一次函数图象与性质导学案
一次函数图象与性质导学案

一次函数的图象与性质导学案目标导航:1、进一步掌握一次函数图象的一画法; 2、掌握一次函数系数与图象位置的关系;3、掌握一次函数的性质并会运用.学习重、难点:一次函数的性质.知识储备(10分钟)1、一次函数的定义。
2、画函数图象的步骤是①②③;3、x轴上的点的坐标特点是;y轴上的点的坐标特点是。
4、若点A(n,-7 )在函数y=-2x+8 的图象上,则n=______。
5、在同一坐标系中画出上面几个函数的图象。
它们具有什么样的相同点?自主预习:(看书64页)新知探究一:(10分钟)一次函数的图象:上面我们讨论了这几个函数的图象都有的相同特点,即它们的图象都是直线,这样一次函数y=kx+b又叫直线y=kx+b。
引导:既然一次函数的图象是一条直线,而我们知道:两点确定一条直线。
因此,我们要画一次函数的图象,只要确定个点就可以了。
那么,应该确定哪两个点比较好找呢?对于一次函数y=kx+b来说,当x=0时,y= ; 当y=0时,x= 。
对于正比例函数y=kx来说呢?正比例函数一定经过点(,)所以再决定一个点即可。
那么哪个点最为简单呢?(从计算和描点两方面来考虑)想一想:怎样画函数y=kx+b的图象?要画一次函数的图象,只要过点(,)和点(,)画直线即可;要画正比例函数的图象,只要过点(,)和点(,)画直线即可。
学生自主探究:迅速说出函数①y=3x+6 ②y=-2x-8 ③y=-5x+10 ④y=0.5x-1⑤y=2x-4的图象经过的点的坐标,并画出它们的大致图象。
①y=3x+6 点(,)和点(,)②y=-2x-8 点(,)和点(,)③y=-5x+10 点(,)和点(,)④y=0.5x-1 点(,)和点(,)⑤y=-2x 点(,)和点(,)从上面的图象我们可以发现,图象的位置是由k和b的符号来决定的。
因此可得到结论:①k>0,b>0图象过象限②k>0,b<0图象过象限③k<0,b>0图象过象限④k<0,b<0图象过象限。
§3.2 一次函数的图像导学案

八年级数学(上)导学案班级 姓名 学号§4.3.2 一次函数的图像(2)一、教学目标是:1.了解一次函数两个变量之间的变化规律.在认识一次函数图象的基础上,掌握一次函数图象及其简单性质;2.经历对一次函数图象变化规律的探究过程,学会解决一次函数问题的一些基本方法和策略;二、教学过程一、第一环节:问题引入:1、作正比例函数图象的一般步骤有: 、 、 。
2、回顾正比例函数图象的性质?3、作一次函数图象的一般步骤有: 。
1、请作出一次函数12+=x y 的图象. 解:第二环节: 活动探究1、合作探究,发现规律在同一直角坐标系内分别画出y=2x+3, y=-x,y=-x+3和y=5x-2的图象.. ;得出结论:一次函数图像是 .因此作一次函数图像时,只要确定 点,再过这 点作直线就可以了.一次函数y kx b =+的图像也称为直线y kx b =+.议一议:1、上述四个函数中,随着x 值的增大,y 的值分别如何变化?相应图象上点的变化趋势如何?2、直线y=-x 与y=-x+3的位置关系如何?你能通过适当的移动将直线y=-x 变为直线y=-x+3 吗?一般地,直线y=kx+b 与y=kx 又有什么关系?3、直线y=2x+3与y=-x+3有什么共同点?一般地,你能从函数y=kx +b 的图象上直接看出b 的值吗?4、如何确定直线y=kx +b 所经过的象限?归纳出一次函数图象的特点:在一次函数y kx b =+中当0k >时,y 随x 的增大而 ,当b >0时,直线必过 象限; 当b <0时,直线必过 象限; 当0k <时,y 随x 的增大而 ,当b >0时,直线必过 象限; 当b <0时,直线必过 象限.x … … y……第三环节:反馈练习内容:1.你能找出下列四个一次函数对应的图象吗?请说出你的理由: (1)21y x =-+; (2)31y x =-;(3)y x =; (4)23y x =-.2.(1)判断下列各组直线的位置关系: (A )y x =与1y x =-;(B )132y x =-与12y x =--.(2)已知直线253y x =+与一条经过原点的直线l 平行,则这条直线l 的函数关系式为 .3.(1)一次函数1y x =-的图象经过的象限是( ) A.第一、二、三象限 B.第一、二、四象限 C.第二、三、四象限 D.第一、三、四象限 (2)一次函数2y mx n =+-的图象如图所示,则n m 、的取值范围是( )A.0m >,2n <B.0m >,2n >C.0m <,2n <D. 0m <,2n >4.小明骑车从家到学校,假设途中他始终保持相同的速度前进,那么小明离家的距离与他骑行时间的图象是下图中的 ;小明离学校的距离与他骑行时间的图象是下图中的 .Oxy)(C )(千米sO155分)( tx yox x xyyyo o o 分)( t 分)( t )(米s )(米sO)A (O)B (515 5 15。
一次函数的图像和性质(导学案)

课题:一次函数的图像和性质(学案)[教学目标]1、会用两点法画出一次函数的图像;2、能结合图像说出一次函数的性质;3、掌握一次函数的性质;[教学重点]会用两点法画出一次函数的图像,并由图像得出函数的性质。
[教学难点]由函数图像得出函数的性质,及对函数性质的理解。
[教学过程]一、提问复习,引入新课1、什么叫正比例函数、一次函数?它们之间有什么关系?一般地,形如的函数,叫做正比例函数;一般地,形如的函数,叫做一次函数。
当b=0时,y=kx+b就变成了,所以说正比例函数是一种特殊的一次函数2、正比例函数的图象是什么形状?正比例函数的图象是?二、探索新知,合作学习 1、认识一次函数的图像画图:请大家用描点法在同一坐标系中画出函数y=2x , y=2x +1,y=2x -1的图象。
2、比一比:大家比比各自画出的一次函数的图像形状,探讨怎样快速地作它的图像• 作一次函数图像的步骤为: 、 、 。
• 一次函数的图象是 。
画一次函数的图像时,只要描出合适关系式的两点,再连接两点即可。
我们通常选取(0, )和( ,0 )这两个点,也就是选取图像与x 轴和y 轴的交点坐标。
有时也选取(0, )和(1, )这两点,因题而异。
3、验一验:作正比例函数y=-2x 与一次函数y=-2x +3 、y=-2x -3图象.4、想一想:比较上面第二组作的三个函数的相同点与不同点(1)这三个函数的图象形状都是,并且倾斜程度;(2)函数y=-2x图象经过原点,一次函数y=-2x+3 的图象与y轴交于点,即它可以看作由直线y=-2x向平移单位长度而得到;一次函数y=-2x-3的图象与y轴交于点,即它可以看作由直线y=-2x 向平移单位长度而得到;5、归纳小结:(1) 所有一次函数y=kx+b的图象都是________(2)直线y=kx+b与直线y=kx__________;y=k1x+b1(k1≠0, k1,b1为常数), y=k2x+b2 (k2≠0, k2,b2为常数),当k1=k2,b1≠b2时两个函数图象互相。
一次函数的图像与性质导学案

一次函数的图像和性质导学案班级:姓名:一、学习目标:1、会选取两个适当的点画一次函数的图像2、理解一次函数中k,b对函数图象的影响,掌握一次函数的性质。
二、重点难点:重点:通过画一次函数图像探究得出一次函数的性质难点:引导学生用数形结合法探究得出一次函数的性质。
三、学习过程:(一〕、复习、回忆:1.怎样画一次函数的图像?2.正比例函数的图像是什么形状?有哪些性质?① k>0时, y随x的增大而_________,这时函数的图像从左到右_______;图象经过第_________象限② k<O时, y随x的增大而_______ ,这时函数的图像从左到右_______.图象经过第__________象限(二〕、自主学习,合作探究:1、在同一直角坐标系内用两点法做出y=x+1,y=2x+1、y=-x+1,y=-2x+1的图像,1题)观察上面四个一次函数的图象,类比正比例函数y=kx(k≠0,k为常数)中 k的正负对图象的影响,探究一次函数y=kx+b (k≠0,k、b为常数)中K的正负对函数的影响,(小组交流分组展示)一次函数y=kx+b〔k,b为常数,k≠0〕的性质k的正负决定_____________________________;① k>0时, y随x的增大而_________,这时函数的图像从左到右_______;② k<O时, y随x的增大而_______ ,这时函数的图像从左到右_______.2、在同一直角坐标系内用两点法做出y=x+1, y=x-1、y=-2x+1,y=-2x-1的图像, x ......y=x+1y=x-1y=-2x+1y=-2x-1观察上面四个一次函数的图象,探究一次函数y=kx+b (k≠0,k、b为常数)中b 的正负对函数的影响,(小组交流分组展示)b的正、负决定________________________;①当b>0时,__________________________________②当b<0时,___________________________________3,:探究K、b对函数y=kx+b的图象位置的影响如图〔l〕所示,当k>0,b>0时,直线经过第____________象限;y随x 的增大而_________1题)如图〔2〕所示,当k >0,b <O 时,直线经过第_____________象限. y 随x 的增大而_________如图〔3〕所示, 当k ﹤O ,b >0时,直线经过第____________象限; y 随x 的增大而_________如图〔4〕所示,当k ﹤O ,b ﹤O 时,直线经过第_____________象限, y 随x 的增大而_________三,当堂训练1、有以下函数:①y=2x+1,②y=-3x+4,③y=,④y=x-6;其中过原点的直线是________;函数y 随x 的增大而增大的是__________;函数y 随x 的增大而减小的是___________;图象在第一、二、三象限的是________。
一次函数和它的图像(第一课时)导学案

11.5 一次函数和它的图象(第一课时) 导学案学习目标1、理解正比例函数、一次函数的概念。
2、会根据数量关系,求正比例函数、一次函数的解析式。
3、会求一次函数的值。
重点、难点1、 一次函数和正比例函数的概念、。
2、 求正比例函数、一次函数的解析式。
学习过程一、课前延伸:1、列车自上海机场出发,运行1000米后,以110米/秒的速度匀速行驶,写出列车离开浦东机场的距离s(单位:米)和时间t (单位:秒)的关系: 。
2、指出下列函数中的常量和变量,并比较下列各函数,它们有哪些共同特征: 。
,6t m = ,2x y -= ,32+=x y 9362.3+-=t Q二、合作探究:1、形如________________________的函数叫做x 的一次函数,其中,在k,x,y,b 中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中k,b 符合什么条件?2、在什么条件下,y=kx+b(k ≠0)为正比例函数?3、已知函数y=2x+b ,当x=1时,y 的值为7,则b=__________.4、一次函数Y=(k-3)x+(k+3),当k=__________时,它是x 的正比例函数。
三、巩固新知:1、下列函数中,哪些是一次函数?哪些是正比例函数?系数k 和常数项b 的值各为多少?C=2∏r, y=32x+200, t=v200 , (),32x y -= ()x x s -=502、某农场种植玉米,每平方米种玉米6株,玉米株数y 与种植面积)(2m x 之间的关系。
3、已知一次函数y=kx+3,当x=-1时,y=-1那么当x=1时,y 等于( ).(A) 1 (B) -1 (C) 7 (D) -7四、拓展提升:例1、已知函数y=(m-3)x 113m -+m+2.(1)当m 为何值时,y 是x 的正比例函数?∣(2)当m 为何值时,y 是x 的一次函数?例2.已知y 是x 的一次函数,当1-=x 时,2=y ;当2=x 时,3-=y(1)、求y 关于x 的一次函数关系式。
一次函数的图象与性质教案

一次函数的图象与性质教案一、教学目标1. 知识目标:了解一次函数的图象与性质,学会如何绘制一次函数的图象,掌握一次函数的斜率与截距的概念和计算方法。
2. 能力目标:培养学生运用一次函数性质解决实际问题的能力,提升学生的数学建模和分析问题的能力。
3. 情感目标:培养学生对数学的兴趣,增强学生对数学学习的自信心。
二、教学重点和难点1. 教学重点:一次函数的图象与性质的讲解和绘制。
2. 教学难点:一次函数的性质的深入理解和实际问题的应用。
三、教学准备1. 教具准备:黑板、彩色粉笔、直尺、计算器等。
2. 材料准备:教材、习题、实际问题的案例等。
四、教学步骤Step 1 引入新知1. 引导学生回顾一次函数的定义、表达式和图象。
2. 提问:在一次函数中,你能观察到哪些性质?请举例说明。
3. 学生回答后,引入本节课的主题:一次函数的图象与性质。
Step 2 一次函数的图象1. 讲解一次函数的图象绘制的步骤:a. 找到函数的斜率和截距。
b. 确定函数图象的特点和方向。
c. 根据斜率和截距,绘制图象。
2. 示范绘制一次函数的图象:a. 画出坐标系。
b. 根据斜率和截距来确定图象的位置和方向。
c. 用直线连接两个点。
d. 检查图象是否符合预期。
Step 3 一次函数的性质1. 讲解一次函数的性质:a. 斜率的意义和计算方法。
b. 截距的意义和计算方法。
c. 函数的单调性和定义域、值域。
2. 通过例题演示如何计算斜率和截距,并分析图象的性质。
Step 4 实际问题的应用1. 提供一些实际问题的案例,让学生运用一次函数的性质进行分析和解决。
a. 速度与时间的关系问题。
b. 成本与产量的关系问题。
c. 价格与销量的关系问题。
2. 学生分小组讨论,针对不同的实际问题,设计解决方案,并用一次函数的性质进行解答和分析。
Step 5 总结与拓展1. 对一次函数的图象与性质进行总结,强调学生需要掌握的重点和难点。
2. 引导学生拓展思考:是否存在其他类型的函数图象和性质?一次函数与其他函数的异同点是什么?五、课后作业1. 完成课堂上的练习题。
3.1一次函数的图像导学案

八年级数学(上)导学案班级姓名学号§4.3.1 一次函数的图像一、教学目标:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.二、教学过程设计第一环节:画正比例函数的图象内容:首先我们来学习什么是函数的图象?把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).例1 请作出正比例函数y=2x的图象.第二环节:动手操作,深化探索内容:做一做(1)作出正比例函数y=-3x的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-3x.请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.(1)满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x的图象上吗?(2)正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?(3)正比例函数y=kx的图象有何特点?你是怎样理解的?议一议既然我们得出正比例函数y=kx的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?因为“两点确定一条直线”,所以画正比例函数y=kx的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.例2 在同一直角坐标系内作出y=x,y=3x,y=-12x,y=-4x的图象.议一议上述四个函数中,随着x的增大,y的值分别如何变化?在正比例函数y=kx中,当k>0时,图象在第象限,y的值随着x值的增大而 (即从左向右观察图象时,直线是向上倾斜的);当k<0时, 图象在第象限, y的值随着x值的增大而 (即从左向右观察图象时,直线是向下倾斜的).请你进一步思考:(1)正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?(2)正比例函数y=-12x和y=-4x中,随着x值的增大y的值都减小了,其中哪一个减小得更快?你是如何判断的?我们发现:k越大,直线越靠近y轴。
一次函数的图像和性质学案

一次函数图像与性质学案一.合作探究请大家在同一坐标系内作出函数y=,y=+2, y=-2的图象。
思考:正比例函数y=x与一次函数y=x+2 、y=x-2图象有什么相同点和不同点.二.提出问题你来答1.一次函数y=4x-1,(1)当x=0时,求y的值;(2)当y=0时,求x的值。
2、一次函数y=-0.5x+1的图象,与y轴的交点坐标____与x轴的交点坐标____。
3、直线y=0.5x+1与y 轴交点坐标为____;与x轴交点坐标为____4、直线y=kx+b与y轴交点坐标为____;与x 轴交点坐标为_____小结①直线y=kx+b与y轴交于()。
②直线y=kx+b与X轴交于()三.你来画一画y=2x-1与y=-0.5x+1的图象.2.画出函数y=x-1, y=-0.25x+1,y=2x+3,y=-2x-1的图象一次函数解析式y=kx+b(k, b 是常数,k ≠0)中,k 、b 的正负对函数图象有什么影响? 结论1:当k>0时,直线y=kx+b 从左向右 ,y 随x 的增大而 ; 当k<0时,直线y=kx+b 从左向右 ,y 随x 的增大而 .四.牛刀小试:直线y=2x-3与x 轴交点坐标为______,与y 轴交点坐标为_________,图象经过第__________象限,y 随x 增大而___________.五.课堂小考:1、直线y=3x-2可由直线y=3x 向 平移 单位得到。
2、直线y=-x+7可由直线y=-x 向 平移 单位得到。
3、函数y=2x - 4与y 轴的交点为( ),与x 轴交于( )4、下列函数中,y 的值随x 值的增大而增大的函数是________. A.y=-2x B.y=-2x+1 C.y=x-2 D.y=-x-25、函数y=-8x -1经过 象限6、已知函数y=(m+1)x+3(1)当m 取何值时,y 随x 的增大而增大? 这时它的图象经过哪些象限?(2)当 m 取何值时,y 随x 的增大而减小? 这时它的图象经过哪些象限?7、一次函数y=kx+b 中,k >0,b <0,则它的图象大致为( )五.颗粒归仓:你有什么收获?六.作业:P120 4.5 P121 11A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、对于一次函数 ,函数值y随x的增大而减小,则k的取值范围是()
A、 B、 C、 D、
5、一次函数 的图像一定经过()
A、(3,5)B、(-2,3)C、(2,7)D、(4、10)
6、已知正比例函数 的函数值y随x的增大而增大,则一次函数 的图像大致是()
7、一次函数 的图像如图所示,则k_______,
鸡西市第十九中学学案
班级姓名
学科
数学
课题
一次函数图象与性质
课型
新课
时间Hale Waihona Puke 2013年月日人教版
八年级上
学习目标
1、会画一次函数的图像,理解一次函数与正比例函数之间的关系;
2、归纳类比一次函数图象性质,并利用图像解决简单问题。
重点
难点
会画一次函数的图像,理解一次函数与正比例函数之间的关系;能确归纳类比一次函数图象性质,并利用图像解决简单问题。
学习内容
【自学探究一】
例1:在同一个直角坐标系中画出函数 , , 的图像
①列表
x
…
-2
-1
0
1
2
…
…
…
…
…
…
…
②描点:③连线
【合作交流】
1.观察这三个图像,这三个函数图像形状都是_________,并且倾斜度_______。
函数 的图像经过原点,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到;同样的,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到。
b_______,y随x的增大而_________
8、一次函数 的图像经过___________象限,
y随x的增大而_________ (第6题)
9、已知点(-1,a)、(2,b)在直线 上,则a,b的大小关系是__________
10、直线 与x轴交点坐标为__________;与y轴交点坐标_________;图像经过__________象限,y随x的增大而____________,图像与坐标轴所围成的三角形的面积是___________
【猜想归纳】
1、由此可以得到直线 中,k,b的取值决定直线的位置:
(1) 直线经过___________象限;
(2) 直线经过___________象限;
(3) 直线经过___________象限;
(4) 直线经过___________象限;
2、一次函数的性质:
(1)当 时,y随x的增大而_______,这时函数的图像从左到右_______;
【猜想归纳】
1.一次函数 的图像是一条________,当 时,它是由 向_____平移_____个单位长度得到;当 时,它是由 向_____平移_____个单位长度得到。
2.当k>0时,y随x增大而,函数的图像从左到右________。
【练习一】
1.在同一个直角坐标系中,把直线 向_______平移_____个单位就得到2.将直线 向下平移2个单位,可得直线________;
(2)当 时,y随x的增大而_______,这时函数的图像从左到右_______;
【当堂训练】1、一次函数 的图像不经过()
A、第一象限B、第二象限C、第三想象限D、第四象限
2、已知直线 不经过第三象限,也不经过原点,则下列结论正确的是( )
A、 B、 C、 D、
3、下列函数中,y随x的增大而增大的是()
2.(1) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(2) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(3) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;
3.已知 的图像;若向____平移___个单位就得到 的图像。
【自学探究二】
在同一个直角坐标系中画出函数 , , 的图像
【分析】由于一次函数的图像是直线,所以只要确定两个点就能画出它。
①列表
x
…
…
…
…
…
…
…
…
②描点:③连线
【合作交流】
1.观察这三个图像,这三个函数图像形状都是_________,并且倾斜度_______。
函数 的图像经过原点,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到;同样的,函数 与y轴交于点________,即它可以看作由直线 向_____平移_____个单位长度得到。
2.(1) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(2) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;(3) 经过_________象限;y随x的增大而_______,函数的图像从左到右________;