题系列第三单元:行程问题“基础型”专项练习(原卷

2024-2025学年四年级数学上册典型例题系列第三单元:行程问题“基础型”专项练习(原卷版)一、填空题。

1.一辆汽车每小时行78千米,它的速度可记作( )。

小明每分钟走80米,他10分钟走多少米?要求的是( )。

2.一架飞机每小时飞行950千米,它的速度可以写成( )。

照这样的速度飞行3小时,共飞行( )千米。

3.一辆汽车2小时行驶了160千米,这是已知这辆汽车行驶的( )和( ),这辆汽车的速度是( )。

4.客车8小时行驶了640千米,它的速度可以记作( );火车4小时行驶了360千米,它的速度可以记作( ),( )的速度快。

5.小红每分钟走70米,她12分钟走( )米。

这题所用等量关系是( )。

6.复兴号动车组列车的速度最高可达350千米/时,如果以这样的速度行驶12小时,可以行驶( )千米。

7.一辆小汽车3小时行驶240千米,根据等量关系( ),求出这辆小汽车行驶的速度是( )。

8.一辆汽车每小时行70千米,70千米叫做( ),可以写成( ),读作( )。

二、解答题。

9.张医生坐汽车到温州出差,去时汽车的速度是56千米/时,共用了5小时,原路返回时只用了4小时。

返回时汽车的速度是多少?10.一辆汽车从A地出发,经过B地开往C地(如图所示)。

已知A地到B地平均每小时行驶80千米。

(1)这辆车从B地到C地平均每小时行驶多少千米?(2)这辆车从A地到C地平均每小时行驶多少千米?11.蒲溪河公园健身步道全长有2500米。

王叔叔走路的速度是60米/分钟,他从起点走到终点再返回到起点,1小时够吗?12.李老师家距离森林公园7500米,如果他骑车的速度是198米/分,他从家到森林公园骑车38分钟能到达吗?13.看路牌解决问题。

(1)一位小轿车司机看到路牌后,经过3小时到达了天津,这辆小轿车的平均速度是多少?(2)一辆货车的平均速度是43千米/时,经过8小时它能否从路牌处到达石家庄?14.欢欢5分钟步行450米,照这样的速度,她从家到学校要走16分钟。

北师大版 2024-2025学年四年级数学上册典型例题系列第六单元除法特别篇行程问题【十四大考点】(

北师大版 2024-2025学年四年级数学上册典型例题系列第六单元除法特别篇行程问题【十四大考点】(

篇首寄语我们每位老师都希望把最好的教学资料留给学生,但面对琳琅满目的资料时,总是费时费力才能找到自己心仪的那份,编者也常常为此苦恼。

于是,编者就常想,如果是自己来创作一份资料又该怎样?再结合自身教学经验和学生实际情况后,最终创作出了一个既适宜课堂教学讲解,又适宜课后作业练习,还适宜阶段复习的大综合系列。

《2024-2025学年四年级数学上册典型例题系列》是基于教材知识点和常年考点真题总结与编辑而成的,该系列主要分为典型例题篇、专项练习篇、单元复习篇、分层试卷篇等四个部分。

1.典型例题篇,按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

2.专项练习篇,从高频考题和期末真题中选取专项练习,其优点在于选题经典,题型多样,题量适中。

3.单元复习篇,汇集系列精华,高效助力单元复习,其优点在于综合全面,精炼高效,实用性强。

4.分层试卷篇,根据试题难度和不同水平,主要分为基础卷、提高卷、拓展卷三大部分,其优点在于考点广泛,分层明显,适应性广。

黄金无足色,白璧有微瑕,如果您在使用资料的过程中有任何宝贵意见,请留言于我改进,欢迎您的使用,谢谢!2023年11月1日2024-2025学年四年级数学上册典型例题系列第六单元除法·特别篇·行程问题【十四大考点】专题解读本专题是第六单元除法·特别篇·行程问题。

本部分内容是行程问题,包括普通行程问题、相遇问题、追及问题、火车过桥问题等等,考点和题型偏于应用,题目综合性稍强,建议作为核心内容进行讲解,一共划分为十四个考点,欢迎使用。

目录导航目录【考点一】速度的认识与意义 (3)【考点二】求速度 (4)【考点三】求路程 (5)【考点四】求时间 (6)【考点五】相遇问题:求路程和 (7)【考点六】相遇问题:求相遇时间 (10)【考点七】相遇问题:求速度 (11)【考点八】二次相遇问题 (12)【考点九】中点相遇问题 (13)【考点十】复杂的相遇问题 (14)【考点十一】追及问题:求追及路程 (16)【考点十二】追及问题:求追及时间 (17)【考点十三】追及问题:求追及速度 (18)【考点十四】火车过桥问题 (19)典型例题【知识总览】1.行程问题是小学数学中非常常见的类型题,一般包含三个基本量:(1)路程:一共行了多长的路,一般用米或千米作单位;(2)速度:每小时(或每分钟)行的路程,速度的单位常常是路程单位与时间单位的结合,例如:千米/时、米/分、米/秒等等;(3)时间:行了几小时(分钟)。

教材小学四年级数学上册行程问题教学教案

教材小学四年级数学上册行程问题教学教案

教材小学四年级数学上册行程问题教学教案一个完整的教学设计应当具有以下内容:课题名称、设计者、教材分析、学情分析、教学目标、教学重难点、教学方法、教学媒体或资源、教学过程、板书、教学评价反思等。

今日我在这里给大家共享一些有关于最新教材小学四年级数学上册行程问题教学教案例文,盼望可以协助到大家。

最新教材小学四年级数学上册行程问题教学教案例文1教材分析:本节课是青岛版小学数学四年级上册第六单元《快捷的物流运输—解决问题》信息窗中其次个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。

因为相遇问题牵扯到两个物体的运动状况,其中的数量关系比拟困难,学生理解起来有必须困难,因此学生要首先理解和驾驭速度、时间和路程三者的关系,然后在此根底上,创设他们感爱好的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动经历。

教学目标:1、在详细情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。

2、在解决问题的过程中,经验“发觉问题----提出问题----分析问题----解决问题”的过程,积累数学活动经历。

3、在合作沟通中体验学习的乐趣,造就学习数学的踊跃情感。

教学重点:用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。

教学难点:理解“相遇问题”的根本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。

教学教具:多媒体课件,两个能在一条线上自由活动的小人。

教学过程:一、情境导入,复习旧知谈话:同学们,你们知道刘教师家住哪儿吗?静静告知你们吧,刘教师家离着人民公园特别近,究竟有多近呢?你们来看。

PPT出示:刘教师从家启程步行去人民公园,每分钟走60米,5分钟后到达。

依据这个信息,你能提出什么问题吗?PPT出示:刘教师家距离人民公园有多远?你会解决吗?PPT:60×5=300(米)这60表示什么?5呢?300呢?通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。

复杂的奥数行程问题

复杂的奥数行程问题

比较复杂的行程问题多人行程例题多人行程这类问题主要涉及的人数为3 人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。

例1. 甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12 公里,比丙快15 公里,甲行3.5 小时到达西村后立刻返回。

在距西村30 公里处和乙相聚,问:丙行了多长时间和甲相遇?例2. 甲、乙、丙三辆车同时从A 地出发到B 地去,甲、乙两车的速度分别为60 千米/时和48千米/时。

有一辆迎面开来的卡车分别在他们出发后6 时、7时、8时先后与甲、乙、丙三辆车相遇。

求丙车的速度。

例3、李华步行以每小时4 千米的速度从学校出发到20.4 千米外的冬令营报到。

0.5 小时后,营地老师闻讯前来迎接,每小时比李华多走1.2 千米,又经过了1.5 小时,张明从学校骑车去营地报到。

结果3 人同时在途中某地相遇。

问:张明每小时行驶多少千米?例4:有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40 米,乙每分钟走38 米,丙每分钟走36 米。

在途中,甲和乙相遇后3 分钟和丙相遇。

问:这个花圃的周长是多少米?例5、AB两地相距30 千米,甲乙丙三人同时从A到B,而且要求同时到达。

现在有两辆自行车,但不许带人,但可以将自行车放在中途某处,后来的人可以接着骑。

已知骑自行车的平均速度为每小时20 千米,甲步行的速度是每小时5 千米,乙和丙每小时4 千米,那么三人需要多少小时可以同时到达?例6、有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲与乙、丙相背而行。

甲每分钟走40 米,乙每分钟走38 米,丙每分钟走36 米。

在途中,甲和乙相遇后3 分钟和丙相遇。

问:这个花圃的周长是多少米?二次相遇行程问题答题思路点拨:甲从A地出发,乙从B 地出发相向而行,两人在C地相遇,相遇后甲继续走到B 地后返回,乙继续走到A 地后返回,第二次在D地相遇。

最新四年级数学行程问题经典辅导.docx

最新四年级数学行程问题经典辅导.docx

最新四年级数学行程问题经典辅导行程问题是指匀速运动中有关路程、速度、时间三个数量之间,已知两个量,求另一个数量的应用题 . 行程问题的内容相当广泛,主要包括追及问题、相遇问题、流水问题、火车行程、钟表问题 . 小学数学四年级教材中行程问题主要是相遇问题和追及问题 . 相遇问题和追及问题是行程问题中的两种基本类型 . 在解答行程问题时,要注意所走的方向、是否同时行驶、是否相遇等问题,一般要采用直观画图法帮助理解题意、分析题目中的数量关系,最终找到解题思路.解行程问题必备的基本公式是:路程=速度×时间;路程÷时间=速度;路程÷速度=时间行程问题按运动方向可以分为三类:⑴相向运动问题 ( 或称相遇问题 )⑵同向运动问题 ( 或称追及问题 )⑶背向运动问题 ( 或称相离问题 )【相遇问题】相向运动问题( 或称相遇问题) :是指两个运动物体(人或车辆、船只等),从两个不同的方向,沿着同一条路线( 直道或环形跑道) 相对运动,最终相遇的问题 . 它的特点是两个运动物体共同走完整个路程 .解答相遇问题的关键在于先求出两个运动物体的“速度和”,就是两个运动物体在单位时间里共行的路程之和 . 即:速度和 = 甲的速度 + 乙的速度相遇问题的关系式是:速度和×相遇时间=相遇路程相遇路程÷速度和=相遇时间相遇路程÷相遇时间=速度和例 1:南京到上海的水路长 392 千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行 28 千米,从上海开出的船每小时行 21 千米,经过几小时两船相遇?解 392÷( 28+ 21)= 8(小时)答:经过 8 小时两船相遇 .例 2:小李和小刘在周长为 400 米的环形跑道上跑步,小李每秒钟跑 5 米,小刘每秒钟跑 3 米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈 . 因此总路程为 400×2 相遇时间=( 400×2)÷( 5+ 3)= 100(秒)答:二人从出发到第二次相遇需 100 秒时间 .例 3:甲乙二人同时从两地骑自行车相向而行,甲每小时行15 千米,乙每小时行 13 千米,两人在距中点 3 千米处相遇,求两地的距离.解“两人在距中点3 千米处相遇”是正确理解本题题意的关键 . 从题中可知甲骑得快,乙骑得慢,甲过了中点3 千米,乙距中点3 千米,就是说甲比乙多走的路程是( 3× 2)千米,因此,相遇时间=( 3× 2)÷( 15-13)= 3(小时)两地距离=( 15+13)× 3=84(千米)答:两地距离是84 千米 .【追及问题】同向运动问题 ( 或称追及问题 ) :是指两个运动物体(人或车辆、船只等),向同一个方向运动,由于速度不同,最后快的追上慢的问题 . 追及问题的地点可以相同(如环形跑道上的追及问题),也可以不同,但方向一般是相同的 . 由于速度不同,就发生快的追及慢的问题 .解答追及问题的关键在于先求出两个运动物体的“速度差”,速度差就是两个运动物体甲和乙在单位时间里所行的路程之差 . 即:速度差 = 甲的速度 - 乙的速度(快–慢)距离差 =速度差×追及时间追及时间 =距离差÷速度差速度差 =距离差÷追及时间例 1:敌我双方相距 18 千米,敌人以每小时 6 千米的速度逃跑,我军以每小时 9千米的速度追赶,几小时后可以追上敌人?⑴每小时敌我双方速度相差多少?9– 6 = 3(千米)⑵几小时可以追上敌人?18 ÷3 = 6 (小时)答: 6 小时可以追上敌人 .例 2:有一条长方形跑道,甲从 A 点出发,乙从 C点同时出发,都按顺时针方向奔跑,甲每秒跑 5 米,乙每秒跑 4.5 米 . 当甲第一次追上乙时,甲跑了多少圈?分析与解:这是一道环形路上追及问题 . 在追及问题问题中有一个基本关系式:追击路程 =速度差×追及时间 .追及路程: 10+6=16(米)速度差: 5-4.5=0.5 (米)追击时间: 16÷0.5=32 (秒)甲跑了 5× 32÷[ (10+ 6)× 2]=5 (圈)答:甲跑了 5 圈.【相离问题】背向运动问题 ( 或称相离问题 ) :是指两个运动物体(人或车辆、船只等),从同一地点同时相背而行,越走相距越远的问题 .解答相离问题的关键在于先求出“速度和” . 速度和就是两个运动物体甲和乙在单位时间里共行的路程之和 .即:速度和 = 甲的速度 + 乙的速度,速度和×相离时间=相距路程相距路程÷速度和=相离时间相距路程÷相离时间=速度和例:甲乙两车同时从某地出发背向而行,甲车每小时行 62 千米,乙车每小时行 65 千米, 4 小时后两车相距多少千米?⑴甲乙两车每小时共行多少千米?62 + 65 = 127(千米)⑵ 4 小时后两车相距多少千米?127 × 4 = 508 (千米)答: 4 小时后两车相距 508 千米 .【流水问题】顺流而下与逆流而上问题通常称为流水问题,流水问题属于行程问题,是行程问题的一种特例 .流水问题的解法:解这类应用题首先要弄清楚船速与水速:船速是船本身航行的速度,也就是船在静水中的速度;水速是水流的速度. 然后还要弄清楚水速度与逆水速度 . 水速度是船速与水速的和,逆水速度是船速与水速的差.再由和差的关系,一步得出:(水速度 + 逆水速度)÷ 2 = 船速;(水速度 -逆水速度)÷ 2 =水速.最后,可以根据行程中路程、速度、三者之的关系解答用 .例 1:一条船在江中行,水行每小 12 千米,逆水行每小 8 千米,求船速与水速 .(12 + 8 )÷ 2 = 20 ÷2 = 10 (千米)⋯⋯船速(12 - 8 )÷ 2 = 4 ÷2 = 2 (千米)⋯⋯水速答:船速每小10 千米,水速每小 2 千米 .例 2:某船在静水中的速度每小 15 千米,它从上游甲港开往下游乙港共用了 8小 . 已知水速每小 3 千米,从乙港返回甲港需要多少小?⑴水每小航行多少千米?15+3=18(千米)⑵ 甲、乙两港相距多少千米?18 ×8 = 144 (千米)⑶ 逆水每小航行多少千米?15-3=12(千米)⑷ 从乙港返回甲港需要多少小?144 ÷12 = 12 (小)答:从乙港返回甲港需要12小.例 3:船在静水中的速度每小 11.25 千米,河水流速每小 1.25 千米 . 一只船往返甲、乙两港共用了 9 小,两港相距多少千米?⑴水每小行: 11.25+ 1.25 = 12.5(千米)⑵逆水每小行: 11.25- 1.25 = 10(千米)⑶ 水行每千米的:1÷12.5 = 0.08(小)⑷ 逆水行每千米的:1÷10 = 0.1(小)⑸往返每千米的: 0.1 + 0.08 = 0.18(小)⑹甲乙两港相距多: 9÷ 0.18 = 50 (千米)答:甲、乙两港相距50 千米 .【火】火的包括火、火隧道、两个列相遇、尾相离等,是一种行程 . 火不有路程、速度与之的数量关系,同涉及、等 . 我在研究一般的行程,是不考汽等物体的本身度的,因物体的度很小,可以忽略不 . 可是如果研究火行程,因身有一定的度,一般一百多米,就不能忽略不了 . 火行程中的距离,一般是要考火度的 . 火通一个固定的点所用的就是火行身度所需要的 . 基本的关系是:火走的路程 =+.(火度 +的度)÷通=火速度例 1:一条隧道 360 米,某列火从入洞到全洞用了 8 秒,从入洞到全出洞共用了 20 秒 . 列火多少米?解答:分析:火车 8 秒钟行的路程是火车的全长, 20 秒钟行的路程是隧道长加火车长 . 因此,火车行隧道长 360 米,所用的时间是 20-8=12 秒钟,即可求出火车的速度 .火车的速度是 360÷( 20-8 ) =30(米 / 秒) .火车长 30× 8=240(米) .答:这列火车长240 米.例 2:两列火车相向而行,甲车每小时行 36 千米,乙车每小时行 54 千米 . 两车错车时,甲车上一乘客发现:从乙车车头经过他的车窗时开始到乙车车尾经过他的车窗共用了 14 秒,求乙车的车长?分析与解:首先应统一单位:甲车的速度是每秒钟 36000÷3600=10(米),乙车的速度是每秒钟 54000÷3600=15(米) . 本题中,甲车的运动实际上可以看作是甲车乘客以每秒钟 10 米的速度在运动,乙车的运动则可以看作是乙车车头的运动,因此,我们只需研究下面这样一个运动过程即可:从乙车车头经过甲车乘客的车窗这一时刻起,乙车车头和甲车乘客开始作反向运动14 秒,每一秒钟,乙车车头与甲车乘客之间的距离都增大( 10+15)米,因此, 14 秒结束时,车头与乘客之间的距离为( 10+ 15)×14=350(米) . 又因为甲车乘客最后看到的是乙车车尾,所以,乙车车头与甲车乘客在这段时间内所走的路程之和应恰等于乙车车身的长度,即:乙车车长就等于甲、乙两车在14 秒内所走的路程之和 . 解:(10+ 15)× 14=350(米)答:乙车的车长为350 米.例 5、某列车通过 250 米长的隧道用 25 秒,通过 210 米长的隧道用 23 秒,若该列车与另一列长 150 米. 时速为 72 千米的列车相遇,错车而过需要几秒钟?分析与解:解这类应用题,首先应明确几个概念:列车通过隧道指的是从车头进入隧道算起到车尾离开隧道为止 . 因此,这个过程中列车所走的路程等于车长加隧道长;两车相遇,错车而过指的是从两个列车的车头相遇算起到他们的车尾分开为止,这个过程实际上是一个以车头的相遇点为起点的相背运动问题,这两个列车在这段时间里所走的路程之和就等于他们的车长之和 . 因此,错车时间就等于车长之和除以速度之和 .列车通过 250 米的隧道用 25 秒,通过 210 米长的隧道用 23 秒,所以列车行驶的路程为( 250— 210)米时,所用的时间为( 25—23)秒 . 由此可求得列车的车速为( 250—210)÷( 25—23)=20(米 / 秒). 再根据前面的分析可知:列车在 25 秒内所走的路程等于隧道长加上车长,因此,这个列车的车长为20×25— 250=250(米),从而可求出错车时间 .解:根据另一个列车每小时走 72 千米,所以,它的速度为:72000÷3600=20(米/ 秒),某列车的速度为:(250-210)÷( 25-23)= 40÷ 2=20(米 / 秒)某列车的车长为:20×25-250 = 500-250= 250(米)两列车的错车时间为:(250+150)÷( 20+20)= 400÷40= 10(秒) .答:错车时间为10 秒.相遇问题1、一列快车和一列慢车,同时从甲、乙两站出发,相向而行,经过 6 小时相遇,相遇后快车继续行驶 3 小时后到达乙站 . 已知慢车每小时行45 千米,甲、乙两站相距多少千米?2、甲、乙二人分别以每小时 3 千米和 5 千米的速度从 A、B 两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达 B地共行 4 小时,那么 A、 B 两地相距多少千米?3.一列快车从甲城开往乙城,每小时行 65 千米,一列客车同时从乙城开往甲城,每小时行60 千米,两列火车在距中点20 千米处相遇,相遇时两车各行了多少千米?4、兄弟两人同时从家里出发到学校,路程是1400 米. 哥哥骑自行车每分钟行 200 米,弟弟步行每分钟行 80 米,在行进中弟弟与刚到学校就立即返回来的哥哥相遇 . 从出发到相遇,弟弟走了多少米?相遇处距学校有多少米?5、甲、乙两人同时从 A、 B 两地相向而行,相遇时距 A 地 120 米,相遇后,他们继续前进,到达目的地后立即返回,在距 A 地 150 米处再次相遇, AB两地的距离是多少米?6、A、 B 两地相距 38 千米,甲、乙两人分别从两地同时出发,相向而行,甲每小时行 8 千米,乙每小时行 11 千米,甲到达 B 地后立即返回 A 地,乙到达 A地后立即返回 B 地,几小时后两人在途中相遇?相遇时距 A 地多远?7、甲、乙两人从 A 地到 B 地,丙从 B 地到 A 地. 他们同时出发,甲骑车每小时行 8 千米,丙骑车每小时行10 千米,甲丙两人经过 5 小时相遇,再过 1 小时,乙、丙两人相遇 . 求乙的速度 .8、甲、乙、丙三人行走的速度依次分别为每分钟 30 米、 40 米、 50 米. 甲、乙在 A 地,丙在 B 地,同时相向而行,丙遇乙后 10 分钟和甲相遇 . 求 A、B 两地相距多少米?9、甲、乙两车分别从 A、B 两地同时相对开出,经过 5 小时相遇,相遇后各自继续前进,又经过 3 小时,甲车到达 B 地,这时乙车距 A 地还有 120 千米 . 甲、乙两车的速度各是多少?10、甲、乙两人从相距 1100 米的两地相向而行,甲每分钟走 65 米,乙每分钟走 75 米,乙带了一只狗和乙同时出发,狗以每分钟 210 米的速度向甲奔去,遇到甲后立即回头向乙奔去,遇到乙后又回头向甲奔去,直到甲、乙两人相遇时狗才停止 . 这只狗共奔跑了多少路程?追及问题1、两辆汽车相距 1500 千米,甲车在乙车前面,甲车每分钟行610 米,乙车每分钟 660 米,乙车追上甲车需几分钟?2、老王和老张从甲地到乙地开会,老张骑自行车的速度是15 千米 / 小时,先出发 2 小时后,老王老出发,老王用了 3 小时追上老张,求老王骑车速度.3、两地相距 900 千米,甲车行全程需15 小时,乙车行全程需12 小时,甲车先出发 2 小时后,乙去追甲,问乙车要走多少千米才能追上甲车?4、甲、乙两船同时从两个码头出发,方向相同,乙船在前,每小时行24 千米,甲船在后,每小时行28 千米, 4 小时后甲船追上乙船,求两个码头相距离多少千米?5、甲、乙两城之间的铁路长240 千米,快车从甲城、慢车从乙城同时相向开出, 3 小时相遇,如果两车分别从两城向同一方向开出,慢车在前、快车在后,15小时快车就可以追上慢车,求快车与慢车每小时各行多少千米?6、两人骑自行车沿着900 米长的环形跑道行驶,他们从同一地点反向而行,那么经过 18 分钟后就相遇一次,若他们同向而行,那经过180 分钟后快车追上慢车一次,求两人骑自行车的速度?7、小明以每分钟50 米的速度从学校步行回家,12 分钟后小强从学校出发骑自行车去追小明,结果在距学校1000 米处追上小明 . 求小强骑自行车的速度8、甲、乙两匹马相距 50 米的地方同时出发,出发时甲马在前乙马在后 . 如果甲马每秒跑 10 米,乙马每秒跑 12 米,问:何时两马相距 70 米?9、甲、乙二人绕周长为 1200 米的环形广场竞走,已知甲每分钟走 125 米,乙的速度是甲的 1.2 倍. 现在甲在乙的后面 400 米,问:乙追上甲还需多少时间?10、甲、乙两人同时从 A 地到 B 地,乙出发 3 小时后甲才出发,甲走了 5 小时后,已超过乙 2 千米 . 已知甲每小时比乙多行 4 千米 . 甲、乙两人每小时各行多少千米?火车过桥问题1、一支队伍长 450 米,以每秒 2 米的速度前进,一个人以每秒 3 米的速度从队尾赶到队伍的最前面,然后再返回队尾,一共用了多少分钟?2、小明坐在行驶的列车上,从窗外看到迎面开来的货车经过用了 6 秒,已知货车长 168 米;后来又从窗外看到列车通过一座180 米长的桥用了 12 秒. 货车每小时行()千米 .3、一支部队排成 1200 米长的队伍行军,在队尾的通讯员要与最前面的营长联系,他用 6 分钟时间跑步追上了营长,为了回到队尾,在追上营长的地方等待了 24 分钟 . 如果他从最前头跑步回到队尾,那么只需要() 分钟 .4、一列火车通过一座1000 米的大桥要 65 秒,如果用同样的速度通过一座730 米的隧道则要 50 秒 . 求这列火车前进的速度和火车的长度 .5、解放军某部出动 80 辆汽车参加工地劳动,在途中要经过一个长120 米的隧道 . 如果每辆汽车的长为10 米,相邻两辆汽车相隔20 米,那么,车队以每分钟 500 米的速度通过隧道,需要多少分钟?6、在与铁路平行的公路上,一个步行的人和一个骑自行车的人同向前进,步行人每秒走 l 米,骑车人每秒走 3 米,在铁路上,从这两人后面有列火车开来,火车通过行人用了22 秒,通过骑车人用了26 秒 . 这列火车全长多少米?流水行船问题1、船在河中航行时,顺水速度是每小时 12 千米,逆水速度是每小时 6 千米 .船速每小时 ( ) 千米,水速每小时 ( ) 千米 .2、一只轮船在静水中的速度是每小时 21 千米,船从甲城开出逆水航行了 8 小时,到达相距 144 千米的乙城 . 这只轮船从乙城返回甲城需多少小时?3、甲、乙两港相距 360 千米,一艘轮船从甲港到乙港,顺水航行 15 小时到达,从乙港返回甲港,逆水航行 20 小时到达 . 现在另有一艘船,船速是每小时12千米,它往返两港需要多少小时?4、一只小船,第一次顺流航行56 千米,逆流航行20 千米,共用 12 小时;第二次用同样的时间,顺流航行40 千米,逆流航行28 千米 . 求这只小船在静水中的速度 .参考答案一、相遇问题1、8102、19.23、快 520 客 4804、600 5 、2 6 、2557、6 小时, 28 千米8 、3609 、6410、511、720 12 、甲 37.5 乙22.513、165014 、 4.8二、追及问题1、甲 10乙 62、200 米 3 、780 米 4 、300 米5、8 分 6 、甲 150(米 / 分)乙 130(米 / 分)三、火车问题1、9 分2、46.8 3 、4 5 、5 分 6 、286 米四、流水行船问题1、932、63、644、120 5 、66、15。

北师大版四年级上册数学《较复杂的行程问题》

北师大版四年级上册数学《较复杂的行程问题》

北师大版四年级上册数学《较复杂的行程问题》
一、相遇问题(两物体从两地同时相对出发)
1、两列火车同时从两个城市相对开出,6小时后相遇,已知甲车每小时行94千米,乙车每小时
行86千米。

两城相距多少千米?
2、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?
3、A、B两镇相距150千米,甲从A镇出发以每小时13千米的速度向B镇行驶,乙、丙从B镇与甲同时出发向A镇行驶,乙的速度为每小时12千米,丙的速度为每小时18千米,途中丙见到甲折回头向B镇走,遇见乙则又折回头向A镇走这样往返一直到三人均在途中相遇为止。

请问:丙走了多少千米?
4、火车和客车同时从东、西两地相向而行,火车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇,求东、西两地相距多少千米?
二、背向问题(两物体从两地出发同时相背出发)
1、甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
三、追及问题(两物体同时出发追赶对方)
1、下午放学时,弟弟以每分40米的速度步行回家。

5分钟后,哥哥以每分60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟(假定从学校到家足够远,既哥哥追上弟弟时,仍没有回到家)
2、某人沿着一条与铁路平行的笔直的小路由西向东行走,这时有一列长520米的火车从背后开来,此人在行进中测出整列火车通过的时间为42秒,而在这段时间内,他行走了68千米,则这列火车的速度是?
3、甲、乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。

如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

较复杂的行程问题
一、相遇问题(两物体从两地同时相对出发)
1、两列火车同时从两个城市相对开出,6小时后相遇,已知甲车每小时行94千米,乙车每小时行
86千米。

两城相距多少千米?
2、甲、乙二人分别从相距30千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米,问:二人几小时后相遇?
3、A、B两镇相距150千米,甲从A镇出发以每小时13千米的速度向B镇行驶,乙、丙从B镇与甲同时出发向A镇行驶,乙的速度为每小时12千米,丙的速度为每小时18千米,途中丙见到甲折回头向B镇走,遇见乙则又折回头向A镇走这样往返一直到三人均在途中相遇为止。

请问:丙走了多少千米?
4、火车和客车同时从东、西两地相向而行,火车每小时行48千米,客车每小时行42千米,两车在距中点18千米处相遇,求东、西两地相距多少千米?
二、背向问题(两物体从两地出发同时相背出发)
1、甲每小时行7千米,乙每小时行5千米,两人于相隔18千米的两地同时相背而行,几小时后两人相隔54千米?
三、追及问题(两物体同时出发追赶对方)
1、下午放学时,弟弟以每分40米的速度步行回家。

5分钟后,哥哥以每分60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟(假定从学校到家足够远,既哥哥追上弟弟时,仍没有回到家)
2、某人沿着一条与铁路平行的笔直的小路由西向东行走,这时有一列长520米的火车从背后开来,此人在行进中测出整列火车通过的时间为42秒,而在这段时间内,他行走了68千米,则这列火车的速度是?
3、甲、乙两人沿运动场的跑道跑步,甲每分钟跑290米,乙每分钟跑270米,跑道一圈长400米。

如果两人同时从起跑线上同方向跑,那么甲经过多长时间才能第一次追上乙?。

相关文档
最新文档