重新认识贮氢合金

合集下载

储氢合金的储氢原理

储氢合金的储氢原理

储氢合金的储氢原理储氢合金是一种能够吸收和释放氢气的材料,它在储氢技术领域具有重要的应用价值。

储氢合金的储氢原理是指其通过物理或化学方式将氢气吸附或吸收到其晶格中,从而实现氢气的储存和释放。

储氢合金的储氢原理涉及到多种物理和化学过程,下面将对其进行详细介绍。

首先,储氢合金的储氢原理可以通过物理吸附来实现。

物理吸附是指氢气分子在储氢合金表面吸附,形成氢气分子层的过程。

在这个过程中,氢气分子与储氢合金表面之间存在范德华力吸引作用,使得氢气分子被吸附到储氢合金表面上。

这种物理吸附的储氢方式具有吸附速度快、吸附温度低的特点,但是在一定温度和压力下,氢气分子容易脱附,释放出来。

其次,储氢合金的储氢原理还可以通过化学吸附来实现。

化学吸附是指氢气分子在储氢合金内部发生化学反应,被吸附到储氢合金晶格中的过程。

在这个过程中,氢气分子与储氢合金表面发生化学键的形成,使得氢气分子被牢固地储存在储氢合金内部。

这种化学吸附的储氢方式具有吸附稳定、储氢密度高的特点,但是吸附速度相对较慢。

此外,储氢合金的储氢原理还可以通过固溶吸氢来实现。

固溶吸氢是指氢气分子在储氢合金内部与晶格中的金属原子形成固溶体的过程。

在这个过程中,氢气分子与储氢合金内部的金属原子发生化学反应,形成固溶体,使得氢气分子被储存在储氢合金内部。

这种固溶吸氢的储氢方式具有储氢密度高、吸附稳定的特点,但是吸附速度相对较慢。

综上所述,储氢合金的储氢原理涉及到物理吸附、化学吸附和固溶吸氢等多种储氢方式。

不同的储氢方式具有各自的特点和适用范围,可以根据实际需求选择合适的储氢合金材料和储氢方式。

随着科学技术的不断发展,储氢合金的储氢原理将会得到进一步的深入研究和应用,为氢能源的发展和利用提供更加可靠和高效的储氢解决方案。

氢燃料的固态储存:储氢合金

氢燃料的固态储存:储氢合金

氢燃料的固态储存:储氢合金氢能源开发及利用(三)33 氢燃料的制取和储存(续)3。

2 氢燃料的储存(续)3.2.3 金属氢化物固态储氢(1)储氢合金的“吸氢”和“放氢”前面已经提过,相对气氢储存、液态储存来说,固态的金属氢化物储氢具有极大优越性。

只要满足一定温度和压力条件,某些金属可以大量“吸氢”,生成金属氢化物,并放出热量;而把这些金属氢化物加热,它们又可以分解,并把其中储存的氢释放出来。

它们不需要笨重的钢瓶,也不需要要求很高的绝热容器。

这些可以“吸氢”的储氢合金的储氢能力很强,而且都是固态,在需要储氢时,只要使合金“吸氢”,使它与氢反应,生成金属氢化物;而需要用氢时,通过加热或减压这些金属氢化物,又可使它们“放氢”。

所以,采用储氢合金是一种很理想的储氢解决方案。

(2)储氢合金的性能和用途人们对储氢合金感兴趣,不光是它具有“储氢”的性能,而且在储氢过程中具有化学能转化为机械能或热能的能量转换功能。

储氢合金具有热能的转换功能:在它“吸氢”时放出热量,在它“放氢”时又要吸取热量。

利用这个放热—吸热的循环,可进行热量的储存和传输,由此原理可以设计制造出各种制冷或采暖设备。

从储氢合金提取氢气,可以达到很高的纯度。

因此,可以采用储氢合金来提纯氢,可以很低的成本,来提取纯度高达99.9999%的纯氢。

储氢合金的快速发展为氢能源的开发和利用打开了一条广阔的道路。

储氢合金是氢能燃料电池的主要原料,它为燃料电池的实用化、商品化打下了坚实的基础。

储氢合金又可用来制造镍--氢(Ni--MH)电池,以替代当今世界上大量有毒、有污染的镍--镉(Ni--Cd)电池。

镍--氢电池不仅无毒安全、无污染,使用寿命长,而且容量也可以做得大得多。

总之,储氢合金是氢能储存的最佳解决方案。

它为人类的“氢能源时代”的到来作出了重大贡献。

不仅如此,储氢合金的用途还十分广阔,随着储氢合金研发的进展,会有更多的性能将用来造福于人类。

(3)在行驶车辆里的储存氢燃料发展纯燃料电池车或基于氢能的其它类型的车辆,要解决的关键问题有以下几个:一是控制制氢成本;二是建立社会网络化的储氢站;三是在行驶的车辆里如何储存氢燃料;四是研发高效的燃料电池。

储氢合金

储氢合金
传输,制造制冷或 采暖设备
利用储氢合金制造的制冷机
Chapter6 Metallic Materials
20
Chapter6 Metallic Materials
14
Example
在高压容器中装入贮氢合金的 “混合贮氢容器”
Chapter6 Metallic Materials
15
② H2的回收与纯化
氘--氢的同位素,
它的原子核由一颗质
子和一颗中子组成。
其原子量为普通轻氢
的二倍,少量的存在于
天然水中,用于核反应,
Application 贮氢容器
节省能量,安全可靠——用贮氢合金贮氢,无 需高压及贮存液氢的极低温设备和绝热措施。
Chapter6 Metallic Materials
13
700标准大气压的储氢罐
Example
贮氢合金制作的贮氢装置
装到容器中的贮氢合金采用贮氢量为2.7%重量、合金密度为5g/cm3的材料。 对能够贮入5kg氢气的容器条件进行了推算。与压力相同(但没有采用贮 氢合金)的高压容器相比,重量增加了30%~50%,但是能够将体积缩小 30%~50%。
放,无污染,可循环利用。
3.氢的利用途径多——燃烧放热或电化学发电
4.氢气的存储方式多——气体,液体或固体化合物 5.可 直接用作发动机燃料、也可以以燃料电池方式驱动汽 车
氢气储存与储氢合金
在整个氢能系统中,储氢是最关键的环节。
储氢合金——在一定的温度和氢气压力下,可以多次吸收、 储存和释放氢气的合金材料。
⑦ 有确定的化学稳定性;
⑧ 对杂质敏感程度低;
⑨ 原料资源丰富,价格低廉;
⑩ 用作电极材料时具有良好的耐腐蚀性。

新型的储氢方法:储氢合金

新型的储氢方法:储氢合金

新型的储氢方法:储氢合金传统储氢方法有两种:一种方法是利用高压钢瓶(氢气瓶)来储存氢气,但钢瓶储存氢气的容积小,瓶里的氢气即使加压到150个大气压,所装氢气的质量也不到氢气瓶质量的1%,而且还有爆炸的危险;另一种方法是储存液态氢,将气态氢降温到-253 0C变为液体进行储存,但液体储存箱专门庞大,需要极好的绝热装置来隔热,才能防止液态氢可不能沸腾汽化。

近年来,一种新型简便的储氢方法应运而生,即利用储氢合金(金属氢化物)来储存氢气。

研究证明,某些金属具有专门强的捕捉氢的能力,在一定的温度和压力条件下,这些金属能够大量“吸取”氢气,反应生成金属氢化物,同时放出热量。

其后,将这些金属氢化物加热,它们又会分解,将储存在其中的氢开释出来。

这些会“吸取”氢气的金属,称为储氢合金。

储氢合金的储氢能力专门强。

单位体积储氢的密度,是相同温度、压力条件下气态氢的1000倍,也即相当于储存了1000个大气压的高压氢气。

目前研究进展中的储氢合金,要紧有钛系储氢合金、锆系储氢合金、铁系储氢合金及稀土系储氢合金。

储氢合金还能够用于提纯和回收氢气,它可将氢气提纯到专门高的纯度。

例如,采纳储氢合金,能够以专门低的成本获得纯度高于99.9999%的超纯氢。

储氢合金是一种能在晶体的间隙中大量储存氢原子的合金材料。

这种合金具有可逆吸放氢的奇异性质。

它能够储备相当于合金自躯体积上千倍的氢气,其吸氢密度超过液态氢和固态氢密度,即轻便又安全,显示出无比的优越性。

具有有用价值的储氢合金必须具备以下差不多性能:1、储氢量大;2、容易活化;3、离解压力适中;4、在室温下吸放氢反应速度快;5、成本低寿命长。

储氢合金的飞速进展,给氢气的利用开创了一条宽敞的道路。

在工业领域独领风骚一个世纪的内燃机,专门快就要面对以氢为能源的燃料电池的挑战。

对现有的内燃机做适当的改动后,就能在内燃机中使用氢来代替汽油作燃料。

近年来,国际车坛显现氢能汽车开发热,世界四大汽车公司――美国的福特、德国的戴姆勒-奔腾、美国的通用和日本的丰田,都在加快研制氢能汽车的步伐。

储氢合金的名词解释

储氢合金的名词解释

储氢合金的名词解释储氢合金是一种用于储存和释放氢气的材料。

它是由一种或多种金属与氢气相结合形成的金属-氢的固体溶液。

储氢合金是一项重要的能源储存技术,能够解决氢气作为一种清洁能源的储存和运输问题,被广泛应用于氢能源行业、航空航天领域和可再生能源等领域。

1. 储氢合金的基本原理储氢合金的基本原理是利用金属与氢气之间的物理和化学相互作用来实现氢气的储存和释放。

在储氢合金中,金属作为吸附剂,扮演着吸附和储存氢气的角色。

当储氢合金暴露在氢气环境中时,氢气会进入金属晶格并与金属原子相结合,形成金属-氢化物化合物。

当需要释放氢气时,通过改变温度、压力或其他条件,可以使金属-氢化物化合物分解,释放出储存的氢气。

2. 储氢合金的优势储氢合金在能源储存领域具有很多优势。

首先,与传统的气体或液态氢储存方式相比,储氢合金可以以更高的体积和质量比存储更多的氢气。

其次,储氢合金具有较高的储氢容量和储氢速率,能够满足高强度和长时间的氢气需求。

此外,储氢合金具有良好的循环稳定性和循环寿命,能够多次重复吸附和释放氢气而不损失性能。

最重要的是,储氢合金是一种可再生的储氢材料,可以通过简单的处理方法,如升温、降压等,使其重新恢复吸附氢气能力。

3. 储氢合金的应用领域储氢合金在多个领域都有广泛的应用。

在氢能源领域,储氢合金被用作储存和释放氢气的媒介,为氢燃料电池、氢气发动机等提供持续稳定的氢气供应。

在航空航天领域,储氢合金被应用于火箭推进系统和宇航器动力系统,可以提供高能量密度和高可靠性的氢气储存解决方案。

在可再生能源领域,储氢合金可以将太阳能和风能等不稳定的可再生能源转化为可储存和可输送的氢气,提供可靠的能源供应。

4. 储氢合金的挑战与发展方向储氢合金作为一种新兴的能源储存技术,目前还存在一些挑战。

首先,储氢合金的设计与制备需要更深入的研究和优化,以获得更高的储氢容量和释氢速率。

其次,储氢合金的储氢和释氢过程中可能伴随着金属的结构变化和疲劳损伤,影响储氢合金的循环稳定性和使用寿命。

ab2储氢合金密度

ab2储氢合金密度

ab2储氢合金密度ab2储氢合金是一种具有高储氢容量和较低储氢温度的材料,它在储氢领域具有广泛的应用前景。

本文将从储氢合金的定义、储氢性能、制备方法以及应用领域等方面对ab2储氢合金进行详细介绍。

第一部分:储氢合金的定义储氢合金是指能够将氢气吸附储存在其晶格中的金属合金。

ab2储氢合金是指由A、B两种金属组成的合金,其中金属A通常为钛或锆,金属B通常为镍、铁、钴等。

这种合金具有较高的储氢容量和较低的储氢温度,因此被广泛研究和应用于储氢领域。

第二部分:储氢性能ab2储氢合金具有优异的储氢性能,其储氢容量可达到理论值的70%以上。

这是因为合金晶格中的金属A和金属B之间存在着较强的相互作用力,使得氢气可以被吸附并储存在晶格空隙中。

同时,ab2储氢合金的储氢温度较低,通常在室温下就可以实现储氢。

这使得ab2储氢合金成为一种理想的储氢材料。

第三部分:制备方法ab2储氢合金的制备方法主要有机械合金化法和电化学沉积法两种。

机械合金化法是将金属A和金属B的粉末按一定比例混合,并在高温下进行球磨,使其发生固态反应形成储氢合金。

电化学沉积法则是通过电化学方法将金属A和金属B依次沉积在电极上,并在适当的条件下使其发生反应生成储氢合金。

这两种制备方法都能够得到高质量的ab2储氢合金。

第四部分:应用领域ab2储氢合金在储氢领域具有广泛的应用前景。

首先,在新能源汽车领域,ab2储氢合金可以作为储氢材料用于制备燃料电池汽车的储氢罐,实现氢能源的高效利用。

其次,在能源储存领域,ab2储氢合金可以作为储氢材料用于储存和释放电能,实现能源的高效转换和利用。

此外,ab2储氢合金还可以应用于氢能源站的储氢设备、航空航天领域的燃料储存等。

ab2储氢合金作为一种具有高储氢容量和较低储氢温度的材料,在储氢领域具有重要的应用价值。

随着科学技术的进步和应用需求的增加,相信ab2储氢合金将会在未来得到更广泛的研究和应用。

储氢合金

储氢合金

储氢合金由于石油和煤炭的储量有限,而且在使用过程中会带来环境污染等问题,使氢能作为新的清洁燃料成为研究热点。

在氢能利用过程中,氢的储运是重要环节,而储氢合金顾名思义就是用于储运氢的。

储氢合金是由两种特定金属构成的合金,其中一种可以大量吸氢,形成稳定的氢化物,而另一种金属虽然与氢的亲和力小,但氢很容易在其中移动。

Mg、Ca、Ti、Zr、Y和La等属于第一种金属,控制储氢量;Fe、Co、Ni、Cr、Cu和Zn等属于第二种金属,控制释放氢的可逆性。

通过合理配制,调节合金的吸放氢性能,制得在室温下能够可逆吸放氢的较理想的储氢材料。

别看储氢合金的金属原子之间缝隙不大,但储氢本领却比氢气瓶的本领可大多了,具体来说,相当于储氢钢瓶重量1/3的储氢合金,其体积不到钢瓶体积的1/10,但储氢量却是相同温度和压力条件下气态氢的1000倍。

采用储氢合金来储氢,不仅具有储氢量大、能耗低,工作压力低、使用方便的特点,而且可免去庞大的钢制容器,从而使存储和运输方便而且安全。

目前储氢合金主要包括有钛系、锆系、铁系及稀土系储氢合金。

那么这种合金又是如何发展得来的呢?20世纪60年代,材料王国里出现了能储存氢的金属和合金,统称为储氢合金(hydrogen storage metal),这些金属或合金具有很强的捕捉氢的能力,它可以在一定的温度和压力条件下,氢分子在合金(或金属)中先分解成单个的原子,而这些氢原子便“见缝插针”般地进入合金原子之间的缝隙中,并与合金进行化学反应生成金属氢化物(metal hydrides),外在表现为大量“吸收”氢气,同时放出大量热量。

而当对这些金属氢化物进行加热时,它们又会发生分解反应,氢原子又能结合成氢分子释放出来,而且伴随有明显的吸热效应。

20世纪70年代,LaNi5和Mg2Ni在荷兰Philips与美国Brookhaven 实验室相继被发现具有可逆的吸放氢能力并伴随的一系列物理化学机理变化。

1973年起,LaNi5开始被试图作为二次电池负极材料采用,但由于其循环性能较差,未能成功。

储氢合金应用的原理

储氢合金应用的原理

储氢合金应用的原理1. 储氢合金的概述储氢合金是一种可用于储存氢气的材料,其具有高储氢密度、稳定性和可逆性等优势。

储氢合金广泛应用于氢能源领域,可以用于氢燃料电池车辆、储能系统以及化工、航天等领域。

2. 储氢合金的工作原理储氢合金的工作原理基于吸氢和解氢的过程。

当氢气与储氢合金接触时,氢分子会进入合金的晶格中,与合金中的金属原子发生相互作用,形成金属氢化物。

此时,储氢合金中氢的储存量会增加。

3. 储氢合金的优点储氢合金相对于其他氢储存材料具有以下优点:•高储氢密度:储氢合金的储氢密度较高,可以存储更多的氢气。

•快速充放氢速度:储氢合金具有较高的吸氢和解氢速度,在储氢和释放氢气时具有较好的响应速度。

•安全稳定:储氢合金对氢气的吸附和解吸是可逆的过程,同时具有较高的热稳定性,不易发生爆炸或泄漏等安全问题。

4. 储氢合金的应用领域储氢合金在氢能源领域有着广泛的应用,包括但不限于以下几个方面:4.1 氢燃料电池车辆储氢合金可以作为氢燃料电池车辆的氢气储存材料。

在氢燃料电池车辆中,储氢合金可以存储大量的氢气,在需要时将其释放给燃料电池产生电能,驱动电动机运转。

4.2 氢能储能系统储氢合金还可以应用于氢能储能系统中。

在这种系统中,储氢合金可以存储超过电池容量的电能,当需要释放电能时,储氢合金可以通过放出氢气来驱动发电机发电,提供能源给电网或负载。

4.3 化工和航天领域储氢合金在化工和航天领域也有着重要的应用。

在化工领域,储氢合金可以用于氢气的存储和运输,提供给化生产过程中的需要。

在航天领域,储氢合金可以用于航天器中的气体储存和供应,满足航天器在太空中的气体需求。

5. 储氢合金的发展前景随着氢能源的发展和不断成熟的储氢合金技术,储氢合金在未来将有着广阔的应用前景。

储氢合金可以提高氢能源的储存密度和使用效率,为氢能源的推广和应用提供支持。

6. 结论储氢合金应用的原理基于吸氢和解氢的过程,具有高储氢密度、快速充放氢速度以及安全稳定等优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重新认识贮氢合金
燃料电池车配备的氢气罐要用碳纤维覆盖铝合金等金属内衬,以进行强化,这样才有可能用70MPa级的高压来储存氢气。

但在“2015东京智能能源周”设置的展会FC EXPO上,一种不使用超高压罐也能运输大量氢的方法引起了人们的注意。

这是一种利用贮氢合金的技术。

贮氢合金在汽车厂商开发氢燃料内燃机发动机时期曾一度成为话题,因此大家也许听说过。

此次FC-R&D公司展出了贮氢合金储气罐,让笔者想起了它的存在,并领教了贮氢合金出乎意料的潜力。

据介绍,无论是与80MPa级超高压罐相比,还是与极低温下的液体氢相比,该储气罐都能以更高密度存储氢。

而且,与这一存储能力相关的技术,据说在10年前就已经确立了。

这种技术能够在常温下吸收/释放氢气,进一步提高了能源效率。

其中的难点在于,其罐体必须采用导热性好的金属来制造,而且罐体内部填满了贮氢合金,因此罐体本身就非常重。

另一个难点是不能用于需要一次提取大量氢的用途。

用于燃料电池车时,在急加速等场合下可能会出现电力不足的情况。

但对于配备高压罐的燃料电池车,因为发电时会产生时滞,所以会配备蓄电池作为缓冲器,因此,只要增加蓄电池的容量便可解决急加速时电力不足的问题。

贮氢合金储气罐在取出氢时需要花费一定时间,意味着填充氢时也要花费一定时间。

假如作为燃料电池车用储气罐来填充可满足续航要求的氢,基本要用2~3个小时。

这样一来,就会使燃料电池的易用性低于EV的快速充电。

不过,如果使形状及容量标准化,用事先充满氢的储气罐来替换用空的储气罐,或许就有望配备到燃料电池车上。

至少从安全角度来说,要比70MPa级超高压罐更适合用于燃料电池车。

而且,贮氢合金储气罐还可使用与普通煤气罐相同的3MPa级压力来保存氢,不会在保存中发生氢泄漏情况。

如果能像家里换煤气罐一样更换储氢罐,基本上就不要建设基础设施,而且还能提高安全性。

那么,剩下的问题或许就只有贮氢合金的生产成本了。

抱着这一想法,笔者试着寻找生产成本方面的问题。

然而得到的答案却颇令人意外,由于相关技术利用的是氢离子,其原理及材料与镍氢蓄电池相似。

因此,如果实现量产效果,成本便可大幅下降。

FC-R&D的相关负责人表示:“我们公司是专门从事燃料电池相关产品业务的企业,一
直在经营使用乙醇的燃料电池等多种燃料电池。

这种贮氢合金也是从10年前就开始涉足了,可以说技术上已相当成熟。

燃料电池车之所以采用高压罐的方式,肯定是因为其与传统燃料填充方式接近的感觉。


另外,我们才刚刚走到氢社会的入口,各种各样的方法都存在可能性。

从安全性等必须要有绝对保证的因素来看,贮氢合金也存在巨大的可能性。

希望业界能对此再次展开技术开,不断扩大贮氢合金的可能性。

相关文档
最新文档