M02初等模型xfc

合集下载

初等模型

初等模型
t
7.21 6.88 6.32 5.84

• •
4

8 n
1
2
t an
b
logt a b logn
最小二乘法
t 7.21n
0.11
与模型巧合!
2.6
实物交换
y yo•
问 甲有物品X, 乙有物品Y, 双方为满足更高的需要, 题 商定相互交换一部分。研究实物交换方案。
用x,y分别表示甲(乙)占有 X,Y的数量。设交换前甲占 有X的数量为x0, 乙占有Y的 数量为y0, 作图:
模 型 假 设
以双方(战略)核导弹数量描述核军备的大小。 假定双方采取如下同样的核威慑战略:
• 认为对方可能发起所谓第一次核打击,即倾其全部 核导弹攻击己方的核导弹基地;
• 乙方在经受第一次核打击后,应保存足够的核导弹, 给对方重要目标以毁灭性的打击。 在任一方实施第一次核打击时,假定一枚核导弹只能 攻击对方的一个核导弹基地。 摧毁这个基地的可能性是常数,它由一方的攻击精 度和另一方的防御能力决定。
s变大,y减小,曲线变平
0
x
a变大,y增加,曲线变陡
模型解释
• 甲方增加经费保护及疏散工业、交通中心等目标 乙方威慑值 y0变大 (其它因素不变) 乙安全线 y=f(x)上移 平衡点PP´
y0 y=f ( x) P(xm,ym) x=g(y) y
, ym ) P( xm
xm , ym ym xm
模型 np fv f 建立 s1/2 A1/3 A W(=w0+nw) n sv2
pw
v (n/s)1/3 s n2/3
v n1/9
比赛成绩 t n – 1/9

第2章初等模型精品PPT课件

第2章初等模型精品PPT课件

Qk1T 1(12 k1 ldk k1 2 ldk )T 2d 1T2k1d2T 1k 1lT2k2d

f(h)
1



0.9
T1
T2
0.8
0.7
0.6
0.5
d
d 0.4
0.3 记h=l/d并令f(h)=
0.2
类似有
Q
k1
T1 T2 2d
Q
2
Q 2(k1l)/(k2d)
一般 k1 16 ~ 32 故 k2
O B(0,-b)
令:
θ2 护卫舰
可化为:
X
x2ya a2 2 1 1b2
4a2b2 (a21)2
ha21b,r 2ab a21 a21
则上式可简记成 :
x2(y-h)2r2
汇合点由p此必关位系于式此即圆可上求。出P点的坐标和
θ2 的值。
y(ta)nxb(航母的路线方程) 本模型虽简单,但分析极清晰且易
再一步深入考虑
还应考虑回声传回来所需要的时间。为此,令石块下落 的真正时间 为t1,声音传回 来的时间记 为t2,还得解一个方程组:
h
g k
( t1
1 k
e kt 1
)
g k2
h 340 t2
这一方程组是非线性 的,求解不太容易, 为了估算崖高竟要去 解一个非线性主程组 似乎不合情理
t1
最小二乘法 插值方法
最小二乘法
设经实际测量已得 到n组数据(xi , yi),i=1,…, n。将数据画在平面直角坐标系中,见 图。 如果建模者判断 这n个点很象是分布在某条直线附近,令 该直线方程 为y=ax+b,进而利 用数据来求参 数a和b。由于该直线只是数据近似满足的关系式,故 yi-(axi+b)=0一般不成 立,但我们希望

数学建模初等模型ppt课件

数学建模初等模型ppt课件

61 1
61 1
21
理学院
xx
2.5 经济问题中的初等模型
设产品产量为q,产品价格为p,固定成本c0,可变成 本为c1.
(1) 总成本函数: c cq c0 c1q
(2) 供给函数:
Qs f p
(3) 需求函数:
Q0 gp
(4) 价格函数:
p f 1Q0 pq
证明:存在0,使f(0) = g(0) = 0.
理学院 6
xx
模型求解
给出一种简单、粗糙的证明方法
将椅子旋转900,对角线AC和BD互换。 由g(0)=0, f(0) > 0 ,知f(/2)=0 , g(/2)>0.
令h()= f()–g(), 则h(0)>0和h(/2)<0.
由 f, g的连续性知 h为连续函数, 据连续函数的基本性
理学院 22
xx
(5) 收益函数:
R Rq qpq
(6) 利润函数: Lq Rq Cq
(7) 边际成本函数:
Cm C'q
(8) 边际收益函数:
Rm R'q
(9) 边际利润函数: Lm R'q C'q Rm Cm
23
理学院
xx
Q(t)=-t3+9t2+12t
个晶体管收音机。
问:在早上几点钟这个工工作人效的率工最作高效,率即最生高产?率最大, 此题中,工人在t时刻的生产率
解:工人的生产率为为Q’(产Rt)量t,Q则关Q问于' 题t时转间化t的3为t 2变求化Q1’8率(tt:)的12
R't Q''最t大值6t 18 0

数学建模第二章初等模型

数学建模第二章初等模型

市场稳定问题
在市场经济下,当商品“供不应求”时,价格逐渐长升高,经营者会 觉得有利可图而加大生产量。然而,一旦生产量达到使市场“供过于求”, 价格立即会下跌,生产者会立即减产以避免损失,这样又极有可能造成又 一轮新的供不应求。我们关心的问题是:如此循环,市场上的商品的数量 与价格是否会趋于稳定? 所谓“需求”,指在一定条件下,消费者愿意购买并且有支付能力购 买的商品量。设p表示商品价格,q表示商品量,假设商品量q主要取决于 商品价格p,则称函数 q=f(p) 为需求函数。 需求函数q=f(p)一般是单调减少函数。因q=f(p)为单调减少函数,所 以存在反函数p=f-1(q),我们也称它为需求函数,见下图。
a, b 模型求解:我们来求步长
(1) 由图
为何值,使式 (4) 最小。
所表示,重心离开 B 点上升到最高点所需时间为
t
b 2v
(5)
1 2 gb2 h gt 2 2 8v

(1),(2),(3)

(5)
式,
(4)
式化成
2 (a b)bmg 1 W m, v2 2 2 8v
又完成一个大步所需时间为
跑步时如何节省能量
• 问题的提出:我们每个人都有跑步的经历, 有人会因此而疲惫不堪,但是有谁会想:怎 样跑步能使我们消耗的能量最少? • 模型假设:为解决上述问题,我们做下述假 设:
(1 )跑步所花费的时间分成两部分:第一部分为两 条腿同时离地的时间;在第二部分时间内一条腿 或两条腿同时落地。这样,人体重心的运动轨迹 如图(1)。
a b v
,因此单位时间内消耗的能量为
2 W bmg m, v3 P a b 8v 2(a b) v
(6)

一些经典初等数学模型

一些经典初等数学模型

一些经典初等数学模型
1. 走迷宫:在一个有迷宫的场地内,从起点到终点,找到最短的路线。

2. 鸡兔同笼:已知笼子里面有若干只鸡和兔子,总共有头和只脚,求鸡和兔子的数量。

3. 填数字:在一个九宫格里填入数字1到9,每行、每列、每个宫内数字互不重复。

4. 数列求和:给定一个数列,求其中任意连续段的和,或者整个数列的和。

5. 球与盒子:有若干个不同颜色的球和盒子,球可以放入盒子中,求有多少种不同的放法。

6. 求根公式:已知二次方程的系数,求解出这个二次方程的根。

7. 绳子问题:两根不同长度的绳子分别燃烧完的时间不同,如何用这两根绳子在规定时间内测量出一个15分钟的时间。

8. 凸包问题:给定一些点的坐标,如何找到能够包住所有点的最小凸多边形。

9. 最小生成树:给定一个连通的无向图,找到一棵包含所有节点的生成树,使得边的权值之和最小。

10. 铺地砖:已知一个矩形地面,和两种不同形状的砖块,如何将这些砖块拼接在一起,使得地面完全被铺满。

第二章初等模型.ppt

第二章初等模型.ppt

pB nA
pA nB
上式等价于
p
2 A

pB2
.
nA nA 1 nB nB 1

引入
Qi

ni
pi2
ni 1
,
i A, B,

2019-8-29
谢谢您的观赏
18
则在⑵⑶的情况下,席位应分配给Qi 值大的那一方。
在情况⑴,由于
所以,
pA pB , nA 1 nB
QA
Q1 / Q2
0.06 0.03 0.02
24
6h
2019-8-29
谢谢您的观赏
35
模型应用
该模型具有一定的应用价值。尽管双层玻璃窗会增加 制作工艺上的成本,但它在降低热量流失上的功效是相
当可观的。通常,建筑规范要求 h l / d 4,按照该
模型,Q1 / Q2 3% ,即双层玻璃窗比同样多的玻璃材
k1 4103 8103 J / cm s kw h,
2019-8-29
谢谢您的观赏
33
不流动、干燥空气的热传导系数为
k2 2.5104 J / cm s kw h,
所以
k1 16 32. k2
取最保守的估计,即取 k1 / k2 16,由⑷,⑹得
2019-8-29
谢谢您的观赏
28
建模
由假设,热传导过程遵从下面的物理定律:
厚度为d的均匀介质,两侧温度差为T ,则单位时间
由温度高的一侧流过单位面积的热量 Q与T 成正比,与
d 成反比,即
Q k T .

d
其中k 为热传导系数。
2019-8-29

第2讲 初等数学模型


Matlab求解如下 Matlab求解如下
A=[1/4,1/3;3/4,2/3]; x0=[3/5;2/5]; x2=A^2*x0 x5=A^5*x0 x10=A^10*x0
设a,b为R公司和S公司的初始市场份额,则有 a+b=1 1 1 为了使以后每年的市场份额不变,有 A = 4 3 a = a 3 2
解法2 解法2
利用求一元函数极小值的函数fminbnd,求出 p(x)的极小点值即可.
建模所需知识点在Matlab 建模所需知识点在Matlab中的实现 Matlab中的实现
功能:在区间[x1,x2] 内求函数fun的极小值点. 命令:[xmin,fmin]=fminbnd(‘fun’,x1,x2) 说明:fun为函数,x1,x2 为x 的取值范围, xmin为极(或最)小点,fmin为极小值 注意:Matlab 7.0以上fmin函数改为fminbnd
问题分析及模型建立
a b + L( x ) = cos x sin x L' ( x ) = 0
b x = arctan , a
3
Lmin = a + 3 b
3 2
(
3 2 2
)
Matlab求解 Matlab求解
syms x; f='2/cos(x)+3/sin(x)'; %直接求函数的极小值 [xmin,fmin]=fminbnd(f,0,pi/2) 梯子最少7.0235米
作业
问题:外科手术室 往往需要 将病人安置到活动病床上,沿走廊 将病人安置到活动病床上 沿走廊 推到手术室或送回病房.然而有的 推到手术室或送回病房 然而有的 医院走廊较窄,病床必须沿过道推 医院走廊较窄 病床必须沿过道推 过直角拐角(如图所示 如图所示). 过直角拐角 如图所示 设标准病床长2米 宽 米 设标准病床长 米,宽1米,拐弯 前的过道宽1.5米, 拐弯后的过道 前的过道宽 米 宽 1.2米, 问标准的病床能否安适 米 的推过拐角? 的推过拐角

初等模型


假设(1)、(2)是解剖学(((123)))中LAB的=-=k根来Bk越k统o12据比Al=大b计ak的,,较3成b规al大<3<选绩律21小手越,成好在L绩。假的因设L优而((B劣建3。议)3中5)O13’
Carroll将体重划分成两部分:B=B0+B1,B0为非肌肉重量。
根据三条假设可
得L=k(B-B0)β,k和β为两个常数,
最小二乘法 插值方法
最小二乘法
设经实际测量已得 到n组数据(xi , yi),i=1,…, n。将数据 画在平面直角坐标系中,见 图。如果建模者判断 这n个点很
象是分布在某条直线附近,令 该直线方程 为y=ax+b,进而
利用数据来求参 数a和b。由于该直线只是数据近似满足的
如则关y果可系建作式模变,者量故y判替=断ya换ix-(变+使abx量i之+间b转)=的化0关一为i系n般线1 并不[性y此非成关i 式线立系对性,(或aa关但用和xi系我类b的而们似b偏是希方)导]其望2数法他均拟类最合型为小。的0,函数,
h 1 gt 2 2
来计算。例如, 设t=4秒,g=9.81米/秒2,则可求得h≈78.5 米。
我学过微积分,我可以做 得更好,呵呵。
除去地球吸引力外,对石块下落影响最大的当 属空气阻
力。根据流体力学知识,此时可设空气阻力正比于石块下
落的速度,阻力系 数K为常数,因而,由牛顿第二定律可
得:
F m dv mg Kv
块下落时间 t1≈t-t2将t1代入式①再算一次,得出 崖高的近似值。例如, 若h=69.9米,则 t2≈0.21 秒,故 t1≈3.69秒,求得 h≈62.3米。
§2.4 经验模型
当问题的机理非常不清楚难以直接利用其他知 识来建模时,一个较为自然的方法是利用数据 进行曲线拟合,找出变量之间的近似依赖关系 即函数关系。

2(初等模型)


~状态转移律
dk D, S k S 按照以上规 使状态 问题: 求决策 ,0 ) 律由初始状态 S1 ( 3,3)经过有限步到达状态 S n 1 ( 0 .
当然n 越小越好.
(3,2) (0,1) (3,1) (0,2) • 穷举法 S1 (3,3) d1 (1,0) S 2 ( 2,3) ( 2,2) (1,1) (1,3) ( 2,0) (3,3)循环 (0,1) (0,2) (3,4) S2 (3,2) d 2 (1,0) S 3 ( 4,2) ( 4,3) (1,1) ( 2,0) (5,2)
室 内 T1
Ta T b d l d
室 外 T2
Q1

k2~空气的热传导系数
T1 Ta Ta Tb Tb T2 Q1 k1 k2 k1 d l d
T1 T2 k1 l Q1 k1 , sh , h d ( s 2) k2 d
建模 记单层玻璃窗传导的热量Q2
T1 T2 T1 T2 Q1 k1 Q2 k1 d ( s 2) 2d
2 2 3
4
结论 动物的体重与躯干长度的4次方成正 比.当然,比例系数与动物的种类有关.
评注 (1)类比法是建模中常用的一种方法.在 这个模型中将动物躯干类比作弹性梁实属一个大 胆的假设,其可信程度自然应该用实际数据仔细 检验. 但是这种充分发挥想象力,把动物躯干长度 与体重的关系这样一个看来无从下手的问题,转 化为已经有确切研究成果的弹性梁在自重下挠曲 问题的作法,是值得借鉴的. (2)使用该模型时,要注意其条件.在建立此 模型时,我们是把四足动物的躯干视为圆柱体 的,也就是说,对于躯干太不近似圆柱体的四 足动物,该模型就不适用了,比如乌龟.

数学建模-初等模型讲义


123
2083.3
1341.8
3425.2 256250.0 250365.4
237
2083.3
45.5
2128.8 493750.0 328794.3
238
2083.3
34.1
2117.4 495833.3 328828.5
239
2083.3
240
2083.3
22.7
2106.1 497916.7 328851.2
9
7
9
11.3
4
8.5
21
21 21
ai比惯例 分配的要小
第21席应该分配乙系, 标准1的分配方案:10, 7, 4.
可用列表方法解决标准1(类似可解决标准2与3) 计算 ni 成表, k 1,2, k
1 2 3 4 5 6 7 8 9 10 11 甲 103 51.5 34.3 25.8 20.6 17.2 14.7 12.9 11.4 10.3 9.4 乙 63 31.5 21.0 15.8 12.6 10.5 9.0 7.9 7.0 6.3 5.7 丙 34 17.0 11.3 8.5 6.8 5.7 4.9 4.3 3.8 3.4 3.1
2. 按揭还款
用房产在银行办理的贷款, 该贷款要按照银行规
定的利率支付利息。 贷款形式
商业贷款和公积金贷款. 还款形式
等额本息和等额本金.
如贷款50万, 分20年还清, 年利率r , 问月供是多少?
调整日期
2015.08.26 2015.06.28 2015.05.11 2015.03.01 2014.11.22 2012.07.07 2012.06.09 2011.07.07 2011.04.06 2011.02.09 2010.12.26 2010.10.20 2008.12.23
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“公平”分配方 公平” 公平 法 人数 席位
A方 方 B方 方 p1 p2 n1 n2
衡量公平分配的数量指标 当p1/n1= p2/n2 时,分配公平 若 p1/n1> p2/n2 ,对 A 不公平
p1/n1– p2/n2 ~ 对A的绝对不公平度 的 p1=150, n1=10, p1/n1=15 p2=100, n2=10, p2/n2=10 p1/n1– p2/n2=5 虽二者的 虽二者的绝对 不公平度相同 p1=1050, n1=10, p1/n1=105 p2=1000, n2=10, p2/n2=100 p1/n1– p2/n2=5 但后者对A的 但后者对 的不公平 程度已大大降低! 程度已大大降低!
系别 学生 比例 比 例 加 惯 例 甲 乙 丙 103 51.5 63 34 31.5 17.0 100.0
席的分配 20席的分配 21席的分配 席的分配 10.3 6.3 3.4 20.0 10 6 4 20
人数 (%) 比例 结果 )
总和 200
对 比例 结果 丙 10.815 11 系 6.615 7 公 3.570 3 平 吗 21.000 21
“公平”分配方 公平” 公平 法
将绝对度量改为相对度量
若 p1/n1> p2/n2 ,定义
p1 / n1 − p2 / n2 的 = rA (n1 , n2 ) ~ 对A的相对不公平度 p2 / n2
类似地定义 rB(n1,n2) 公平分配方案应 使 rA , rB 尽量小
将一次性的席位分配转化为动态的席位分配, 将一次性的席位分配转化为动态的席位分配 即 已分别有n 若增加1席 问应分给A, 还是B 设A, B已分别有 1, n2 席,若增加 席,问应分给 还是 已分别有 即对A不公平 不妨设分配开始时 p1/n1> p2/n2 ,即对 不公平
若rB(n1+1, n2) < rA(n1, n2+1), 则这席应给 A 若rB(n1+1, n2) >rA(n1, n2+1), 则这席应给 B
该席给A 当 rB(n1+1, n2) < rA(n1, n2+1), 该席给 rA, rB的定义
n 2 ( n 2 + 1)
2 p2
<
n1 ( n 1 + 1 )
第二章
2.6 实物交换 2.6 服药问题
初等模型
2.1 公平的席位分配
2.1
问 题
公平的席位分配
三个系学生共200名(甲系100,乙系 ,丙系 ),代表 名 甲系 ),代表 三个系学生共 ,乙系60,丙系40), 会议共20席 按比例分配,三个系分别为10, , 席 会议共 席,按比例分配,三个系分别为 ,6,4席。 席如何分配。 现因学生转系,三系人数为103, 63, 34, 问20席如何分配。 席如何分配 现因学生转系,三系人数为 若增加为21席 又如何分配。 若增加为 席,又如何分配。
qi=Npi /P不全为整数时,ni 应满足的准则: 不全为整数时, 应满足的准则: 不全为整数时 方向取整; 记 [qi]– =floor(qi) ~ 向 ≤ qi方向取整; 方向取整. [qi]+ =ceil(qi) ~ 向 ≥ qi方向取整 1) [qi]– ≤ ni ≤ [qi]+ (i=1,2, … , m), 即ni 必取 i]– , [qi]+ 之一 必取[q 2) ni (N, p1, … , pm ) ≤ ni (N+1, p1, … , pm) (i=1,2, … , m) 即当总席位增加时, 即当总席位增加时, ni不应减少 “比例加惯例”方法满足 1),但不满足 2) 比例加惯例” ),但不满足 ) 比例加惯例 ), Q值方法满足 2), 但不满足 1)。令人遗憾! 值方法满足 ) ) 令人遗憾!
Q 值方法
三系用Q值方法重新分配 个席位 三系用 值方法重新分配 21个席位 按人数比例的整数部分已将19席分配完毕 按人数比例的整数部分已将 席分配完毕
甲系: 甲系:p1=103, n1=10 乙系: 乙系:p2= 63, n2= 6 丙系: 丙系:p3= 34, n3= 3
用Q值方法分配 值方法分配 席和第21席 第20席和第 席 席和第
1032 632 342 = 96.4, Q2 = = 94.5, Q3 = = 96.3 第20席 Q1 = 席 10 ×11 6× 7 3× 4
Q1最大,第20席给甲系 最大, 席
103 2 = 80.4, Q2 , Q3 同上 第21席 Q1 = 席 11 × 12
Q值方法 值方法 分配结果
Q3最大,第 最大, 21席给丙系 席 公平吗? 公平吗?
M
. .
p1
M1
p3(x3,y3)
.
p2
N1
Hale Waihona Puke Nx2xo x
线上各点的满意度相同, 线的形状反映对X,Y的偏爱程度, 的偏爱程度, 线上各点的满意度相同 线的形状反映对 的偏爱程度 各点满意度更高的点如p 在另一条无差别曲线M 比MN各点满意度更高的点如 3,在另一条无差别曲线 1N1上。 各点满意度更高的点如 于是形成一族无差别曲线(无数条)。 于是形成一族无差别曲线(无数条)。
g=c2
交换方案的进一步确定
交换方案 ~ 交换后甲的占有量 (x,y) 0≤x≤x0, 0≤y≤y0矩 ≤ ≤ ≤ ≤ 形内任一点 交换路 径AB 等价交 换原则
y yo
AB与CD的 与 的 交点p 交点
双方的无差别曲线族 X,Y用货币衡量其价值,设交换 用货币衡量其价值, 用货币衡量其价值 价值相同, 前x0,y0价值相同,则等价交换原 则下交换路径为 (x0,0), (0,y0) 两点的连线 两点的连线CD
应讨论以下几种情况
初始 p1/n1> p2/n2
1)若 p1/(n1+1)> p2/n2 , 则这席应给 A ) 2)若 p1/(n1+1)< p2/n2 , 应计算 B(n1+1, n2) ) 应计算r 3)若 p1/n1> p2/(n2+1), 应计算 A(n1, n2+1) ) , 应计算r 是否会出现? 问: p1/n1<p2/(n2+1) 是否会出现? 否!
y
甲的无差别曲线族记作 f(x,y)=c1 c1~满意度 满意度
∆y
f(x,y)=c1
.
∆x
p1
c1↑
等满意度曲线) (f ~等满意度曲线) 等满意度曲线 无差别曲线族的性质: 无差别曲线族的性质:
0
∆y
∆x
.
p2
x
• 单调减 增加 y减小 • 下凸 凸向原点 单调减(x增加 减小 增加, 减小) 下凸(凸向原点 凸向原点) 点占有x少 多 在p1点占有 少、y多, 宁愿以较多的∆ 换取 宁愿以较多的∆ y换取 较少的∆ 较少的∆ x;
2 p1
该席给A 该席给 否则, 该席给B 否则 该席给
p i2 , i = 1, 2 , 该席给 值较大的一方 定义 Q i = 该席给Q值 ni ( ni + 1)
推广到m方 推广到 方 分配席位
p i2 , i = 1, 2, , m ⋯ 计算 Q i = ni ( n i + 1)
该席给Q值最大的一方 该席给 值最大的一方
2.6
实物交换
甲有物品X, 乙有物品Y, 双方为满足更高的需要, 问 甲有物品 乙有物品 双方为满足更高的需要, 商定相互交换一部分。研究实物交换方案。 题 商定相互交换一部分。研究实物交换方案。 分别表示甲(乙 占有 用x,y分别表示甲 乙)占有 分别表示甲 X,Y的数量。设交换前甲占 的数量。 的数量 有X的数量为 0, 乙占有Y的 的数量为x 乙占有 的 的数量为 数量为y 作图: 数量为 0, 作图: y yo•
O
x
两族曲线切点连线记作AB 两族曲线切点连线记作 y ’ x O‘ y
o
双方满意的交换方案必 在AB(交换路径)上 (交换路径)
因为在AB外的任一点 因为在 外的任一点p’, 外的任一点 (双方 满意度低于 上的点 双方)满意度低于 上的点p 双方 满意度低于AB上的点
O
•p
A
B
P’

f=c1 xo x y’
甲系11席 乙系6 丙系4 甲系11席,乙系6席,丙系4席 11
进一步的讨论
Q值方法比“比例加惯例”方法更公平吗? 值方法比“比例加惯例”方法更公平吗? 值方法比 席位分配的理想化准则 已知: 方人数分别为 已知 m方人数分别为 p1, p2,… , pm, 记总人数为 P= p1+p2+…+pm, 待分配的总席位为 。 待分配的总席位为N。 设理想情况下m方分配的席位分别为 设理想情况下 方分配的席位分别为n1,n2,… , nm 方分配的席位分别为 (自然应有 1+n2+…+nm=N), 自然应有n 自然应有 , ni 应是 N和 p1, … , pm 的函数,即ni = ni (N, p1, … , pm ) 的函数, 和 均为整数, 记qi=Npi /P, i=1,2, … , m, 若qi 均为整数,显然应 ni=qi
.
D
B
p
0
A
.
C
xo x
单价a, 单价 则等价交换下ax+by=s (s=ax0=by0) 单价b, 设X单价 Y单价 则等价交换下 单价
y
.
p
x • 0 xo x 若不考虑双方对X,Y的偏爱,则矩形内任一点 p(x,y) 的偏爱, 若不考虑双方对 的偏爱 都是一种交换方案:甲占有 乙占有(x 都是一种交换方案:甲占有(x,y) ,乙占有 0 -x, y0 -y)
相关文档
最新文档