人教版八年级下册数学教案
新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。
八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。
八年级数学教案人教版(通用19篇)

八年级数学教案人教版(通用19篇)八年级数学教案 1教学目标1.知识与技能领会运用完全平方公式进行因式分解的方法,发展推理能力.2.过程与方法经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.情感、态度与价值观培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的.应用能力.重、难点与关键1.重点:理解完全平方公式因式分解,并学会应用.2.难点:灵活地应用公式法进行因式分解.3.关键:应用“化归”、“换元”的思想方法,把问题进行形式上的转化,•达到能应用公式法分解因式的目的教学方法采用“自主探究”教学方法,在教师适当指导下完成本节课内容.教学过程一、回顾交流,导入新知【问题牵引】1.分解因式:(1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;(3)x2-0.01y2.【知识迁移】2.计算下列各式:(1)(m-4n)2;(2)(m+4n)2;(3)(a+b)2;(4)(a-b)2.【教师活动】引导学生完成下面两道题,并运用数学“互逆”的思想,寻找因式分解的规律.3.分解因式:(1)m2-8mn+16n2(2)m2+8mn+16n2;(3)a2+2ab+b2;(4)a2-2ab+b2.【学生活动】从逆向思维的角度入手,很快得到下面答案:解:(1)m2-8mn+16n2=(m-4n)2;(2)m2+8mn+16n2=(m+4n)2;(3)a2+2ab+b2=(a+b)2;(4)a2-2ab+b2=(a-b)2.【归纳公式】完全平方公式a2±2ab+b2=(a±b)2.二、范例学习,应用所学【例1】把下列各式分解因式:(1)-4a2b+12ab2-9b3;(2)8a-4a2-4;(3)(x+y)2-14(x+y)+49;(4)+n4.【例2】如果x2+axy+16y2是完全平方,求a的值.【思路点拨】根据完全平方式的定义,解此题时应分两种情况,即两数和的平方或者两数差的平方,由此相应求出a的值,即可求出a3.三、随堂练习,巩固深化课本P170练习第1、2题.【探研时空】1.已知x+y=7,xy=10,求下列各式的值.(1)x2+y2;(2)(x-y)22.已知x+=-3,求x4+的值.四、课堂总结,发展潜能由于多项式的因式分解与整式乘法正好相反,因此把整式乘法公式反过来写,就得到多项式因式分解的公式,主要的有以下三个:a2-b2=(a+b)(a-b);a2±ab+b2=(a±b)2.在运用公式因式分解时,要注意:(1)每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;(2)•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;(3)当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解.五、布置作业,专题突破八年级数学教案 2一、内容和内容解析1.内容三角形高线、中线及角平分线的概念、几何语言表达及它们的画法.2.内容解析本节内容概念较多,有三角形的高、中线、角平分线和重心等有关概念;需要学生动手的频率也较高,要掌握任意三角形的高、中线、角平分线的画法,培养学生动手操作及解决问题的能力;鼓励学生主动参与,体验几何知识在现实生活中的真实性,激发学生热爱生活、勇于探索的思想感情。
关于名师新人教版八年级数学下册教案5篇

关于名师新人教版八年级数学下册教案5篇关于名师新人教版八年级数学下册教案5篇数学的本质在于它的自由。
数学是打开科学大门的钥匙。
数学是各式各样的证明技巧。
挑选好一个确定得研究对象,锲而不舍。
你可能永远达不到终点,但是一路上准可以发现一些有趣的东西。
这里给大家分享一些关于名师新人教版八年级数学下册教案,供大家参考学习。
名师新人教版八年级数学下册教案(精选篇1)一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
1.平移2.平移的性质:⑴经过平移,对应点所连的线段平行且相等;⑵对应线段平行且相等,对应角相等。
⑶平移不改变图形的大小和形状(只改变图形的位置)。
(4)平移后的图形与原图形全等。
3.简单的平移作图①确定个图形平移后的位置的条件:⑴需要原图形的位置;⑵需要平移的方向;⑶需要平移的距离或一个对应点的位置。
②作平移后的图形的方法:⑴找出关键点;⑵作出这些点平移后的对应点;⑶将所作的对应点按原来方式顺次连接,所得的;二、旋转:在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角称为旋转角。
1.旋转2.旋转的性质⑴旋转变化前后,对应线段,对应角分别相等,图形的大小,形状都不改变(只改变图形的位置)。
⑵旋转过程中,图形上每一个点都绕旋转中心沿相同方向转动了相同的角度。
⑶任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
⑷旋转前后的两个图形全等。
3.简单的旋转作图⑴已知原图,旋转中心和一对对应点,求作旋转后的图形。
⑵已知原图,旋转中心和一对对应线段,求作旋转后的图形。
⑶已知原图,旋转中心和旋转角,求作旋转后的图形。
三、分析组合图案的形成①确定组合图案中的“基本图案”②发现该图案各组成部分之间的内在联系③探索该图案的形成过程,类型有:⑴平移变换;⑵旋转变换;⑶轴对称变换;⑷旋转变换与平移变换的组合;⑸旋转变换与轴对称变换的⑹轴对称变换与平移变换的组合。
人教版初中数学八年级下册《勾股定理》教案

人教版初中数学八年级下册《勾股定理》教案一. 教材分析人教版初中数学八年级下册《勾股定理》是学生在学习了平面几何基本概念和性质、三角形的知识后,进一步研究直角三角形的一个重要性质。
本节课通过探究勾股定理,培养学生的逻辑思维能力和空间想象能力,为后续学习勾股定理的运用和解决实际问题打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察、操作、推理能力。
但勾股定理的证明较为抽象,需要学生能够克服困难,积极思考,理解并掌握证明过程。
三. 教学目标1.了解勾股定理的定义和证明过程。
2.能够运用勾股定理解决直角三角形的相关问题。
3.培养学生的逻辑思维能力和空间想象能力。
4.激发学生对数学的兴趣,培养合作探究的精神。
四. 教学重难点1.教学重点:勾股定理的定义和证明过程。
2.教学难点:勾股定理的证明过程和运用。
五. 教学方法采用问题驱动法、合作探究法、讲解法、实践操作法等,引导学生主动参与,积极思考,培养学生的创新精神和实践能力。
六. 教学准备1.教具:直角三角形、尺子、三角板、多媒体设备。
2.学具:学生用书、练习册、文具。
七. 教学过程1.导入(5分钟)教师通过展示古代数学家赵爽的《勾股定理图》,引导学生观察、思考,提出问题:“为什么说这是一个直角三角形?它的两条直角边的边长是多少?”2.呈现(10分钟)教师引导学生观察、操作,发现直角三角形中,两条直角边的平方和等于斜边的平方。
教师呈现勾股定理的表述:“在一个直角三角形中,斜边和直角边的平方和等于斜边的平方。
”3.操练(10分钟)教师学生进行小组合作,运用勾股定理计算直角三角形的边长。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师通过多媒体展示一系列直角三角形的问题,引导学生运用勾股定理解决问题。
学生独立思考,教师选取部分学生进行讲解。
5.拓展(10分钟)教师引导学生思考:“勾股定理在其他领域的应用有哪些?”学生分组讨论,分享自己的看法。
八年级数学下册电子版全册教案(新人教版)

第十六章二次根式16.1二次根式第1课时二次根式的概念和性质1.二次根式的概念和应用.2.二次根式的非负性.重点二次根式的概念.难点二次根式的非负性.一、情景导入师:(多媒体展示)请同学们看屏幕,这是东方明珠电视塔.电视节目信号的传播半径r/km与电视塔高h/km之间有近似关系r=2Rh(R为地球半径).如果两个电视塔的高分别为h1km,h2km,那么它们的传播半径之比为多少?同学们能化简这个式子吗?由学生计算、讨论后得出结果,并提问.生:半径之比为2Rh12Rh2,暂时我们还不会对它进行化简.师:那么怎么去化简它呢?这要用到二次根式的运算和化简.如何进行二次根式的运算?如何进行二次根式的化简?这将是本章所学的主要内容.二、新课教授活动1:知识迁移,归纳概念用含根号的式子填空.(1)17的算术平方根是________;(2)如图,要做一个两条直角边长分别为7 cm和4 cm的三角形,斜边长应为________cm;(3)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为________m;(4)面积为3的正方形的边长为________,面积为a的正方形的边长为____________;(5)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,则t=________.【答案】(1)17(2)65(3)65(4)3 a (5)h 5活动2:二次根式的非负性(1)式子a表示的实际意义是什么?被开方数a满足什么条件时,式子a才有意义?(2)当a>0时,a________0;当a=0时,a________0;二次根式是一个________.【答案】(1)a的算术平方根,被开方数a必须是非负数(2)>=非负数老师结合学生的回答,强调二次根式的非负性.当a>0时,a表示a的算术平方根,因此a>0;当a=0时,a表示0的算术平方根,因此a=0.也就是说,当a≥0时,a≥0.三、例题讲解【例】当x是怎样的实数时,x-2在实数范围内有意义?解:由x -2≥0,得x ≥2.所以当x ≥2时,x -2在实数范围内有意义. 四、巩固练习1.已知a -2+b +12=0,求-a 2b 的值.【答案】a -2≥0,b +12≥0,又∵它们的和为0,∴a -2=0且b +12=0,解得a =2,b =-12.∴-a 2b =-22×(-12)=2.2.若x ,y 使x -1+1-x -y =3有意义,求2x +y 的值. 【答案】-1 五、课堂小结1.本节课主要学习了二次根式的概念.形如a(a ≥0)的式子叫做二次根式,“ ”称为二次根号.2.二次根式的被开方数必须是什么数才有意义?a(a ≥0)又是什么数?六.课后作业必做题: 选做题: 七.板书设计第2课时 二次根式的化简1.理解(a)2=a(a ≥0),并能利用它进行计算和化简.2.通过具体数据的解答,探究a 2=a(a ≥0),并利用这个结论解决具体问题.重点理解并掌握(a)2=a(a ≥0),a 2=a(a ≥0)以及它们的运用. 难点探究结论.一、复习导入教师复习口述上节课的重要内容,并板书:1.形如a(a≥0)的式子叫做二次根式.2.a(a≥0)是一个非负数.那么,当a≥0时,(a)2等于什么呢?下面我们一起来探究这个问题.二、新课教授活动1:根据算术平方根的意义填空:(4)2=____;(2)2=____;(13)2=____;(52)2=____;(0.01)2=____;(0)2=____.由学生计算、讨论得出结果,并提问部分过程,教师进行点评.老师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此(4)2=4.同理:(2)2=2;(13)2=13;(52)2=52;(0.01)2=0.01;(0)2=0.所以归纳出:(a)2=a(a≥0).【例1】教材第3页例2活动2:填空:22=___;0.12=___;(13)2=___;(37)2=___;(212)2=___;02=___.教师点评:根据算术平方根的意义,我们可以得到:22=2;0.12=0.1;(13)2=13;(37)2=37;(212)2=212;02=0.所以归纳出:a2=a(a≥0).【例2】教材第4页例3教师点评:当a≥0时,a2=a;当a≤0时,a2=-a.三、课堂小结本节课应理解并掌握(a)2=a(a≥0)和a2=a(a≥0)及其运用,同时应理解a2=-a(a≤0).四.课后作业必做题:选做题:五.板书设计16.2二次根式的乘除第1课时二次根式的乘法理解并掌握a·b=ab(a≥0,b≥0),a·b=a·b(a≥0,b≥0),会利用它们进行计算和化简.重点a·b=ab(a≥0,b≥0),a·b=a·b(a≥0,b≥0)及它们的运用.难点利用逆向思维,导出a·b=a·b(a≥0,b≥0).一、创设情境,导入新课活动1:发现探究填空:(1)4×9=_____,4×9=______;(2)25×16=_____,25×16=______;(3)19×36=____,19×36=_______;(4)100×0=_____,100×0=______.生:(1)4×9=6,4×9=6;(2)25×16=20,25×16=20;(3)19×36=2,19×36=2;(4)100×0=0,100×0=0.试一试,参考上面的结果,比较四组等式的大小关系.生:上面各组中两个算式的结果相等.二、新课教授活动2:总结规律结合刚才的计算,学生分组讨论,教师提问部分学生,最后教师综合学生的答案,加以点评,归纳出二次根式的乘法法则.教师点评:1.被开方数都是非负数.2.两个非负数算术平方根的积等于它们积的算术平方根.一般地,二次根式的乘法法则为:a·b=ab(a≥0,b≥0)由等式的对称性,反过来:ab=a·b(a≥0,b≥0)活动3:讲练结合教材第6~7页例题三、巩固练习完成课本第7页的练习.【答案】课本练习第1题:(1)10;(2)6;(3)23;(4)2.第2题:(1)77;(2)15;(3)2y;(4)4bc ac.第3题:4 5.四、课堂小结本节课应掌握:a·b=ab(a≥0,b≥0),ab=a·b(a≥0,b≥0)及其应用.五.课后作业必做题:选做题:六.板书设计第2课时二次根式的除法理解ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0),会利用它们进行计算和化简.重点理解并掌握ab=ab(a≥0,b>0),ab=ab(a≥0,b>0),利用它们进行计算和化简.难点归纳二次根式的除法法则.一、复习导入活动1:1.由学生回答二次根式的乘法法则及逆向等式.2.填空.(1)925=______,925=_____;(2)164=_____,164=_____;(3)8149=_____,8149=_____;(4)3664=_____,3664=_____.二、新课教授活动2:先由学生对上面的结果进行比较,观察每组两个算式结果的大小关系,并总结规律.教师点评:一个非负数的算术平方根除以一个正数的算术平方根,等于它们商的算术平方根.一般地,二次根式的除法法则是:ab=ab(a≥0,b>0)由等式的对称性,反过来:ab=ab(a≥0,b>0)【例】教材第8~9页例题三、巩固练习课本第10页练习第1题.【答案】(1)3(2)23(3)33(4)2a四、课堂小结本节课应掌握ab=ab(a≥0,b>0)和ab=ab(a≥0,b>0)及其应用.五.课后作业必做题:选做题:六.板书设计第3课时 最简二次根式最简二次根式的概念、利用最简二次根式的概念和性质进行二次根式的化简和运算.重点最简二次根式的运用. 难点会判断这个二次根式是否是最简二次根式.一、复习导入(学习活动)请同学们完成下列各题.(请四位同学上台板书) 计算:(1)23;(2)2618;(3)82a ;(4)x 3x 2y.教师点评:(1)23=63;(2)2618=233;(3)82a =2a a ;(4)x 3x 2y=xy y .二、新课教授教师点评:上面这些式子的结果具有如下两个特点: 1.被开方数不含分母.2.被开方数中不含能开得尽方的因数或因式.师:我们把满足上述两个条件的二次根式,叫做最简二次根式.(教师板书) 教师强调:在二次根式的运算中,一般要把最后结果化为最简二次根式. 【例1】判断下列式子是不是最简二次根式,为什么?(1)3xy 12x ;(2)25a 3a 3;(3)1x;(4)0.2a.解:(1)被开方数中有因数12,因此它不是最简二次根式;(2)被开方数中有开得尽方的因式a 2,因此它不是最简二次根式;(3)被开方数中有分母,因此它不是最简二次根式;(4)被开方数中有因数0.2,它不是整数,所以它不是最简二次根式.【例2】化简:(1)278;(2)12x 2y 3(x ≥0);(3)a 2b 4+a 4b 2(ab ≥0).解:(1)278=27×28×2=916×6=346;(2)12x 2y 3=4x 2y 2·3y =2xy 3y ;(3)a 2b 4+a 4b 2=a 2b 2(b 2+a 2)=ab a 2+b 2. 【例3】教材第9页例7 三、课堂小结1.本节课应掌握最简二次根式的特点及其运用. 2.二次根式的运算结果要化为最简二次根式. 四.课后作业必做题:选做题:五.板书设计16.3二次根式的加减第1课时二次根式的加减理解并掌握二次根式加减的方法,并能用二次根式加减法法则进行二次根式的加减运算.重点理解并掌握二次根式加减计算的方法.难点二次根式的化简、合并被开方数相同的最简二次根式.一、复习导入(学生活动)1.计算:(1)x+2x;(2)3a-2a+4a;(3)2x2-3x2+5x2;(4)2a2-4a2+3a.2.教师点评:上面的运算实际上就是以前所学习的合并同类项,合并同类项就是字母连同指数不变,系数相加减.二、新课教授(学生活动)1.类比计算,说明理由.(1)2+22;(2)38-28+48;(3)32+8;(4)23-33+12.2.教师点评:(1)2+22=(1+2)2=32;(2)38-28+48=(3-2+4)8=58=102;(3)虽然表面上2与8的被开方数不同,不能当作被开方数相同,但8可化为22,32+8=32+22=(3+2)2=52;(4)同样12可化为23,23-33+12=23-33+23=(2-3+2)3= 3.所以在用二次根式进行加减运算时,如果被开方数相同则可以进行合并,因此可将二次根式先化为最简二次根式,比较被开方数是否相同.因此可得:二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.【例1】教材第13页例1 【例2】教材第13页例2 三、巩固练习教材第13页练习第1,2题.【答案】第1题:(1)不正确,两边不相等;(2)不正确,两边不相等;(3)正确.第2题:(1)-47;(2)35;(3)102-33;(4)36+142.四、课堂小结本节课应掌握进行二次根式加减运算时,先把不是最简二次根式的化成最简二次根式,再把相同被开方数的最简二次根式进行合并.五.课后作业必做题: 选做题: 六.板书设计第2课时 二次根式的加减乘除混合运算含有二次根式的式子进行加减乘除混合运算和含有二次根式的多项式乘法公式的应用.重点二次根式的加减乘除混合运算. 难点由整式运算知识迁移到含二次根式的运算. 一、复习导入(学生活动):请同学们完成下列各题. 计算:(1)(3x 2+2x +2)·4x ; (2)(4x 2-2xy)÷(-2xy); (3)(3a +2b)(3a -2b); (4)(2x +1)2+(2x -1)2. 二、新课教授由于整式运算中的x ,y ,a ,b 是字母,它的意义十分广泛,可以代表一切,当然也可以代表二次根式,因此整式中的运算规律也适用于二次根式,下面我们就使用这些规律来进行计算.【例1】计算: (1)(8+3)×6;(2)(42-36)÷2 2.分析:二次根式仍然满足整式的运算规律,所以可直接用整式的运算规律. 解:(1)(8+3)×6=8×6+3× 6 =48+18=43+32; (2)(42-36)÷2 2=42÷22-36÷22=2-323.【例2】计算:(1)(2+3)(2-5); (2)(5+3)(5-3); (3)(3-2)2.分析:第(1)题可类比多项式乘以多项式法则来计算,第(2)题把5当作a ,3当作b ,就可以类比(a +b)(a -b)=a 2-b 2,第(3)题可类比(a -b)2=a 2-2ab +b 2来计算.解:(1)(2+3)(2-5) =(2)2+32-52-15 =2+32-52-15 =-13-22;(2)(5+3)(5-3)=(5)2-(3)2=5-3=2; (3)(3-2)2=(3)2-2×3×2+(2)2 =5-2 6. 三、巩固练习教材第14页练习第1,2题.【答案】第1题:(1)6+10;(2)4+22;(3)11+55;(4)4.第2题:(1)9;(2)a -b ;(3)7+43;(4)22-410.四、课堂小结本节课应掌握利用整式运算的规律进行二次根式的乘除、乘方等运算.五.课后作业必做题: 选做题: 六.板书设计第十七章勾股定理17.1勾股定理第1课时勾股定理(1)了解勾股定理的发现过程,理解并掌握勾股定理的内容,会用面积法证明勾股定理,能应用勾股定理进行简单的计算.重点勾股定理的内容和证明及简单应用.难点勾股定理的证明.一、创设情境,引入新课让学生画一个直角边分别为3 cm和4 cm的直角△ABC,用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ABC,用刻度尺量出斜边的长.你是否发现了32+42与52的关系,52+122与132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2.对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1.阅读教材第22~23页图17.1-2和图17.1-3,引导学生观察思考.2.组织学生小组合作学习.问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论.生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和.师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1)猜想:命题1:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.(2)是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明.到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.小组合作探究:a.以直角三角形ABC的两条直角边a,b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?c.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法.想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.(1)在Rt△ABC中,∠C=90°,a=8,b=15,则c=________;(2)在Rt△ABC中,∠B=90°,a=3,b=4,则c=________;(3)在Rt△ABC中,∠C=90°,c=10,a∶b=3∶4,则a=________,b=________;(4)一个直角三角形的三边为三个连续偶数,则它的三边长分别为________;(5)已知等边三角形的边长为2 cm,则它的高为________cm ,面积为________cm2.【答案】(1)17(2)7(3)68(4)6,8,10(5)3 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt△ABC中,∠C=90°.(1)如果a=7,c=25,则b=________;(2)如果∠A=30°,a=4,则b=________;(3)如果∠A=45°,a=3,则c=________;(4)如果c=10,a-b=2,则b=________;(5)如果a,b,c是连续整数,则a+b+c=________;(6)如果b=8,a∶c=3∶5,则c=________.【答案】(1)24(2)43(3)32(4)6(5)12(6)10四、课堂小结1.本节课学到了什么数学知识?2.你了解了勾股定理的发现和验证方法了吗?3.你还有什么困惑?五.课后作业必做题:选做题:六.板书设计第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则AC=12 m,BC=5 m,AB是梯子的长度,所以在Rt△ABC中,AB2=AC2+BC2=122+52=132,则AB=13 m.所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a,b,就可以求出斜边c的长.由勾股定理可得a2=c2-b2或b2=c2-a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2:一个门框的尺寸如图所示,一块长3 m、宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1:从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2:在长方形ABCD中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ABC中,根据勾股定理AC2=AB2+BC2=12+22=5.因此AC=5≈2.236.因为AC>木板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是43米,则这两棵树之间的垂直距离是________米,水平距离是________米.分析:由∠CAB=30°易知垂直距离为23米,水平距离是6米.【答案】23 6【例2】教材第25页例2三、巩固练习1.如图,欲测量松花江的宽度,沿江岸取B,C两点,在江对岸取一点A,使AC垂直江岸,测得BC=50米,∠B=60°,则江面的宽度为________.【答案】503米2.某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1.谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2.本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.五.课后作业必做题:选做题:六.板书设计第3课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2,3,5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,AC=A′C′.求证:△ABC≌△A′B′C′.证明:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,根据勾股定理,得BC=AB2-AC2,B′C′=A′B′2-A′C′2.又AB=A′B′,AC=A′C′,∴BC=B′C′,∴△ABC≌△A′B′C′(SSS).师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出13所对应的点吗?教师可指导学生寻找像长度为2,3,5,…这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2,3,5,…,所以只需画出长为2,3,5,…的线段即可,我们不妨先来画出长为2,3,5,…的线段.生:长为2的线段是直角边都为1的直角三角形的斜边,而长为5的线段是直角边为1和2的直角三角形的斜边.师:长为13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c=13,两直角边长分别为a,b,根据勾股定理a2+b2=c2,即a2+b2=13.若a,b 为正整数,则13必须分解为两个平方数的和,即13=4+9,a2=4,b2=9,则a=2,b=3,所以长为13的线段是直角边长分别为2,3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示13的点.生:步骤如下:1.在数轴上找到点A,使OA=3.2.作直线l垂直于OA,在l上取一点B,使AB=2.3.以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C,B点是两个时刻飞机的位置,∠C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ABC中,∠C=90°,AB=5000米,AC=4800米.由勾股定理,得AB2=AC2+BC2,即50002=BC2+48002,所以BC=1400米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400×6×60=504000(米)=504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD=3分米,CB=6分米,AD=AB,BC⊥AD,所以在Rt△ACB中,AB2=AC2+BC2,即(AC+3)2=AC2+62,AC2+6AC+9=AC2+36,∴6AC=27,AC =4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示17的点.解:以17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为17,另外两条直角边为整数的直角三角形.三、课堂小结1.进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2.你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.五.课后作业必做题:选做题:六.板书设计17.2勾股定理的逆定理第1课时勾股定理的逆定理(1)1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.重点探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点归纳猜想出命题2的结论.一、复习导入活动探究(1)总结直角三角形有哪些性质;(2)一个三角形满足什么条件时才能是直角三角形?生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.师:那么一个三角形满足什么条件时,才能是直角三角形呢?生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形.生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形.画画看,如果三角形的三边长分别为2.5 cm,6 cm,6.5 cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm,7.5 cm,8.5 cm,再试一试.生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形.生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且2.52+62=6.52.再换成三边长分别为4 cm,7.5 cm,8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+7.52=8.52.师:很好!我们通过实际操作,猜想结论.命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.再看下面的命题:命题1如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.它们的题设和结论各有何关系?师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2是命题1的逆命题.二、例题讲解【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1)同旁内角互补,两条直线平行;(2)如果两个实数的平方相等,那么这两个实数相等;(3)线段垂直平分线上的点到线段两端点的距离相等;(4)直角三角形中30°角所对的直角边等于斜边的一半.分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、巩固练习教材第33页练习第2题.四、课堂小结师:通过这节课的学习,你对本节内容有哪些认识?学生发言,教师点评.五.课后作业必做题:选做题:六.板书设计第2课时勾股定理的逆定理(2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的概念.重点勾股定理的逆定理的证明及互逆定理的概念.难点理解互逆定理的概念.一、复习导入师:我们学过的勾股定理的内容是什么?生:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.师:根据上节课学过的内容,我们得到了勾股定理逆命题的内容:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.师:命题2是命题1的逆命题,命题1我们已证明过它的正确性,命题2正确吗?如何证明呢?师生行为:让学生试着寻找解题思路,教师可引导学生理清证明的思路.师:△ABC的三边长a,b,c满足a2+b2=c2.如果△ABC是直角三角形,它应与直角边是a,b的直角三角形全等,实际情况是这样吗?我们画一个直角三角形A′B′C′,使B′C′=a,A′C′=b,∠C′=90°(如图),把画好的△A′B′C′剪下,放在△ABC上,它们重合吗?生:我们所画的Rt△A′B′C′,(A′B′)2=a2+b2,又因为c2=a2+b2,所以(A′B′)2=c2,即A′B′=c.△ABC和△A′B′C′三边对应相等,所以两个三角形全等,∠C=∠C′=90°,所以△ABC为直角三角形.即命题2是正确的.师:很好!我们证明了命题2是正确的,那么命题2就成为一个定理.由于命题1证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:但是不是原命题成立,逆命题一定成立呢?生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.师:你还能举出类似的例子吗?生:例如原命题:如果两个实数相等,那么它们的绝对值也相等.逆命题:如果两个数的绝对值相等,那么这两个实数相等.显然原命题成立,而逆命题不一定成立.二、新课教授【例1】教材第32页例1。
人教版八年级数学下册20.1:平均数(教案)

1.理论介绍:首先,我们要了解平均数的基本概念。平均数是指一组数据之和再除以数据的个数,它是表示数据集中趋势的一个重要指标。
2.案例分析:接下来,我们来看一个具体的案例。比如,计算某商品在过去一周内的平均销售量,这个案例展示了平均数在实际中的应用,以及它如何帮助我们解决问题。
举例:在讲解平均数的定义时,可以通过班级学生身高的例子,让学生计算平均身高,强调平均数能反映整体水平。
2.教学难点
-数据的波动性:理解平均数受极端值影响较大的问题,即数据波动对平均数的影响。
-平均数的代表性:分析当数据分布不均匀时,平均数可能无法准确反映数据的一般情况。
-平均数的计算准确性:在处理大量数据时,如何避免计算错误,特别是数据的求和和除法运算。
-解决实际问题中的平均数应用:如何将实际问题转化为平均数的计算问题,以及如何选择合适的数据进行分析。
举例:在解释数据的波动性时,可以比较两组数据,一组数据分布均匀,另一组数据存在极端值,让学生观察平均数的差异,理解极端值对平均数的影响。在解决实际问题时,可以设置一些综合性的练习题,如计算班级学生的平均成绩,同时考虑到请假学生的影响,让学生学会处理这些特殊情况。通过这些方法,帮助学生突破教学难点,确保对平均数的理解透彻。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“平均数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
其次,关于平均数的性质和数据的波动性,这是本节课的难点。虽然我通过举例和比较来进行讲解,但仍有部分同学表示这部分内容有些难以理解。在以后的教学中,我需要寻找更直观、生动的方法来解释这个概念,帮助学生更好地突破这个难点。
人教版八年级数学下册(RJ)教案 第1课时 平均数和加权平均数

20.1 数据的集中趋势20.1.1 平均数第1课时平均数和加权平均数1.知道算术平均数和加权平均数的意义,会求一组数据的算术平均数和加权平均数;(重点)2.理解“权”的差异对平均数的影响,算术平均数与加权平均数的联系与区别,并能利用它们解决实际问题.(难点)一、情境导入在日常生活中,我们经常会与平均数打交道,但有时发现以前计算平均数的方法并不适用.你知道为什么要这样计算吗?例如老师在计算学生每学期的总评成绩时,不是简单地将一个学生的平时成绩与考试成绩相加除以2,作为该学生的总评成绩,而是按照“平时成绩占40%,考试成绩占60%”的比例计算(如图).二、合作探究 探究点一:平均数【类型一】 已知一组数据的平均数,求某一个数据如果一组数据3,7,2,a ,4,6的平均数是5,则a 的值是( )A .8B .5C .4D .3解析:∵数据3,7,2,a ,4,6的平均数是5,∴(3+7+2+a +4+6)÷6=5,解得a =8.故选A.方法总结:关键是根据算术平均数的计算公式和已知条件列出方程求解.【类型二】 已知一组数据的平均数,求新数据的平均数已知一组数据x 1、x 2、x3、x4、x5的平均数是5,则另一组新数据x1+1、x2+2、x3+3、x4+4、x5+5的平均数是( )A.6 B.8 C.10 D.无法计算解析:∵x1、x2、x3、x4、x5的平均数为5,∴x1+x2+x3+x4+x5=5×5,∴x1+1、x2+2、x3+3、x4+4、x5+5的平均数为(x1+1+x2+2+x3+3+x4+4+x5+5)÷5=(5×5+15)÷5=8.故选B.方法总结:解决本题的关键是用一组数据的平均数表示另一组数据的平均数.探究点二:加权平均数【类型一】以频数分布表提供的信息计算加权平均数某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( )A.6.2小时B.6.4小时C.6.5小时D.7小时解析:根据题意得(5×10+6×15+7×20+8×5)÷50=(50+90+140+40)÷50=320÷50=6.4(小时),故这50名学生这一周在校的平均体育锻炼时间是6.4小时.故选B.方法总结:计算加权平均数时,要首先明确各项的权,再将已知数据代入加权平均数公式进行计算.【类型二】以频数分布直方图提供的信息计算加权平均数小明统计本班同学的年龄后,绘制如右频数分布直方图,这个班学生的平均年龄是( ) A.14岁 B.14.3岁C.14.5岁 D.15岁解析:该班同学的年龄和为13×8+14×22+15×15+16×5=717岁.平均年龄是717÷(8+22+15+5)=14.34≈14.3(岁).故选B.方法总结:利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.【类型三】以百分数的形式给出各数据的“权”某招聘考试分笔试和面试两种,其中笔试按40%、面试按60%计算加权平均数作为总成绩,小华笔试成绩为90分,面试成绩为85分,那么小华的总成绩是( ) A.87分B.87.5分C.88分D.89分解析:∵笔试按40%、面试按60%,∴总成绩为90×40%+85×60%=87(分).故选A.方法总结:笔试和面试所占的百分比即为“权”,然后利用加权平均数的公式计算.【类型四】以比的形式给出各数据的“权”小王参加某企业招聘测试,他的笔试、面试、技能操作得分分别为85分、80分、90分,若依次按照2:3:5的比例确定成绩,则小王的成绩是( )A.255分B.84分C.84.5分D.86分解析:根据题意得85×22+3+5+80×32+3+5+90×52+3+5=17+24+45=86(分).故选D.方法总结:“权”的表现形式,一种是比的形式,如5∶3∶2;另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%.“权”的大小直接影响结果.【类型五】加权平均数的实际应用学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.解析:(1)先用算术平均数公式,计算乙的平均数,然后根据计算结果与甲的平均成绩比较,结果大的胜出;(2)先用加权平均数公式,计算甲、乙的平均数,然后比较计算结果,结果大的胜出.解:(1)x乙=(73+80+82+83)÷4=79.5,∵80.25>79.5.∴应选派甲;(2)x甲=(85×2+78×1+85×3+73×4)÷(2+1+3+4)=79.5,x乙=(73×2+80×1+82×3+83×4)÷(2+1+3+4)=80.4,∵79.5<80.4.∴应选派乙.方法总结:数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,“权”的差异对结果会产生直接的影响.三、板书设计1.平均数与算术平均数2.加权平均数“权”的表现形式这节课,大多数学生在课堂上表现积极,并且会有自己的思考,有的同学还能把不同意见发表出来,师生在课堂上的交流活跃,学生的学习兴趣较高.在这种前提下,简便算法的推出就水到渠成了.教学设计也努力体现新课改的新理念,如培养学生数学的思维能力,教会学生从生活中学习数学,课内外结合等等.。
人教版八年级数学下册教案

人教版八年级数学下册教案人教版八年级数学下册教案(精选篇1)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
人教版八年级数学下册教案(精选篇2)一、分式※1.两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式;整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.※2.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变;※3.一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分;※4.分子与分母没有公因式的分式,叫做最简分式;二、分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)三、分式的加减法※1.分式与分数类似,也可以通分;根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;※2.分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减;(1)同分母的分式相加减,分母不变,把分子相加减;(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;※3.概念内涵:通分的关键是确定最简分母,其方法如下:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的次幂的积;(3)如果分母是多项式,则首先对多项式进行因式分解;四、分式方程※1.解分式方程的一般步骤:①在方程的两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入原方程检验;※2.列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案;人教版八年级数学下册教案(精选篇3)一、分解因式※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级下册数学教案人教版八年级下册数学教案篇一教学目标:一、知识与技能1、从现实情境和已有的知识、经验出发、讨论两个变量之间的相依关系,加深对函数、函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
二、过程与方法1、经历对两个变量之间相依关系的讨论,培养学生的辨别唯物主义观点。
2、经历抽象反比例函数概念的过程,发展学生的抽象思维能力,提高数学化意识。
三、情感态度与价值观1、经历抽象反比例函数概念的过程,体会数学学习的重要性,提高学生的学习数学的兴趣。
2、通过分组讨论,培养学生合作交流意识和探索精神。
教学重点:理解和领会反比例函数的概念。
教学难点:领悟反比例的概念。
教学过程:一、创设情境,导入新课活动1问题:下列问题中,变量间的对应关系可用怎样的函数关系式表示?这些函数有什么共同特点?(1)京沪线铁路全程为1463km,乘坐某次列车所用时间t(单位:h)随该列车平均速度v(单位:km/h)的变化而变化;(2)某住宅小区要种植一个面积为1000m2的矩形草坪,草坪的长为y随宽x的变化;(3)已知北京市的总面积为1、68某104平方千米,人均占有土地面积S(单位:平方千米/人)随全市人口n(单位:人)的变化而变化。
师生行为:先让学生进行小组合作交流,再进行全班性的问答或交流。
学生用自己的语言说明两个变量间的关系为什么可以看着函数,了解所讨论的函数的表达形式。
教师组织学生讨论,提问学生,师生互动。
在此活动中老师应重点关注学生:①能否积极主动地合作交流。
②能否用语言说明两个变量间的关系。
③能否了解所讨论的函数表达形式,形成反比例函数概念的具体形象。
分析及解答:其中v是自变量,t是v的函数;x是自变量,y是x的函数;n是自变量,s是n的函数;上面的函数关系式,都具有的形式,其中k是常数。
二、联系生活,丰富联想活动2下列问题中,变量间的对应关系可用这样的函数式表示?(1)一个游泳池的容积为20__m3,注满游泳池所用的时间随注水速度u的变化而变化;(2)某立方体的体积为1000cm3,立方体的高h随底面积S的变化而变化;(3)一个物体重100牛顿,物体对地面的压力p随物体与地面的接触面积S 的变化而变化。
师生行为学生先独立思考,在进行全班交流。
教师操作课件,提出问题,关注学生思考的过程,在此活动中,教师应重点关注学生:(1)能否从现实情境中抽象出两个变量的函数关系;(2)能否积极主动地参与小组活动;(3)能否比较深刻地领会函数、反比例函数的概念。
概念:如果两个变量x,y之间的关系可以表示成的形式,那么y是x的反比例函数,反比例函数的自变量x不能为零。
活动3做一做:一个矩形的面积为20cm2,相邻的两条边长为xcm和ycm。
那么变量y是变量x的函数吗?是反比例函数吗?为什么?师生行为:学生先进行独立思考,再进行全班交流。
教师提出问题,关注学生思考。
此活动中教师应重点关注:①生能否理解反比例函数的意义,理解反比例函数的概念;②学生能否顺利抽象反比例函数的模型;③学生能否积极主动地合作、交流;活动4问题1:下列哪个等式中的y是x的反比例函数?问题2:已知y是x的反比例函数,当x=2时,y=6(1)写出y与x的函数关系式:(2)求当x=4时,y的值。
师生行为:学生独立思考,然后小组合作交流。
教师巡视,查看学生完成的情况,并给予及时引导。
在此活动中教师应重点关注:①学生能否领会反比例函数的意义,理解反比例函数的概念;②学生能否积极主动地参与小组活动。
分析及解答:1、只有xy=123是反比例函数。
2、分析:因为y是x的反比例函数,所以,再把x=2和y=6代入上式就可求出常数k的值。
解:(1)设,因为x=2时,y=6,所以有解得k=12因此(2)把x=4代入,得三、巩固提高活动51、已知y是x的反比例函数,并且当x=3时,y=8。
(1)写出y与x之间的函数关系式。
(2)求y=2时x的值。
2、y是x的反比例函数,下表给出了x与y的一些值:(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表。
学生独立练习,而后再与同桌交流,上讲台演示,教师要重点关注“学困生”。
四、课时小结反比例函数概念形成的过程中,大家充分利用已有的生活经验和背景知识,注意挖掘问题中变量的相依关系及变化规律,逐步加深理解。
在概念的形成过程中,从感性认识到理发认识一旦建立概念,即已摆脱其原型成为数学对象。
反比例函数具有丰富的数学含义,通过举例、说理、讨论等活动,感知数学眼光,审视某些实际现象。
人教版八年级下册数学教案篇二教学内容分析:⑴ 学习特殊的平行四边形—正方形,它的特殊的性质和判定。
⑵前面学习了平行四边形、矩形菱形,类比他们的性质与判断,有利于对正方形的研究。
⑶ 对本节的学习,继续培养学生分类研究的思想,并且建立新旧知识的联系,类比的基础上进行归纳,梳理知识,进一步发展学生的推理能力。
学生分析:⑴学生在小学初步认识了正方形,并且本节课之前,学生又学习了几种平行四边形,已经具备了观察研究平行四边形的经验与知识基础。
⑵学生在上几节已有了推理的经历,但是对于证明,学生的思维能力还不成熟,有待于提高。
教学目标:⑴知识与技能:了解正方形是特殊的平行四边形,掌握它的性质和判定,会利用性质与判定进行简单的说理。
⑵过程与方法:通过类比前边的四边形的研究,探索并归纳正方形的性质与判定。
通过运用提高学生的推理能力。
⑶情感态度与价值观:在学习中体会正方形的完美性,通过活动获得成功的喜悦与自信。
重点:掌握正方形的性质与判定,并进行简单的推理。
难点:探索正方形的判定,发展学生的推理能教学方法:类比与探究教具准备:可以活动的四边形模型。
教学过程:一:复习巩固,建立联系。
问题设置:①平行四边形、矩形,菱形各有哪些性质?②( ) 的四边形是平行四边形。
( )的平行四边形是矩形。
( )的平行四边形是菱形。
( )的四边形是矩形。
( )的四边形是菱形。
学生回忆,并举手回答,对于填空题,让更多的学生参与,说出更多的答案。
评析学生的结果,给予表扬。
总结性质从边角对角线考虑,在填空时也考虑这几方面之外,还应该考虑三者之间的联系与区别。
演示平行四边形变为矩形菱形的过程。
二:动手操作,探索发现。
活动一:拿出一张矩形纸片,拉起一角,使其宽AB落在长AD边上,如下图所示,沿着B′E剪下,能得到什么图形?学生拿出自备矩形纸片,动手操作,不难发现它是正方形。
设置问题:①什么是正方形?观察发现,从活动中体会。
:演示矩形变为正方形的过程,菱形变为正方形的过程。
认真观察变化过程,思考之间的联系,举手回答设置问题。
设置问题②正方形是矩形吗,是菱形吗?是平行四边形吗?为什么?小组讨论,分组回答。
总结板书:㈠(一组邻边相等)的矩形是正方形,(一个角是直角)的菱形是正方形。
设置问题③正方形有那些性质?小组讨论,举手抢答。
表扬学生发言,板书学生发现,㈡正方形每一条对角线平分一组对角活动二:拿出活动一得到的正方形折一折,正方形是轴对称图形吗?有几条对称轴?学生活动折纸发现,说出自己的发现。
得到正方形的又一性质。
正方形是轴对称图形。
教师活动演示从平行四边形变为正方形的过程,擦去板书㈠中的括号内容,出示一下问题:你还可以怎样填空?( )的菱形是正方形,( )的矩形是正方形,( )的平行四边形是正方形,( )的四边形是正方形。
学生活动小组充分交流,表达不同的意见。
教师活动评析活动,总结发现:一组邻边相等的矩形是正方形,对角线互相平分的矩形是正方形;有一个角是直角的菱形是正方形,对角线相等的菱形是正方形,;有一组邻边相等且有一个角是直角的平行四边形是正方形,对角线相等且互相平分的平行四边形是正方形;四边相等且有一角是直角的四边形是正方形,对角线相等且互相垂直平分的四边形是正方形。
以上是正方形的`判定方法。
正方形是一个多么完美的平行四边形呀?大家互相说一说,它的完美体现在哪里?生活中有哪些利用正方形的例子?学生交流,感受正方形三,应用体验,推理证明。
出示例一:正方形ABCD的两条对角线AC,BD交与O,AB长4cm,求AC,AO 长,及的度数。
方法一解:∵四边形ABCD是正方形∴∠ABC=90°(正方形的四个角是直角)。
BC=AB=4cm(正方形的四条边相等)∴ =45°(等腰直角三角形的底角是45°)∴利用勾股定理可知,AC= = =4 cm∵AO= AC(正方形的对角线互相平分)∴AO= 某4 =2 cm方法二:证明△AOB是等腰直角三角形,即可得证。
学生活动独立思考,写出推理过程,再进行小组讨论,并且各小组指派代表写在黑板上,共同交流。
教师活动总结解题方法,从正方形的性质全面考虑,准确利用条件,减少麻烦。
评析解题步骤,表扬突出学生。
出示例二:在正方形ABCD中,E、F、G、H 分别在它的四条边上,且AE=BF=CG=DH,四边形EFGH是什么特殊的四边形,你是如何判断的?学生活动小组交流,分析题意,整理思路,指名口答。
教师活动说明思路,从已知出发或者从已有的判定加以选择。
四,归纳新知,梳理知识。
这一节课你有什么收获?学生举手谈论自己的收获。
请把平行四边形,矩形,菱形,正方形分别填写在下图的ABCDC处,说明它们的关系。
发表评论人教版八年级下册数学教案篇三1、教材分析(1)知识结构(2)重点、难点分析本节内容的重点是线段垂直平分线定理及其逆定理。
定理反映了线段垂直平分线的性质,是证明两条线段相等的依据;逆定理反映了线段垂直平分线的判定,是证明某点在某条直线上及一条直线是已知线段的垂直平分线的依据。
本节内容的难点是定理及逆定理的关系。
垂直平分线定理和其逆定理,题设与结论正好相反。
学生在应用它们的时候,容易混淆,帮助学生认识定理及其逆定理的区别,这是本节的难点。
2、教法建议本节课教学模式主要采用“学生主体性学习”的教学模式。
提出问题让学生想,设计问题让学生做,错误原因让学生说,方法与规律让学生归纳。
教师的作用在于组织、点拨、引导,促进学生主动探索,积极思考,大胆想象,总结规律,充分发挥学生的主体作用,让学生真正成为教学活动的主人。
具体说明如下:(1)参与探索发现,领略知识形成过程学生前面,学习过线段垂直平分线的概念,这样由复习概念入手,顺其自然提出问题:在垂直平分线上任取一点P,它到线段两端的距离有何关系?学生会很容易得出“相等”。
然后学生完成证明,找一名学生的证明过程,进行投影总结。
最后,由学生将上述问题,用文字的形式进行归纳,即得线段垂直平分线定理。
这样让学生亲自动手实践,积极参与发现,激发了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。