运动控制系统(七)-四版
运动控制系统(第4版)第1章 绪论

第1章 绪论
• 信号转换和处理包括电压匹配、极性转换、脉冲整形等,对 于计算机数字控制系统而言,必须将传感器输出的模拟或数 字信号变换为可用于计算机运算的数字量。数据处理的另一 个重要作用是去伪存真,即从带有随机扰动的信号中筛选出 反映被测量的真实信号,去掉随机的扰动信号,以满足控制 系统的需要。 • 常用的数据处理方法是信号滤波,模拟控制系统常采用模拟 器件构成的滤波电路,而计算机数字控制系统往往采用模拟 滤波电路和计算机软件数字滤波相结合的方法。
GD2 4gJ ;
n——转子的机械转速(r/min),
60 m n . 2
第1章 绪论
• 运动控制系统的任务就是控制电动机的转速和转角,对于直 线电动机来说就是控制速度和位移。由式(1-1)和式(1-2) 可知,要控制转速和转角,唯一的途径就是控制电动机的电 磁转矩Te,使转速变化率按人们期望的规律变化。因此,转矩 控制是运动控制的根本问题。 • 为了有效地控制电磁转矩,充分利用电机铁心,在一定的电 流作用下进可能产生最大的电磁转矩,以加快系统的过渡过 程,必须在控制转矩的同时也控制磁通(或磁链)。因为当 磁通(或磁链)很小时,即使电枢电流(或交流电机定子电 流的转矩分量)很大,实际转矩仍然很小。何况由于物理条 件限制,电枢电流(或定子电流)总是有限的。因此,磁链 控制与转矩控制同样重要,不可偏废。通常在基速(额定转 速)以下采用恒磁通(或磁链)控制,而在基速以上采用弱 磁控制。
第1章 绪论
• 1.2 运动控制系统的历史与发展
• 直流电动机电力拖动与交流电动机电力拖动在19世纪中叶先后诞 生(1866年德国人西门子制成了自激式的直流发电机;1890年 美国西屋电气公司利用尼古拉· 特斯拉的专利研制出第一台交流 同步电机;1898年第一台异步电动机诞生),在20世纪前半叶, 约占整个电力拖动容量80%的不可调速拖动系统采用交流电动机, 只有20%的高性能可调速拖动系统采用直流电动机。20世纪后半 叶,电力电子技术和微电子技术带动了带动了新一代的交流调速 系统的兴起与发展,逐步打破了直流调速系统一统高性能拖动天 下的格局。进入21世纪后,用交流调速系统取代直流调速系统已 成为不争的事实。 • 直流电动机的数学模型简单,转矩易于控制。其换向器与电刷
电力拖动自动控制系统习题答案_第四版

第二章2-1:答:在制动阶段,VT1始终不导通。
VT2导通期间,并能耗制动;VT2不导通期间,VD1续流,并回馈制动。
2-2:由101001000==D ;rpm s D s n n n N N cl 04.298.01002.01000)1(=⨯⨯≤-=∆=∆;2-3:已知rpm n n n N 1500max max 0=∆+= rpm n n n N 150min min 0=∆+=max n n N =,rpm n N 15=∆所以1115150151500minmax =--==n n D 1.0151114851511=⨯+⨯=∆+∆=Dn n D n s N N N2-4:rv n R I UC N a N Ne min/1478.0/)(⋅=-=rpmC R R I n e s a N op 1.1151478.0/045.0378/)(=⨯=+=∆1.38.0*1.1152.0*1430)1(==-∆=s n s n D N N 32.57.0*1.1153.0*1430)1(==-∆=s n s n D N N2-5:rpm C R I n e N op 5.2742.0/18.0305/=⨯==∆ /()27.45%N op N op s n n n =∆+∆=rpm s D s n n n N N cl 63.295.02005.01000)1(=⨯⨯≤-=∆=∆2-6:v K K U K K U s p u s p dcl 121=+=γ264==u s p dop U K K U 22/=dcldop UUv U K K K K U dcl sp s p u 6.41=+=γ2-7: 10=Drpm s D s n n n N N cl 9.795.01005.01500)1(=⨯⨯≤-=∆=∆66.1119.71001=-=-∆∆=clop n n K2-8:rpm n cl 801=∆,15=K所以:rpm rpm K n n cl op 12801680)1(1=⨯=+∆=∆; 如果:30=K ,则:rpm rpm K n n op cl 29.4131/128012==+∆=∆; 由)1(11s n s n D cl N -∆=,)1(22s n sn D cl N -∆=则:229.41/802112≈=∆∆=cl cl n n D D2-9:1)r v n R I U C N a N N e min/1342.0/)(⋅=-=rpm C R R R I n e L rec a N op 4.3071342.0/3.35.12/)(=⨯=++=∆rpm s D s n n N cl 33.89.0201.01500)1(=⨯⨯=-=∆所以9.35133.889.2461=-=-∆∆=clop n n K2)系统原理图和静态结构框图见书中;3、4)方法一:由n U U n n α=≈*,所以r v n U N nm min/01.01500/15/*⋅==≈α77.13/==s epK KCKα;3、4)方法二:由2271.14/])1([*=++=nm s N N e p U K R I n K C K 0097.0/==s p e K K KC α。
电力拖动自动控制系统运动控制系统-四版-复习题-考试题目

电力拖动自动控制系统运动控制系统-四版-复习题-考试题目直流调速系统判断:1弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。
<)2采用光电式旋转编码器的数字测速方法中,M 法适用于测高速,T法适用于测低速。
<)3只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。
<)4直流电动机变压调速和降磁调速都可做到无级调速。
<)5静差率和机械特性硬度是一回事。
< )6带电流截止负反馈的转速闭环系统不是单闭环系统。
< )7电流—转速双闭环无静差可逆调速系统稳态时控制电压Uk 的大小并非仅取决于速度定 Ug*的大小。
<)8双闭环调速系统在起动过程中,速度调节器总是处于饱和状态。
< )9逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。
<)10可逆脉宽调速系统中电动机的转动方向<正或反)由驱动脉冲的宽窄决定。
<)11双闭环可逆系统中,电流调节器的作用之一是对负载扰动起抗扰作用。
<)与开环系统相比,单闭环调速系统的稳态速降减小了。
< )12α=β配合工作制的可逆调速系统的制动过程分为本组逆变和它组制动两阶段<)13转速电流双闭环速度控制系统中转速调节为PID调节器时转速总有超调。
<)14 电压闭环相当于电流变化率闭环。
<)15 闭环系统可以改造控制对象。
<)16闭环系统电动机转速与负载电流<或转矩)的稳态关系,即静特性,它在形式上与开环机械特性相似,但本质上却有很大的不同。
17直流电动机弱磁升速的前提条件是恒定电动势反电势不变。
<)18 直流电动机弱磁升速的前提条件是恒定电枢电压不变。
<)19电压闭环会给闭环系统带来谐波干扰,严重时会造成系统振荡。
<)20对电网电压波动来说,电压环比电流环更快。
<)二选择题1直流双闭环调速系统中出现电源电压波动和负载转矩波动时,< )。
电力拖动自动控制系统—运动控制系统(第四版)考试精选

1、恒转矩负载的特性:负载转矩T L的大小恒定,与ωm或n无关。
恒功率负载的特性:负载转矩与转速成反比,而功率为常数。
2、触发装置GT的作用:把控制电压Us转换成触发脉冲的触发延迟角a,用以控制整流电压,达到变压调速的目的。
3、晶闸管整流器运行中存在的问题:1)晶闸管是单向导电的,它不允许电流反向,给电动机的可逆运行带来困难。
2)晶闸管对过电压、过电流和过高的d u/dt与di/dt都十分敏感,其中任一指标超过允许值都可能在很短的时间内损坏晶闸管。
3)晶闸管的可控性是基于对其门极的移相触发控制,在较低运行时会引起电网电压的畸变,被称为“电力公害”。
4、电力公害:在较低速运行时,晶闸管的导通角很小,使得系统的功率因数变差,并在交流侧产生较大的谐波电流,引起电网电压的畸变,叫做电力公害。
5、稳态是指电动机的平均电磁转矩与负载转矩相平衡的状态。
6、电能反馈问题:当电动机工作在回馈制动状态时,将动能变为电能回馈给直流电源,但由于二极管整流器的单向导电性,电能不能通过整流装置送回交流电网,只能向滤波电容充电,这就是电能回馈问题。
1、转速闭环控制的好处:减小转速降落,降低静差率,扩大调速范围。
8、反馈控制的基本规律:1)比例控制的反馈控制系统是被调量有静差的控制系统。
2)反馈控制系统的作用是抵抗扰动,服从给定3)系统的精度依赖于给定和反馈检测的精度。
9、积分控制的优点:积分控制可使系统在无静差的情况下保持恒速运行,实现无静差调速。
10、比例调节器的输出和积分调节器的输出的区别:比例调节器的输出取决于输入偏差量的现状,而积分调节器的输出则包含了输入偏差量的全部历史。
11、有静差调速系统:对于比例控制的调速系统,该传递函数无积分环节,故存在扰动引起的稳态误差,称作有静差调速系统。
12、无静差调速系统:对于积分控制或比例积分控制的调速系统,该传递函数具有积分环节,所以由阶跃扰动引起的稳态误差为0,称作无静差调速系统。
运动控制系统 第四版 第5章习题

5-5、按基频以下和以上,分析压频协调的控制方式,画出: (1)恒压恒频正弦波供电时异步电动机机械特性。 (2)基频以下,电压-频率协调控制的异步电动机机械特性。 (3)基频以上,恒压变频协调控制时异步电动机机械特性。 (4)电压-频率特性曲线U=f(f)。 (5,补)对异步电动机不同电压-频率协调控制时的机械特性进 行分析比较(从:特性硬度、电压补偿、临界转速等方面)。 解:
• 恒定子磁通、恒 气隙磁通控制, 临界转矩恒定; • 恒气隙磁通控制 的临界转矩更大.
1. 恒压恒频控制
2. 基频以下,电压频率协调控制
3. 基频以上,恒电变频控制
4、电压频率特性
(5)对异步电动机不同电压-频率协调控制时的机械特性,进行 分析比较如下:
(A)恒压频比控制:控制较简单; 机械特性基本是上下平移,特性硬度也较 )恒压频比控制: 好;当转矩增大到最大值以后,若转速再降低,特性就折回来了;低速 时,最大电磁转矩降低,带负载能力降低。 (B)恒定子磁通控制:要对定子电阻压降进行补偿;调速时机械特性基本上 是上下平移,特性比恒压频比控制硬些,临界转矩大于恒压频比控制。 (C)恒气隙磁通控制:需要对定子漏阻抗压降进行补偿;调速时机械特性基 本上时上下平移,特性比恒定子磁通控制略硬;临界转矩大于恒定子磁 通控制。恒气隙磁通控制时低频电压补偿的标准。 (D)恒转子磁通控制:不但要补偿定子漏阻抗压降,还要补偿转子漏电抗压 降;机械特性为线性,和直流电动机类似;在动态中尽可能保持转子磁 通控制,是矢量控制所追求的目标。 (E)基频以上恒压变频控制:当频率提高时,同 )基频以上恒压变频控制: 步转速随之提高,最大转矩减小,机械特性 上移,而形状基本不变。 (F)恒压频比控制、恒定子磁通控制、恒气隙磁 通控制,机械特性都是非线性的,都有最大 转矩限制;上述三种压频协调控制和恒转子 磁通控制方式,都属于恒转矩控制方式。基 频以上调速,属于恒功率调速方式。
《电力拖动自动控制系统—运动控制系统》(第四版)课后习题答案

《电力拖动自动控制系统—运动控制系统》(第四版)课后习题答案对于《电力拖动自动控制系统—运动控制系统》的学习,在课后应该做一些练习题加以巩固。
一下是给大家的《电力拖动自动控制系统—运动控制系统》(第四版)课后习题答案,希望对你有帮助。
一判断题1弱磁控制时电动机的电磁转矩属于恒功率性质只能拖动恒功率负载而不能拖动恒转矩负载。
(Ⅹ)2采用光电式旋转编码器的数字测速方法中,M法适用于测高速,T法适用于测低速。
(√)3只有一组桥式晶闸管变流器供电的直流电动机调速系统在位能式负载下能实现制动。
(√)4直流电动机变压调速和降磁调速都可做到无级调速。
(√)5静差率和机械特性硬度是一回事。
(Ⅹ)6带电流截止负反馈的转速闭环系统不是单闭环系统。
(Ⅹ)7电流—转速双闭环无静差可逆调速系统稳态时控制电压Uk的大小并非仅取决于*速度定Ug的大小。
(√)8双闭环调速系统在起动过程中,速度调节器总是处于饱和状态。
(Ⅹ)9逻辑无环流可逆调速系统任何时候都不会出现两组晶闸管同时封锁的情况。
(Ⅹ)10可逆脉宽调速系统中电动机的转动方向(正或反)由驱动脉冲的宽窄决定。
(√)11双闭环可逆系统中,电流调节器的作用之一是对负载扰动起抗扰作用。
(Ⅹ)与开环系统相比,单闭环调速系统的稳态速降减小了。
(Ⅹ)12α=β配合工作制的可逆调速系统的制动过程分为本组逆变和它组制动两阶段(√)13转速电流双闭环速度控制系统中转速调节为PID调节器时转速总有超调。
(Ⅹ)14电压闭环相当于电流变化率闭环。
(√)15闭环系统可以改造控制对象。
(√)16闭环系统电动机转速与负载电流(或转矩)的稳态关系,即静特性,它在形式上与开环机械特性相似,但本质上却有很大的不同。
17直流电动机弱磁升速的前提条件是恒定电动势反电势不变。
(√)18直流电动机弱磁升速的前提条件是恒定电枢电压不变。
(Ⅹ) 19电压闭环会给闭环系统带来谐波干扰,严重时会造成系统振荡。
(√)20对电网电压波动来说,电压环比电流环更快。
(完整版)运动控制系统思考题参考答案(_阮毅_陈伯时)(7)
过高的泵升电压将超过电力电子器件的耐压限制值。
选取电容量较大且合适的电容。
2-9在晶闸管整流器-电动机开环调速系统中,为什么转速随负载增加而降低?
负载增加,负载转矩增大,电动机转速下降直到电磁转矩等于负载转矩时速度就不变了,达到稳态。T-TL=J*dn/dt
2-10静差率和调速范围有何关系?静差率和机械特性硬度是一回事吗?举个例子。
2-13为什么用积分控制的调速系统是无静差的?在转速单闭环调速系统中,当积分调节器的输入偏差电压△U=0时,调节器的输出电压是多少?它决定于哪些因素?
比例调节器的输出只取决于输入偏差量的现状,而积分调节器的输出则包含了输入偏差量的全部历史。虽然到稳态时,只要历史上有过,其积分就有一定的数值,足以产生稳态运行所需要的控制电压UC。
2-5在直流脉宽调速系统中,当电动机停止不动时,电枢两端是否还有电压?电路中是否还有电流?为什么?
电枢两端还有电压,因为在直流脉宽调速系统中,电动机电枢两端电压仅取决于直流。
电路中无电流,因为电动机处已断开,构不成通路。
2-6直流PWM变换器主电路中反并联二极管有何作用?如果二极管断路会产生什么后果?
(2)供电电网电压Ud发生变化时系统有调节作用,因为Ud发生变化时,会使Ks变化,进而改变输出电压和转速,反馈电压随之改变,改变电压偏差进一步调节输出电压和转速达到调节作用。
(3)电枢电阻Ra发生变化时系统有调节作用,因为Ra发生变化时,会使电枢电路总电阻变化,使得转速改变,反馈电压随之改变,改变电压偏差进一步调节输出电压和转速达到调节作用。
第二章
思考题:
2-1直流电动机有哪几种调速方法?各有哪些特点?
1.电枢回路串电阻调速
运动控制系统
一、运动控制系统的定义与分类定义:以机械运动的驱动设备--电动机为被控对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论指导下组成的电力传动自动控制系统。
分类:(1)按被控物理量分:以转速为被控量的系统叫调速系统,以角位移或直线位移为被控量的系统叫随动系统(或伺服系统)。
(2)按驱动电动机的类型分:用直流电动机带动生产机械的为直流传动系统,用交流电动机带动生产机械的为交流传动系统。
(3)按控制器的类型分:用模拟电路构成控制器的系统为模拟控制系统,用数字电路构成控制器的系统为数字控制系统。
二、直流调速方法答:(1)调节电枢供电电压U;(2)减弱励磁磁通 ;(3)改变电枢回路电阻R。
三、常用的可控直流电源答:(1)旋转变流机组——用交流电动机和直流发电机组成机组,以获得可调的直流电压。
(2)静止式可控整流器——用静止式的可控整流器,以获得可调的直流电压。
(3)直流斩波器或脉宽调制变换器——用恒定直流电源或不控整流电源供电,利用电力电子开关器件斩波或进行脉宽调制,以产生可变的平均电压四、三种调速方法的性能与比较答:对于要求在一定范围内无级平滑调速的系统来说,以调节电枢供电电压的方式为最好。
改变电阻只能有级调速;减弱磁通虽然能够平滑调速,但调速范围不大,往往只是配合调压方案,在基速(即电机额定转速)以上作小范围的弱磁升速。
五、V-M系统的特点答:晶闸管整流装置不仅在经济性和可靠性上都有很大提高,而且在技术性能上也显示出较大的优越性。
在控制作用的快速性上,变流机组是秒级,而晶闸管整流器是毫秒级, 这将大大提高系统的动态性能六、V-M系统的问题答:(1)由于晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。
(2)晶闸管对过电压、过电流和过高的d V/d t与d i/d t 都十分敏感,若超过允许值会在很短的时间内损坏器件。
(3)由谐波与无功功率引起电网电压波形畸变,殃及附近的用电设备,造成“电力公害”。
《运动控制系统》课程设计任务书.
《运动控制系统》课程设计任务书一、设计目的与任务课程设计的主要目的是通过设计某直流电机调速系统或交流电机的调速系统或者应用交直流电机的调速的控制系统的设计实践,了解一般电力拖动与控制系统设计过程、设计要求、应完成的工作内容和具体设计方法。
通过设计也有助于复习、巩固以往所学的知识,达到灵活应用的目的。
电力拖动与控制系统设计必须满足生产设备和生产工艺的要求,因此,设计之前必须了解设备的用途、结构、操作要求和工艺过程,在此过程中培养从事设计工作的整体观念。
课程设计应强调能力培养为主,在独立完成设计任务的同时,还要注意其他几方面能力的培养与提高,如独立工作能力与创造力;综合运用专业及基础知识的能力,解决实际工程技术问题的能力;查阅图书资料、产品手册和各种工具书的能力;工程绘图的能力;书写技术报告和编制技术资料的能力。
二、教学内容及基本要求在接到设计任务书后,按原理设计和工艺设计两方面进行。
1.原理图设计的步骤1)根据要求拟定设计任务。
2)根据电力拖动与控制系统的设计要求设计主电路。
3)根据主电路的控制要求设计控制回路4)要考虑保护环节,如过电压、过电流等的保护。
5)总体检查、修改、补充及完善。
主要内容包括:6)进行必要的参数计算和设计必要的软件控制流程。
7)正确、合理地选择各电器元器件,按规定格式编制元件明细表。
2.工艺设计步骤1)根据电力拖动与控制系统的任务书的设计要求,或者根据运用电力拖动调速等的设计控制对象及工艺的要求,进行分析。
2)选择合适的设计方案,论证设计方案的合理性。
3)根据设计方案设计合适的电力拖动与控制系统的或运用电力拖动调速的控制系统的主电路和控制电路,并画出相应比较相尽得电路图。
4)进行相应的参数进算,包括电子元器件的参数的计算与选取。
5)软件设计至少要包含比较完整的软件设计流程图。
要求学生能独立完成课程设计内容。
达到本科毕业生应具有的基本设计能力。
三、课程教学的特色说明要求学生掌握一定的理论基础知识,同时具备一定的实践设计技能,并且能够电力拖动与控制系统课程中讲授的内容结合实际情况进行系统设计以及编程。
运动控制系统第四版思考题答案
电力拖动自动控制系统-运动控制系统(阮毅陈伯时)课后答案包括思考题和课后习题第2章2-1 直流电动机有哪几种调速方法?各有哪些特点?答:调压调速,弱磁调速,转子回路串电阻调速,变频调速。
特点略。
2-2 简述直流 PWM 变换器电路的基本结构。
答:直流 PWM 变换器基本结构如图,包括 IGBT 和续流二极管。
三相交流电经过整流滤波后送往直流 PWM 变换器,通过改变直流 PWM 变换器中 IGBT 的控制脉冲占空比,来调节直流 PWM 变换器输出电压大小,二极管起续流作用。
2-3 直流 PWM 变换器输出电压的特征是什么?答:脉动直流电压。
2=4 为什么直流 PWM 变换器-电动机系统比 V-M 系统能够获得更好的动态性能?答:直流 PWM 变换器和晶闸管整流装置均可看作是一阶惯性环节。
其中直流 PWM 变换器的时间常数 Ts 等于其 IGBT 控制脉冲周期(1/fc),而晶闸管整流装置的时间常数 Ts 通常取其最大失控时间的一半(1/(2mf)。
因 fc 通常为 kHz 级,而 f 通常为工频(50 或60Hz)为一周内),m 整流电压的脉波数,通常也不会超过 20,故直流 PWM 变换器时间常数通常比晶闸管整流装置时间常数更小,从而响应更快,动态性能更好。
2=5 在直流脉宽调速系统中,当电动机停止不动时,电枢两端是否还有电压?电路中是否还有电流?为什么?答:电枢两端还有电压,因为在直流脉宽调速系统中,电动机电枢两端电压仅取决于直流 PWM 变换器的输出。
电枢回路中还有电流,因为电枢电压和电枢电阻的存在。
2-6 直流 PWM 变换器主电路中反并联二极管有何作用?如果二极管断路会产生什么后果?答:为电动机提供续流通道。
若二极管断路则会使电动机在电枢电压瞬时值为零时产生过电压。
2-7 直流 PWM 变换器的开关频率是否越高越好?为什么?答:不是。
因为若开关频率非常高,当给直流电动机供电时,有可能导致电枢电流还未上升至负载电流时,就已经开始下降了,从而导致平均电流总小于负载电流,电机无法运转。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 结构特点
转速、转矩双闭环 ASR的输出作为电磁转矩的给定信号; 设置转矩控制内环,可以抑制磁链变化对 转速子系统的影响,从而使转速和磁链子 系统实现了近似的解耦。
转矩和磁链的控制器 用滞环控制器取代通常的PI调节器。
3 控制特点
与VC系统一样,分别控制异步电动机的转速 和磁链,但在具体控制方法上,DTC系统与 VC系统不同的特点是:
在80年代中期,德国学者depenbrock教授于 1985年提出直接转矩控制,其思路是把电机 和逆变器看成一个整体,采用空间电压矢量分 析方法在定子坐标系进行磁通、转矩计算,通 过跟踪型pwm逆变器的开关状态直接控制转 矩。因此,无需对定子电流进行解耦,免去矢 量变换的复杂计算,控制结构简单。
按转子磁链定向矢量控制的基本思想
坐标变换和按转子磁链定向,可以得到等效的 直流电动机模型,在按转子磁链定向坐标系中, 用直流机的方法控制电磁转矩与磁链,然后将 转子磁链定向坐标系中的控制量经逆变换得到 三相坐标系的对应量,以实施控制。
iA iB
iC
is
3/2
变换 is
ism
旋转 变换
i (VR) st
直接转矩控制系统系统组成原理图
逆变器异 步电动机
基本思想:根据定子磁链幅值偏差的符号 和电磁转矩偏差的符号,再依据当前定子 磁链矢量所在的位置,直接选取合适的电 压空间矢量,减小定子磁链幅值的偏差和 电磁转矩的偏差,实现电磁转矩与定子磁 链的控制。
磁链开环转差型矢量控制系统— —间接定向
图6-32 磁链开环转差型矢量控制系统
* s
Lm
Tr
* r
is*t
(6-93)
将转差频率给定信号加上实际转速,得到坐 标系的旋转角速度,经积分环节产生矢量变 换角,实现转差频率控制功能。
(2)定子电流励磁分量给定信号和转子磁 链给定信号之间的关系是靠式
ism
Trs 1
Lm
r
(6-94)
建立的,比例微分环节在动态中获得强迫励 磁效应,从而克服实际磁通的滞后。
1 1
Tr
p
sin
cos
cos
在按转子磁链定向两相旋转坐标系上计算转子磁 链的电流模型
电流模型的不足之处
上述两种计算转子磁链的电流模型都需要实测 的定子电流和转速信号,不论转速高低时都能 适用,但都受电动机参数变化的影响。例如电 机温升和频率变化都会影响转子电阻,磁饱和 程度将影响电感。这些影响都将导致磁链幅值 与位置信号失真,而反馈信号的失真必然使磁 链闭环控制系统的性能降低,这是电流模型的 不足之处。
缺点:电压模型包含纯积分项,积分的初始值 和累积误差都影响计算结果,在低速时,定子 电阻压降变化的影响也较大。
电压模型更适合于中、高速范围,而电流模型 能适应低速。可将两种模型组合使用,在低速 时采用电流模型,中高速采用电压模型。
6.6.6磁链开环转差型矢量控制系 统——间接定向
图6-32 磁链开环转差型矢量控制系统
1)转矩和磁链的控制采用双位式砰-砰控制器, 并在 PWM 逆变器中直接用这两个控制信号 产生电压的SVPWM 波形,从而避开了将定子 电流分解成转矩和磁链分量,省去了旋转变换 和电流控制,简化了控制器的结构。
2)选择定子磁链作为被控量,计算磁链 的模型可以不受转子参数变化的影响, 提高了控制系统的鲁棒性。
计算转子磁链的电压模型
根据电压方程中感应电动势等于磁链的变化率, 利用反电动势的积分求得转子磁链。
利用两相静止坐标系下的定子电压方程求得。
计算转子磁链的电压模型
根据实测的电压和电流信号计算转子磁链
r
Lr [ Lm
(us Rsis)dtLsis]
(6-92)
r
Lr [ Lm
(us Rsis )dtLsis ]
磁链开环转差型矢量控制系统
间接定向的矢量控制系统借助于矢量控制方程 中的转差公式,构成转差型的矢量控制系统。
它继承了基于稳态模型转差频率控制系统的优 点,又利用基于动态模型的矢量控制规律克服 了它大部分的不足之处。
矢量控制系统的特点
按转子磁链定向,实现了定子电流励磁分 量和转矩分量的解耦,需要电流闭环控制。 转子磁链系统的控制对象是稳定的惯性环 节,可以采用磁链闭环控制,也可以是开 环控制。
矢量控制系统的特点
采用连续的PI控制,转矩与磁链变化平稳, 电流闭环控制可有效地限制起、制动电流。
矢量控制系统存在的问题
转子磁链计算精度受易于变化的转子电 阻的影响,转子磁链的角度精度影响定 向的准确性。
需要矢量变换,系统结构复杂,运算量 大。
6.7 异步电动机按定子磁链 控制的直接转矩控制系统
采用磁链开环的控制方式,无需转子磁链幅值, 但对于矢量变换而言,仍然需要转子磁链的位 置信号。由此可知,转子磁链的计算仍然不可 避免,如果利用给转子磁链定值间接计算转子 磁链的位置,可简化系统结构,这种方法称为 间接定向。
间接定向的特点
用定子电流转矩分量给定值和转子磁链给定 值计算转差频率给定信号,
计算转子磁链的电压模型
u s
1 s
Lr
r
is
Rs
p
Lm
cos
Ls
2 r
2 r
r
us
1 s
Lr
is
Rs
p
Lm
r
sin
Ls
图6-31 计算转子磁链的电压模型
电压模型的特点
优点: 算法相对比较简单,易于微机实时计算。
与转子电阻无关,因此受电动机参数变化的影 响较小。
不需要转速信息,这对无速度传感器的系统来 说很有价值。
在计算模型中,
is
Tr
Lm
is
Lm
1
r
Tr p 1
cos
2 r
2 r
r
1
Tr p 1
r
sin
在两相静止坐标系上计算转子磁链的电流模型
iA iB
is
3/2
变换 is
旋转 ism
变换 VR
ist
Lm Tr p 1
sin
r
Lm s
Lm Tr p 1
np
Lm Lr
r
Te
np
Jp
TL
等效直流电动机模型
矢量变换及等效直流电动机模型
6.6.2按转子磁链定向矢量控制的 基本思想
图6-20 矢量控制系统原理结构图
电流闭环控制
图6-23 三相电流闭环控制的矢量控制系统结构图
转子磁链计算
转子磁链的直接检测相对困难,现在实用的系 统中,多采用间接计算的方法,即利用容易测 得的定子电压、电流或转速等信号,借助于转 子磁链模型,实时计算磁链的幅值与空间位置。