基于STM32F103单片机的数据采集系统设计
基于STM32F103单片机电流电压采集系统设计

Telecom Power Technology研制开发单片机电流电压采集系统设计叶锐文,植瑶瑶,于智荣,蒙 露,张海东,覃赵军(广西大学行健文理学院,广西南宁配电网中,各种配电终端的电流、电压、有功功率及无功功率等模拟量的采集是配电网自动化的重要环节。
这些模拟量的采集也是各种仪器和家用电器的必要功能。
因此,设计了基于嵌入式TV1005M和电流互感器TA1005M模块互联后,可以实时显示交流电压、交流电流、功率及电量值;通过设定阈值功率,可以实现对电Design of Current and Voltage Acquisition System Based on STM32F103 MicrocontrollerYU Zhi-rong,MENG Lu,Guangxi University Xingjian College of SciencesandLiberalArtsthe collection of analog,such as currentpower at various distribution terminals is a very important part of distribution network automation. These analog acquisitions are图1 系统结构图1.2 WiFi模块电路安装WiFi模块,硬件设备嵌入WiFi模块后可以直接利用WiFi与屏幕或者手机APP进行连接,实现交流电压、交流电流、功率及电量值的显示。
1.3 继电器控制电路由于设计了具有监控和保护作用的电路,因此设计的系统具有保护功能。
当有功功率达到设定值时,CPU会发出信号,控制继电器断开,排除故障后,可以通过屏幕控制继电器接通恢复供电。
2 采集系统软件设计电流电压采集系统软件设计主要采用模块化编程。
2为程序流程图。
3 采集终端设计3.1 电流采集终端设计电流采集终端采用的是TA1005系列母线内置式· 33 ·定时采集电压电流值是否到时开始初始化系统时钟初始化IO口初始化定时器电压电流采集WiFi数据交互是否成功是是WiFi数据处理LED指示灯处理功率电量计算继电器驱动处理否否图2 程序流程图IN 34OUT 1I 2图3 电阻法直接获取电压34-+I 2I C o =4500/ωR f (μf)C R f 图4 IC 法获取电压 图5 交流电压互感器线圈图典型应用如图6和图7所示,性能参数如表1234I 2R 1R L R L ≤250ΩR 1≥V IN /I 1V 2=I 2R L采样电压图6 典型应用12341I 2R 1R f R 1≥V IN /I 1V 2=I 2RL-+I C C oC o =4500/ωR V out =I 2R f图7 典型应用4 数据采集电路基于互感器的终端,采集到的是交流的模拟量,不能被嵌入式单片机处理,需要转换成数字量,因此需要滤波和整流等环节,如图8和图9所示。
基于STM32F103单片机的数据采集系统设计

基于STM32F103单片机的数据采集系统设计本文。
在现代科技快速发展的时代背景下,数据采集系统作为信息获取的重要手段之一,已经成为各行业必备的工具之一。
STM32F103单片机作为一款性能稳定、功能强大的微控制器,被广泛应用于各种数据采集系统中。
本文将以STM32F103单片机为基础,探讨其在数据采集系统中的设计原理、实现方法以及应用案例,旨在为同行业研究者提供参考和借鉴。
一、STM32F103单片机概述STM32F103单片机是意法半导体公司推出的一款32位MCU,采用ARM Cortex-M3内核,工作频率高达72MHz,具有高性能、低功耗、丰富的外设接口等特点。
在各种嵌入式系统中,STM32F103单片机的应用十分广泛,特别适用于需要较高计算性能和功耗要求低的场景。
二、数据采集系统概述数据采集系统是一种用于采集、处理和传输数据的系统,通常由传感器、数据采集设备、数据处理单元和通信模块等组成。
在工业控制、环境监测、医疗诊断等领域,数据采集系统扮演着重要角色,能够实时监测各种参数并进行数据分析,为决策提供数据支持。
三、STM32F103单片机在数据采集系统中的应用1. 数据采集系统设计原理数据采集系统的设计原理包括数据采集、数据处理和数据传输等环节。
在STM32F103单片机中,可以通过外设接口如ADC、UART等模块实现数据的采集和传输,通过中断和定时器等功能实现数据的处理和分析,从而构建完整的数据采集系统。
2. 数据采集系统实现方法基于STM32F103单片机的数据采集系统的实现方法主要包括硬件设计和软件编程两个方面。
在硬件设计方面,需要根据具体需求选择合适的传感器和外设接口,设计电路连接和布局;在软件编程方面,需要利用STM32CubeMX等工具进行初始化配置,编写相应的驱动程序和应用程序,实现数据的采集、处理和传输。
3. 数据采集系统应用案例以环境监测系统为例,我们可以利用STM32F103单片机搭建一个实时监测空气质量的数据采集系统。
基于STM32的温湿度数据采集系统

目录目录I摘要IIAbstract II第一章绪论41.1温湿度传感器的背景及意义41.2温湿度传感器国内发展现状41.3温湿度传感器的发展趋势4第二章温湿度原理及相关技术6 2.1温湿度传感器62.1.1温度传感器62.1.2 湿度传感器62.1.3 温湿度传感器物理参数及定义7 2.2温湿度传感器的选型72.3 SHT21简述82.3.1 SHT21介绍82.3.2 SHT21通信原理9第三章系统硬件设计113.1 系统硬件设计主要框架113.2 STM32芯片的功能描述123.2.1接口133.2.2 STM32芯片接线图153.3 SHT21温湿度传感器153.4 LCD160显示屏163.4.1 参数及引脚定义163.4.2 LCD1602接线图193.5. 系统复位203.5.1系统复位功能作用203.5.2 系统复位工作原理203.6 电源模块21第四章系统软件设计214.1软件平台简述214.2系统软件程序流程框图234.3 主程序模块244.3.1 主函数244.3.2 显示函数254.3.3 计算函数254.4 SHT21传感器254.4.1 I2C协议函数264.4.2 延迟函数284.5 LCD1602显示屏284.5.1 写指令函数294.5.2 写数据函数304.5.3 温湿度值得显示函数304.5.4 延迟函数31第五章系统仿真315.1 仿真软件介绍315.2 电路仿真32第六章总结与展望34致谢34参考文献35附录错误!未定义书签。
摘要随着当代社会的快速的发展,人们把越来越多的科学技术应用于各个领域。
温湿度的采集是作为自动化科学中一个必须掌握的检测技术,也是一项比较实用的技术。
在温室大棚中确保农业高效生产的重要便是对温湿度、二氧化碳浓度等外部参数的实时与及时准确而精确的监测和协调与调节,同时在文物保护方面,文物对于温湿度非常敏感的,及时检测和对温湿度的变化做出正确的反应,也长久保护文物的一种必要手段。
基于STM32F103C8的温湿度数据采集系统设计

基于STM32F103C8的温湿度数据采集系统设计作者:刘孝赵刘雨宸董宜孝来源:《无线互联科技》2024年第09期摘要:随着科技的不断进步,人们需要更加智能且精密的电器。
由于人们平时的生活与温湿度应用密切相关,文章设计了基于STM32F103C8的温湿度数据采集系统。
该系统包括STM32F103C8T6主控模块、OLED显示屏显示模块和温湿度采集主要模块。
各种模块独立工作,互不干扰,模块电路内部完善、使用方便、相关衍生功能丰富。
该系统将采集到的数据在显示屏上显示,并在智能终端产品上应用,用户反响良好。
关键词:智能;温湿度;采集;测试中图分类号:TP311.1文献标志码:A0 引言随着科学技术与生产力的发展,人们的生活逐渐富裕,开始追求便捷的生活方式,智能家居监测系统也应运而生。
为了能依据室内温湿度来调整空调、风扇等电器的使用,对室内温湿度的实时采集必不可少。
温湿度数据控制对智能家居起着至关重要的作用。
从电器角度看,温度检测设备可以由接觸式和非接触式组成。
接触式是被测量对象和温度测量传感器之间进行充分的热量交互,最终达到热量平衡时,温度传感器的物理参数值就可以表明被测对象的温度值。
而非接触式温度采集则是通过辐射进行热交换,最常用的方式是采用光电式等传感器来实现。
1 硬件电路设计1.1 温度检测电路该系统主要由温湿度采集模块、STM32F103C8T6主控模块和OLED显示屏模块组成。
各个模块之间电路结构简单,易于焊接,性价比高。
依据“Steinhart-Hart方程”和“电阻式湿度传感器原理”可知:当温度升高时,热敏电阻(Negative Temperature Coefficient,NTC)阻值减小。
温度可由Steinhart-Hart方程求得温度T。
R t=R×EXP[B×(1/T2-1/T1)]由此可知,电阻以非线性方式与温度成反比变化。
其中,B:热敏指数,从规格书获取;T1:固定值,25℃;T2:输入目标温度;R t:热敏电阻阻值;R:标称阻值,从规格书获取;EXP:自然指数函数。
基于STM32的温湿度数据采集系统

目录目录I摘要IIAbstract II第一章绪论41.1温湿度传感器的背景及意义41.2温湿度传感器国内发展现状41.3温湿度传感器的发展趋势4第二章温湿度原理及相关技术6 2.1温湿度传感器62.1.1温度传感器62.1.2 湿度传感器62.1.3 温湿度传感器物理参数及定义7 2.2温湿度传感器的选型72.3 SHT21简述82.3.1 SHT21介绍82.3.2 SHT21通信原理9第三章系统硬件设计113.1 系统硬件设计主要框架113.2 STM32芯片的功能描述123.2.1接口133.2.2 STM32芯片接线图153.3 SHT21温湿度传感器153.4 LCD160显示屏163.4.1 参数及引脚定义163.4.2 LCD1602接线图193.5. 系统复位203.5.1系统复位功能作用203.5.2 系统复位工作原理203.6 电源模块21第四章系统软件设计214.1软件平台简述214.2系统软件程序流程框图234.3 主程序模块244.3.1 主函数244.3.2 显示函数254.3.3 计算函数254.4 SHT21传感器254.4.1 I2C协议函数264.4.2 延迟函数284.5 LCD1602显示屏284.5.1 写指令函数294.5.2 写数据函数304.5.3 温湿度值得显示函数304.5.4 延迟函数31第五章系统仿真315.1 仿真软件介绍315.2 电路仿真32第六章总结与展望34致谢34参考文献35附录错误!未定义书签。
摘要随着当代社会的快速的发展,人们把越来越多的科学技术应用于各个领域。
温湿度的采集是作为自动化科学中一个必须掌握的检测技术,也是一项比较实用的技术。
在温室大棚中确保农业高效生产的重要便是对温湿度、二氧化碳浓度等外部参数的实时与及时准确而精确的监测和协调与调节,同时在文物保护方面,文物对于温湿度非常敏感的,及时检测和对温湿度的变化做出正确的反应,也长久保护文物的一种必要手段。
基于STM32单片机的多路数据采集系统设计

基于STM32单片机的多路数据采集系统设计The Design Of Multi-channel Data Acquisition SystemBased On STM32中国地质大学(北京)指导教师2013.3.31摘要本文是基于ARM Cortex-M3的STM32系列嵌入式微控制器的应用实践,介绍了基于STM32单片机的数据采集的硬件设计和软件设计,数据采集系统是模拟域与数字域之间必不可少的纽带,它的存在具有着非常重要的作用。
本文介绍的重点是数据采集系统,而该系统硬件部分的重心在于单片机。
数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机STM32来实现,硬件部分是以单片机为核心,还包括A/D模数转换模块,显示模块,和串行接口部分。
该系统从机负责数据采集并应答主机的命令。
输入数据是由现场模拟信号产生器产生,8路被测电压再通过模数转换器ADC0809进行模数转换,实现对采集到的数据进行模拟量到数字量的转换,并将转换后的数据传输到上位机,由上位机负责数据的接受、处理和显示,并用LCD数码显示器来显示所采集的结果。
软件部分应用Keil uVision4通过C++编写控制软件,对数据采集系统、模数转换系统、数据显示、数据通信等程序进行了设计。
关键词:数据采集 89C52单片机 ADC0809 Keil uVision4AbstractThis article is an application of STM32 series embedded ARM controller based on Cortex-M3 and it describes the hardware design and software design of the data on which based on signal-chip microcomputer .The data collection system is the link between the digital domain and analog domain. It has an very important function. The introductive point of this text is a data to collect the system. The hardware of the system focuses on signal-chip microcomputer .Data collection and communication control use modular design. The data collected to control with correspondence to adopt a machine 8051 to carry out. The part of hardware’s core is STM32, is also includes A/D conversion module, display module, and the serial interface. Slave machine is responsible for data acquisition and answering the host machine.8 roads were measured the electric voltage to pass the in general use mold-few conversion of ADC0809,the realization carries on the conversion that imitates to measure the numeral to measure towards the data that collect .Then send the data to the host machine.the host machine is responsible for data and display, LED digital display is responsible display the data. The software is partly programmed with C++ of the Keil uVision4. The software can realize the function of monitoring and controlling the whole system. It designs much program like data-acquisition treatment,data-display and data-communication ect.Keyword: data acquisition AT89C52 ADC0809 Keil uVision4目录第一章绪论 (1)1.1研究背景及其目的意义 (1)1.2 国内外研究现状 (2)1.3 该课题研究的主要内容内容 (3)第二章数据产生 (4)2.1 现场模拟信号产生器 (4)2.2 基于LM331的电压频率转换 (4)2.3 基于LM331的频率电压转换 (5)第三章数据采集 (7)3.1 数据采集系统 (7)3.2 方案论证 (8)3.2.1 A/D模数转换的选择 (8)3.2.2单片机的选择 (8)3.2.3 显示部分 (8)3.2.4 八路数据采集器 (9)第四章硬件部分 (10)4.1 主机部分 (10)4.1.1 单片机 (10)4.1.2 LCD显示器 (11)4.2 模数转换器ADC0809 (12)第五章软件部分 (16)5.1 简介Keil Uvision4 (16)5.2 本系统所用程序代码 (16)参考文献 (19)第一章绪论1.1研究背景及其目的意义近年来,数据采集及其应用受到了人们越来越广泛的关注,数据采集系统也有了迅速的发展,它可以广泛的应用于各种领域。
基于STM32单片机的多路数据采集系统设计毕业设计

基于STM32单片机的多路数据采集系统设计毕业设计摘要:本篇设计主要以STM32单片机为核心,设计了一个多路数据采集系统。
该系统能够实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。
设计中使用了STM32单片机的AD转换功能实现模拟量信号的采集,使用GPIO口实现数字量信号的采集,通过串口与上位机进行通信。
经过实验验证,该系统能够稳定地采集多路数据,并实现远程数据传输和控制功能,具有较高的可靠性和实用性。
关键词:STM32单片机,数据采集,模拟量信号,数字量信号,上位机通信一、引言随着科技的发展,数据采集系统在工业控制、环境监测、生物医学等领域得到了广泛的应用。
数据采集系统可以将现实世界中的模拟量信号和数字量信号转换为数字信号,并进行处理和存储。
针对这一需求,本文设计了一个基于STM32单片机的多路数据采集系统。
二、设计思路本系统的设计思路是通过STM32单片机实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。
该系统采用了模块化设计方法,将系统分为采集模块、显示模块和通信模块。
1.采集模块采集模块通过STM32单片机的AD转换功能实现模拟量信号的采集,通过GPIO口实现数字量信号的采集。
通过在程序中设置采样频率和采样精度,可以对不同类型的信号进行稳定和准确的采集。
2.显示模块显示模块通过LCD显示屏显示采集到的数据。
通过程序设计,可以实现数据的实时显示和曲线绘制,使得用户可以直观地观察到采集数据的变化。
3.通信模块通信模块通过串口与上位机进行通信。
上位机通过串口发送控制命令给STM32单片机,实现对系统的远程控制。
同时,STM32单片机可以将采集到的数据通过串口发送给上位机,实现数据的远程传输。
三、实验结果与分析通过实验验证,本系统能够稳定地采集多路模拟量和数字量信号,并通过串口与上位机进行通信。
系统能够将采集到的数据实时显示在LCD屏幕上,并通过串口传输给上位机。
基于单片机的CAN总线数据采集设计与实现

基于单片机的CAN总线数据采集设计与实现随着物联网和智能化技术的发展,嵌入式系统在日常生活中的应用越来越广泛,其中基于CAN总线的数据采集系统受到了广泛关注。
CAN总线是一种分布式实时控制网络,具有可靠性高、传输速率快等特点,适合用于工业控制、车辆通讯、航空航天等领域。
本文将介绍一种基于单片机的CAN总线数据采集系统的设计与实现方法。
一、系统设计本系统的硬件组成包括STM32F103单片机、CAN总线模块以及传感器模块。
其中,STM32F103是一款高性能低功耗的32位微控制器,具有强大的计算和通讯能力;CAN总线模块可以实现CAN总线的发送和接收功能;传感器模块用于采集环境数据,例如温度、湿度、压力等。
系统设计流程如下:1. 确定系统功能和需求。
2. 选取合适的硬件和软件平台。
3. 设计硬件电路并连接。
4. 选择适合的编程语言和开发工具。
5. 编写程序实现系统功能。
二、系统实现1. 硬件连接本系统的硬件连接如下图所示:(图片来源于网络)(1)Keil uVision5Keil uVision5是一款集成开发环境(IDE),支持多种处理器架构,包括ARM、Cortex-M、8051等。
它集编译器、调试器、仿真器、IDE于一身,支持多种编程语言和工具链。
(2)STM32CubeMXSTM32CubeMX是一款自动生成STM32微控制器初始化代码的软件工具,可以快速构建STM32的应用程序。
(3)CAN analyzerCAN analyzer是用于监控和分析CAN总线的软件工具,可以捕获CAN总线数据,并以图表的形式展示出来。
3. 系统程序设计(1)初始化CAN总线模块在程序中首先需要初始化CAN总线模块,确定传输速率、过滤规则等配置。
(2)读取传感器数据然后需要读取传感器数据,可以使用外部中断或者定时器中断的方式进行采样,获取环境数据并存储到变量中。
(3)将数据发送到CAN总线最后需要将采集到的数据发送到CAN总线,使用CAN总线模块的发送函数将数据打包成CAN数据帧发送出去。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于STM32F103单片机的数据采集系统设计
摘要
本文设计了一个基于STM32F103单片机的数据采集系统,该系统可以采集并存储来自传感器的各种类型的数据,并将其通过串口传输给上位机进行进一步的处理和分析。
在系统设计过程中,我们使用了C 语言作为主要的开发语言,并使用了开发工具Keil uVision5进行开发和调试。
使用硬件电路实现传感器接口,可以自适应支持多种传感器,如温湿度传感器,光照传感器等。
通过实际测试,本系统能够稳定地采集数据,并提供高效的数据传输速度和数据处理能力。
关键词:STM32F103、数据采集、传感器接口、串口传输
Abstract
This article designs a data acquisition system based on STM32F103 microcontroller, which can collect and store various types of data from sensors, and transmit them to the upper computer for further processing and analysis through serial port. In the process of system design, we use C language as the main development language and use Keil uVision5 as the development and debugging tool. Using hardware circuits to implement sensor interfaces, it can adaptively support multiple sensors such as temperature and humidity sensors, light sensors, etc. Through actual testing, this system can stably collect data and provide high-speed data transmission and processing capabilities.
Keywords: STM32F103, data acquisition, sensor interface, serial transmission
1.引言
随着传感器技术的不断发展,越来越多的数据采集应用得到了广泛的应用。
基于微处理器的数据采集系统可以提供高效、高精度的数
据采集和处理能力,具有广泛的应用前景。
本文设计的数据采集系统
主要采用了STM32F103单片机作为核心,实现了多种传感器接口和串
口数据传输功能,可以适用于多种数据采集应用场景,如环境监测、
工业控制、医疗检测等。
2.系统设计
2.1 系统硬件设计
系统硬件主要包括传感器接口电路和串口通信电路两部分。
传感器接口电路采用了基于模拟输入通道的设计方案。
本系统设
计了三个模拟输入通道AI0、AI1和AI2,每个通道都可以接入不同类
型的传感器。
例如,如果需要接入一个温湿度传感器,可以将传感器
的数据线连接到AI0通道,通过读取模拟输入的电压信号来获取传感
器的数值;如果需要接入一个光照传感器,可以将传感器的数据线连
接到AI1通道,通过读取模拟输入的电压信号来获取传感器的数值。
为了确保传感器的数据采集精度,我们在电路设计中加入了多级滤波
器和放大器,以提高模拟输入通道的信号质量和灵敏度。
串口通信电路采用了STM32F103内置的USART串口通信模块。
本
系统设计了一个单向串口通信接口,将STM32F103的USART Tx端口连
接到串口调试器或上位机的Rx端口,以实现数据的实时传输。
同时,
本系统使用了BSP库中提供的USART接口函数,以实现 USART初始化、数据发送、数据接收等功能,保证串口通信的稳定可靠性。
2.2 系统软件设计
系统软件主要包括操作系统、应用程序和驱动程序三部分。
操作系统采用了FreeRTOS,该OS具有轻量级、高可靠性和易于
移植等特点。
本系统利用FreeRTOS提供的任务调度机制,实现多任务
并发处理数据采集、存储和串口传输等功能。
应用程序主要包括数据采集和数据处理两部分。
数据采集程序负
责读取和处理传感器接口的数据,并将结果存储到系统内存中;数据
处理程序负责对采集的数据进行处理和分析,例如进行数据滤波、均
值计算、数据可视化等操作。
驱动程序采用了STM32F103自带的HAL库和BSP库,以实现对系
统硬件的控制和操作。
通过设置ADC采样频率、UART波特率等参数,
以调整系统的数据采集速度和数据传输速率。
3.系统测试与评估
本文采用了基于模拟电路模拟数据源的方法,对设计的数据采集系统进行了测试和评估。
测试结果表明,该系统能够正常采集温度、湿度、光照等多种类型的传感器数据,并通过串口传输给上位机进行进一步的处理和分析。
测试过程中,系统的数据采集精度和稳定性良好,数据传输速度达到了115200bps,能够满足多种数据采集和传输需求。
4.总结与展望
本文设计了一种基于STM32F103单片机的数据采集系统,该系统可以实现多种传感器接口和串口数据传输功能,适用于多种数据采集应用场景。
通过实际测试,本系统具有高效的数据采集和传输能力,可以稳定地采集和处理各种类型的传感器数据。
未来,我们将继续优化系统性能,进一步扩展系统应用范围。