常见优化模型

合集下载

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。

在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。

本讲将介绍一些简单的优化模型。

一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。

其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。

线性规划模型指的是目标函数和约束条件都是线性的情况。

通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。

二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。

非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。

对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。

这些方法通过迭代的方式逐步靠近最优解。

三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。

整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。

整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。

针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。

四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。

动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。

动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。

五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。

模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。

su优化模型的方法

su优化模型的方法

su优化模型的方法优化模型是指通过改进和调整模型的参数和结构,使得模型能够更好地拟合数据和提高预测性能的过程。

以下是几种常用的优化模型方法:1.参数调整:模型中的参数是可以进行调整的,通过改变参数的数值可以使得模型更好地拟合数据。

比如,可以调整学习率、正则化参数、批量大小等。

2.结构调整:模型结构对模型的性能有着直接的影响,可以通过改变模型的结构来提高模型的表达能力。

比如,可以增加模型的层数、调整网络的宽度、改变激活函数等。

3.特征工程:特征工程是指通过对原始数据进行转换、聚合、选择等操作,提取出更有用的特征。

通过合适的特征工程可以使得模型更容易学到有用的模式。

常见的特征工程方法包括:特征选择、多项式特征扩展、特征交叉等。

4.数据增强:数据增强是指通过对训练数据进行各种变换和扩充,生成更多的训练样本。

数据增强可以提高模型的泛化能力和鲁棒性,减少过拟合。

常见的数据增强方法包括:翻转、旋转、缩放、裁剪等。

5. 集成学习:集成学习是指将多个模型的预测结果进行整合,提高模型的预测性能。

常见的集成学习方法包括:Bagging、Boosting、Stacking等。

通过合理选择集成学习方法可以进一步提高模型的性能。

6.模型评估和选择:选择合适的评估指标可以帮助我们更好地衡量模型的性能,并选择最优的模型。

常见的评估指标包括:准确率、精确率、召回率等。

通过对不同模型进行评估和选择可以帮助我们找到最优的模型。

7.模型调参:模型中的参数非常多,通过对这些参数进行调优可以进一步提高模型的性能。

常见的模型调参方法包括:网格、随机、贝叶斯优化等。

通过合理的调参方法可以帮助我们找到最优的模型参数。

8.模型集成:将多个模型的预测结果进行加权平均或投票可以进一步提高模型的预测性能。

模型集成可以通过减小方差、提高泛化能力来提高模型的表现。

9.迁移学习:迁移学习是指将已经训练好的模型应用到新的任务中。

通过迁移学习可以利用已有模型的知识,减少对新任务的训练数据需求,提高模型的性能。

04章组合优化模型

04章组合优化模型

04章组合优化模型组合优化模型是指在给定一组有限资源的情况下,通过选择和组合这些资源,以达到其中一种目标的问题。

这一类模型广泛应用于供应链管理、制造业生产优化和物流网络设计等领域。

本文将介绍几种常见的组合优化模型,并分析其应用。

一、背包问题背包问题是最基本的组合优化问题之一、背包问题可以描述为在给定一组物品和一个固定容量的背包的情况下,如何选择物品放入背包中,以使得背包中物品的总价值最大。

背包问题可以有多种变形,如01背包问题、完全背包问题和多重背包问题等。

例如,假设有一个容量为C的背包,和n个物品,每个物品有一个重量wi和一个价值vi。

目标是在背包容量限制下,选择一些物品放入背包中,使得背包中物品的总价值最大。

背包问题可以通过动态规划算法求解。

定义一个二维数组dp,其中dp[i][j]表示在前i个物品中选择一些放入容量为j的背包中所能达到的最大总价值。

背包问题的状态转移方程可以表示为:dp[i][j] = max(dp[i-1][j], dp[i-1][j-wi] + vi)二、旅行商问题旅行商问题是一个经典的组合优化问题,也是一个NP-hard问题。

旅行商问题可以描述为在给定一组城市和每对城市之间的距离,如何找到一条最短的路径,使得每个城市只访问一次,并且最终回到起始城市。

旅行商问题可以通过深度优先、分支定界算法和遗传算法等方法求解。

尽管求解旅行商问题的确切解决方案是困难的,但通过使用近似算法和启发式算法,可以在合理的时间内得到较好的解。

三、作业调度问题作业调度问题是指在给定一组作业和一组机器的情况下,如何安排作业在机器上执行,以最大程度地减少完成所有作业的总时间。

作业调度问题可以通过贪心算法和动态规划算法求解。

贪心算法可以按照一些优先级规则对作业进行排序,并依次将作业分配给空闲的机器,直到所有作业都被分配完为止。

动态规划算法可以定义一个二维数组dp,其中dp[i][j]表示前i个作业在j个机器上执行的最小总时间。

投资组合优化模型及策略研究

投资组合优化模型及策略研究

投资组合优化模型及策略研究在当今复杂多变的金融市场中,投资者们都渴望找到一种能够实现资产增值、降低风险的有效方法。

投资组合优化模型及策略的研究,就成为了帮助投资者实现这一目标的重要工具。

投资组合,简单来说,就是将资金分配到不同的资产类别中,如股票、债券、基金、房地产等。

而投资组合优化,则是通过数学模型和策略,确定在各种资产之间的最优配置比例,以达到在给定风险水平下获得最大收益,或者在给定收益目标下承担最小风险的目的。

一、常见的投资组合优化模型1、均值方差模型这是由马科维茨提出的经典模型。

它基于资产的预期收益率和收益率的方差(风险)来构建投资组合。

投资者需要根据自己对风险的承受能力,在预期收益和风险之间进行权衡。

然而,该模型的缺点也较为明显,例如对输入数据的准确性要求较高,对资产收益率的正态分布假设在实际中不一定成立。

2、资本资产定价模型(CAPM)CAPM 认为,资产的预期收益率取决于其系统性风险(用贝塔系数衡量)。

该模型为资产定价和投资组合的构建提供了一种简单的方法,但它也存在一些局限性,比如假设条件过于理想化,无法完全解释市场中的所有现象。

3、套利定价理论(APT)APT 认为,资产的收益率可以由多个因素来解释,而不仅仅是系统性风险。

这一理论为投资组合的构建提供了更灵活的框架,但在实际应用中确定影响资产收益率的因素较为困难。

二、投资组合优化策略1、积极型策略积极型投资者试图通过对市场的深入研究和预测,选择那些被低估或具有潜在增长机会的资产,以获取超额收益。

然而,这种策略需要投资者具备丰富的专业知识和经验,以及对市场的敏锐洞察力,同时也伴随着较高的交易成本和风险。

2、消极型策略消极型策略通常是指投资者按照市场指数的权重来构建投资组合,以获得市场的平均收益。

这种策略的优点是成本低、操作简单,适合那些没有足够时间和精力进行投资研究的投资者。

3、混合策略混合策略则是结合了积极型和消极型策略的特点,在部分资产上采用积极管理,而在其他资产上采用消极跟踪。

典型优化问题的模型与算法

典型优化问题的模型与算法

典型优化问题的模型与算法一、引言优化问题在各种领域中都有着广泛的应用,如生产管理、物流配送、资源分配、财务预算等。

为了解决这些实际问题,我们需要建立合适的数学模型,并设计有效的算法来求解。

本文将介绍一些典型的优化问题的模型与算法。

二、线性规划问题线性规划问题是一种常见的优化问题,用于求解一组线性目标函数和线性约束条件的最优解。

常用的算法包括单纯形法、分支定界法等。

模型:设有n个变量,其中n≥1,要求找到一组变量x的值,使得目标函数的值最大(或最小),同时满足一系列线性不等式约束条件。

算法:根据目标函数和约束条件,构建线性规划问题的数学模型;采用合适的算法(如单纯形法)求解该模型,得到最优解。

三、整数规划问题整数规划问题是一种特殊的优化问题,要求变量必须是整数。

常用的算法包括分支定界法、割平面法等。

模型:设有n个变量,其中n≥1,要求找到一组变量的整数值,使得目标函数的值最大(或最小),同时满足一系列不等式约束条件,且某些变量必须取整数值。

算法:根据目标函数和约束条件,构建整数规划问题的数学模型;采用分支定界法等算法,将整数规划问题分解为一系列子问题,并逐步求解,最终得到最优解。

四、非线性优化问题非线性优化问题是最常见的优化问题之一,要求目标函数和约束条件均为非线性形式。

常用的算法包括梯度下降法、牛顿法、共轭梯度法等。

模型:设有n个变量,其中n≥1,要求找到一组变量的值,使得目标函数的值最小(或最大),同时满足一系列非线性不等式约束条件。

算法:根据目标函数和约束条件,构建非线性优化问题的数学模型;采用梯度下降法、牛顿法等算法,逐步迭代优化目标函数,直到满足终止条件(如迭代次数或误差阈值)为止。

五、动态规划问题动态规划问题是一种特殊的优化问题,用于求解一系列决策过程中的最优解。

常用的算法包括记忆化搜索、最优子结构等。

模型:在给定的决策过程中,要求根据当前状态和可选动作选择最优动作,以最大化(或最小化)某一指标的值。

网络优化模 型与算法-V1

网络优化模 型与算法-V1

网络优化模型与算法-V1网络优化模型与算法随着互联网技术的不断发展,网络优化问题变得越来越重要。

无论是商业领域还是科研领域,网络优化都在扮演着重要的角色。

本文将重点介绍网络优化模型与算法。

一、网络优化模型网络优化模型是指将网络中的各个元素和关系用数学模型表示出来,并根据所要优化的目标给出相应的优化模型。

常见的网络优化模型有最小生成树模型、最短路模型、网络流模型等。

1. 最小生成树模型最小生成树模型是指在一个网络中找到一棵生成树,使得这个生成树的总权值最小。

在最小生成树模型中,边的权值代表着连接两个节点的代价。

经典的最小生成树算法有Prim算法和Kruskal算法。

2. 最短路模型最短路模型是指在一个网络中找到一条路径,使得这条路径的总权值最小。

在最短路模型中,边的权值代表着从一个节点到另一个节点的距离或代价。

经典的最短路算法有Dijkstra算法和Floyd算法。

3. 网络流模型网络流模型是指在一个网络中找到一种流量分配方式,使得流量的总和最大或成本最小。

在网络流模型中,节点之间的流量代表着信息传递的速度或物质的流动量,边的容量代表着流量的上限。

经典的网络流算法有最大流算法和最小费用最大流算法。

二、网络优化算法网络优化算法是指利用数学模型和算法求解网络优化问题的方法。

不同的网络优化问题需要不同的算法。

本节将介绍一些常见的网络优化算法。

1. Prim算法Prim算法是用于求解最小生成树的一种贪心算法。

它从一个起点开始,每次找到与当前最小生成树距离最近的节点,将这个节点加入最小生成树中。

2. Kruskal算法Kruskal算法是用于求解最小生成树的一种贪心算法。

它将所有边按照权值从小到大排序,依次加入最小生成树中。

如果加入一条边会形成环,则舍弃这个边。

3. Dijkstra算法Dijkstra算法是用于求解最短路的一种贪心算法。

它从起点开始,每次找到距离起点最近的节点,并更新其它与该节点相邻的节点的距离。

投资组合优化的模型比较及实证分析

投资组合优化的模型比较及实证分析

投资组合优化的模型比较及实证分析随着金融市场的不断发展和成熟,投资者的投资选择逐渐多样化。

而投资组合优化作为降低风险、提高收益的有效手段,受到了越来越多的关注。

在这篇文章中,我们将对比几种常见的投资组合优化模型,并实证分析其表现。

1. 经典的Markowitz模型Markowitz模型也被称为均值-方差模型,是投资组合优化模型的经典代表之一。

该模型的基本原理是在最小化投资组合的风险的同时,尽可能提高其收益。

因此,该模型需要在投资组合中选择多个资产,并极力实现投资组合的最优化。

具体来说,该模型需要求解出有效前沿的组合(即收益最高、风险最小的组合),以确定投资组合中各资产的权重和比例。

但是,该模型存在一个主要缺陷:其假设了收益率服从正态分布,而实际上收益率存在着长尾分布、异常值等复杂情况,因此该模型可能存在很多的偏差。

2. Black-Litterman模型Black-Litterman模型是基于Markowitz模型而开发的投资组合优化模型。

该模型对Markowitz模型的改进之处在于引入了主观观点(也称为信息预测)和全局最优化。

具体来说,该模型假设投资者不仅仅考虑收益和风险,还需要考虑经济学因素、行业变化等其他情况,而这些情况并不受到Markowitz模型的考虑。

Black-Litterman模型能够将这些信息预测和其他重要因素加入到投资组合选择中,并在保持风险最小化的同时最大化整个投资组合的效益。

3. 贝叶斯模型贝叶斯模型是一种基于贝叶斯统计理论而设计的投资组合优化模型。

贝叶斯理论认为,根据先验知识和新的经验结果,可以不断更新和改变对概率分布的信念和预测。

具体来说,该模型需要分别分析资产的收益率分布和投资者的收益率目标分布,并在这些基础上进行投资组合的优化。

与Markowitz模型的区别在于,贝叶斯模型使用了长期数据作为先验分布,可以在非正态的、短期收益数据的基础上建立更准确的预测。

4. SAA/TAA模型SAA/TAA模型是一种基于战略资产配置(SAA)和战术资产配置(TAA)的模型。

优化问题的数学模型

优化问题的数学模型

优化问题的数学模型在现代社会中,优化问题是数学领域中非常重要的一个研究方向。

优化问题的数学模型可以帮助我们更好地理解和解决现实中的各种问题,例如最小化成本、最大化利润、最优化生产、最优化调度、最优化投资等。

本文将从优化问题的定义、数学模型及其应用等方面进行阐述和探讨。

一、优化问题的定义优化问题是指在给定的限制条件下,寻找能使某一目标函数取得最优值的决策变量的问题。

这个目标函数可以是最大化、最小化或其他形式的函数。

优化问题的求解过程可以通过数学方法来实现,例如线性规划、非线性规划、整数规划、动态规划等。

二、优化问题的数学模型优化问题的数学模型通常由目标函数、约束条件和决策变量三个部分组成。

1. 目标函数目标函数是优化问题中的一个重要概念,它描述了我们想要优化的目标,可以是最大化、最小化或其他形式的函数。

在数学模型中,目标函数通常表示为:$$max f(x)$$或$$min f(x)$$其中,$x$ 是决策变量,$f(x)$ 是关于 $x$ 的目标函数。

2. 约束条件约束条件是指限制决策变量的取值范围,使其满足一定的条件。

在数学模型中,约束条件通常表示为:$$g_i(x) leq b_i$$或$$g_i(x) geq b_i$$其中,$g_i(x)$ 是关于 $x$ 的约束条件,$b_i$ 是约束条件的上限或下限。

3. 决策变量决策变量是指我们需要优化的变量,其取值范围受到约束条件的限制。

在数学模型中,决策变量通常表示为:$$x = (x_1, x_2, ..., x_n)$$其中,$x_i$ 表示第 $i$ 个决策变量的取值。

三、优化问题的应用优化问题的应用非常广泛,包括工业、经济、管理、军事等领域。

下面我们将以几个具体的例子来说明优化问题的应用。

1. 最小化成本在生产过程中,我们希望以最小的成本来生产产品。

这时,我们可以将生产成本作为目标函数,约束条件可以是生产量的限制、材料的限制等。

通过数学模型,我们可以求出最小化成本的生产方案,从而实现成本控制的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s.t. AXb AeqXbeq VLB≤X≤VUB
命令:[1] x=linprog(c,A,b,Aeq, beq, VLB,VUB) [2] x=linprog(c,A,b,Aeq, beq, VLB,VUB, X0)
注意:[1] 若没有等式约束: AeqXbeq, 则令Aeq=[ ], beq=[ ].
问题一 加工费用最低
问题一 : 任务分配问题:某车间有甲、乙两台机床,可用
于加工三种工件。假定这两台车床的可用台时数分别为800和 900,三种工件的数量分别为400、600和500,且已知用三种 不同车床加工单位数量不同工件所需的台时数和加工费用如 下表。问怎样分配车床的加工任务,才能既满足加工工件的 要求,又使加工费用最低?
车 床单 位 工 件 所 需 加 工 台 时 数 单 位 工 件 的 加 工 费 用 可 用 台 类 型 工 件 1 工 件 2 工 件 3 工 件 1 工 件 2 工 件 3 时 数
甲 0.4 1.1 1.0 13
9
10 800
乙 0.5 1.2 1.3 11 12
8 900
解 设在甲车床上加工工件1、2、3的数量分别为x1、x2、x3,
常见优化模型
东北大学 应用数学
王琪
常见优化模型
• 线性规划 • 整数规划 • 非线性规划
线性规划
线性规划的标准形式: min z = f (x)
x
s.t. gi (x) 0 ( i 1,2,, m)
其中目标函数 f (x) 和约束条件中 gi (x) 都是线性函数
可以采用的解决方法:单纯性法 Matlab函数:linprog()
i
总的风险越小,总体风险可用投资的 si 中最大的一个风险来度量。
购买 s 时要付交易费,(费率ቤተ መጻሕፍቲ ባይዱp ),当购买额不超过给定值 u 时,交易费按购买 u 计
i
i
i
i
算。另外,假定同期银行存款利率是 r0 ,既无交易费又无风险。( r0 =5%)
已知 n=4 时相关数据如下:
si
ri (%)
qi (%)
3.总体风险用投资项目 s 中最大的一个风险来度量; i
4.n 种资产 S 之间是相互独立的;
i
5.在投资的这一时期内, ri,pi,qi,r0 为定值,不受意外因素影响; 6.净收益和总体风险只受 ri,pi,qi 影响,不受其他因素干扰。
符 号 规 定 : S i — — 第 i 种 投 资 项 目 , 如 股 票 , 债 券 r i , p i , q i - - - - 分 别 为 S i 的 平 均 收 益 率 , 风 险 损 失 率 , 交 易 费 率
900
用MATLAB优化工具箱解线性规划
1、模型: min z=cX
s.t. AXb
命令:x=linprog(c,A,b)
2、模型:min z=cX
s.t. AXb AeqXbeq
命令:x=linprog(c,A,b,Aeq, beq)
注意:若没有不等式:AXb存在,则令A=[ ],b=[ ].
3、模型:min z=cX
[2]其中X0表示初始点
4、命令:[x,fval]=linprog(…) 返回最优解x及x处的目标函数值fval.
例 1 m ax z0.4x10.2x820.3x230.7x240.6x450.6x6 s.t. 0.0x110.0x120.0x130.0x340.0x350.0x36850 0.0x210.0x54700 0.0x220.0x55100 0.0x330.0x86900 xj 0 j1,2, 6
r u i - - - - S i 的 交 易 定 额 0 - - - - - - - 同 期 银 行 利 率
x i - - - - - - - 投 资 项 目 S i 的 资 金 a - - - - - 投 资 风 险 度 Q - - - - 总 体 收 益 Δ Q - - - - 总 体 收 益 的 增 量
[x,fval]=linprog(c,A,b,Aeq,beq,vlb)
投资的收益和风险
一、问题提出
市场上有 n 种资产 si (i=1,2……n)可以选择,现用数额为 M 的相当大的资金作一个时期
的投资。这 n 种资产在这一时期内购买 s 的平均收益率为 r ,风险损失率为 q ,投资越分散,
i
i
s.t.1
1
1
x1 x2
x3 120
x3
x3 20
解: 编写M文件xxgh2.m如下:
30 x1 0 x2 50 20 x3
c=[6 3 4];
A=[0 1 0];
b=[50];
Aeq=[1 1 1];
beq=[120];
vlb=[30;0;20];
pi (%) ui (元)
S1
28
2.5
1
103
S2
21
1.5
2
198
S3
23
5.5
4.5
52
S4
25
2.6
6.5
40
试给该公司设计一种投资组合方案,即用给定达到资金 M,有选择地购买若干种资产或存银行 生息,使净收益尽可能大,使总体风险尽可能小。
二、基本假设和符号规定
基本假设: 1. 投资数额 M 相当大,为了便于计算,假设 M=1; 2.投资越分散,总的风险越小;
解 编写M文件xxgh1.m如下:
c=[-0.4 -0.28 -0.32 -0.72 -0.64 -0.6];
A=[0.01 0.01 0.01 0.03 0.03 0.03;0.02 0 0 0.05 0 0;0 0.02 0 0 0.05 0;0 0 0.03 0 0 0.08];
b=[850;700;100;900];
在乙车床上加工工件1、2、3的数量分别为x4、x5、x6。可建立 以下线性规划模型:
min z 13x1 9x2 10 x3 11x4 12 x5 8x6
x1 x4 400
x2
x5
600
s.t.
0x.34x1x6
500 1.1x2
x3
800
0.5
x4
xi 0,i
1.2x5 1.3x6 1,2,,6
Aeq=[]; beq=[];
vlb=[0;0;0;0;0;0]; vub=[];
[x,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)
例 2 min z 6x1 3x2 4x3 s.t. x1 x2 x3 120 x1 30 0 x2 50
x1
min z (6 3 4) x2
相关文档
最新文档