三重四级杆质谱仪原理(1)
三重四极杆质谱原理

三重四极杆质谱原理
三重四极杆质谱原理是质谱仪中常用的一种工作模式,通过三个四极电场作用下的粒子筛选,实现对样品中不同离子的质荷比的分离和检测。
质谱仪中的三重四极杆由三根平行排列的四极电极组成,其中两个电极被称为焦点极,另一个电极被称为偏转极。
其中一个焦点极上施加一定的射频电压,在偏转极上施加直流电压,通过调节这些电压可以改变质谱仪的分辨率和灵敏度。
在质谱仪工作时,离子束经过入口孔进入四极杆,先经过第一个焦点极的筛选,只有符合特定质荷比范围的离子才能通过。
然后,通过调节射频电压和直流电压,使通过的离子束重新聚焦。
接着,离子束通过偏转极的筛选,根据离子在偏转极上的轨迹来区分不同质荷比的离子,并最终到达检测器进行电流检测。
通过调节焦点极、偏转极的电压和频率,可以控制通过离子束的特定质荷比离子的种类和数量,实现对样品中离子的分析和检测。
三重四极杆质谱原理可广泛应用于各种离子分离和质谱分析的领域。
thermo三重四级杆质谱

thermo三重四级杆质谱
热力学三重四级杆质谱(Thermo Triple Quadrupole Mass Spectrometry)是一种常用的质谱技术,用于分析和鉴定化合物的
组成和结构。
下面我将从多个角度对该技术进行全面的回答。
热力学三重四级杆质谱是一种基于四级杆质谱仪的仪器。
它由
三个四极杆(quadrupole)组成,其中两个四极杆用于选择和传输
离子,另一个四极杆用于进行碰撞诱导解离(CID)或者多级质谱(MSn)实验。
这种配置使得热力学三重四级杆质谱具有更高的选择
性和灵敏度,可用于复杂样品的分析。
热力学三重四级杆质谱的工作原理是通过施加交变电压和直流
电压在四极杆中产生稳定的离子轨道。
样品分子在离子源中被电离
产生离子,然后通过离子传输界面进入四极杆。
在四极杆中,只有
特定质量/电荷比(m/z)的离子能够通过,其他离子会被过滤掉。
通过调节四极杆的电压和频率,可以选择性地传输特定的离子到下
一个四极杆或进行解离实验。
热力学三重四级杆质谱在许多领域中得到了广泛的应用。
例如,在生物医学研究中,它可以用于药物代谢研究、蛋白质分析和生物
标志物的检测。
在环境科学中,它可以用于分析水和土壤中的有机污染物。
在食品安全领域,它可以用于检测食品中的农药残留和添加剂。
此外,热力学三重四级杆质谱还可以用于药物筛选、毒理学研究、石油化工和环境监测等领域。
总结起来,热力学三重四级杆质谱是一种高级的质谱技术,通过多级杆的配置和调节,实现了更高的选择性和灵敏度。
它在许多领域中被广泛应用,为化合物的分析和鉴定提供了可靠的手段。
三重四极杆串联质谱

三重四极杆串联质谱一、三重四极杆串联质谱的原理三重四极杆串联质谱是一种基于离子激发和离子分析的技术。
它由三个四极杆组成,每个四极杆都具有一个电场和一个磁场,可以对离子进行加速、分离和聚焦。
首先,样品通过离子源产生离子,然后进入第一个四极杆,通过调节电场和磁场来筛选离子。
接着,离子经过激发,激发成不稳定的离子态,然后再进入第二个四极杆进行进一步的分离和筛选。
最后,离子进入质谱仪进行质谱分析,得到样品的质谱图谱。
二、三重四极杆串联质谱的应用三重四极杆串联质谱在化学、生物和医药领域有着广泛的应用。
在化学领域,它可以用于分析复杂的有机化合物、无机化合物和高分子化合物,如蛋白质、DNA和RNA。
在生物领域,它可以用于分析生物样品的代谢产物、蛋白质组学、脂质组学和糖类组学。
在医药领域,它可以用于药物分析、代谢物分析和药物代谢动力学研究。
此外,三重四极杆串联质谱还可以结合其他分析技术,如色谱和电泳,进行多维分析,提高分析的灵敏度和分辨率。
三、三重四极杆串联质谱的发展趋势随着科学技术的不断发展,三重四极杆串联质谱也在不断改进和创新。
一方面,质谱仪器的灵敏度和分辨率不断提高,可以检测到更多的化合物和离子。
另一方面,质谱数据处理和分析的软件也不断升级,可以更方便地进行质谱数据的解释和应用。
此外,随着生物技术和医学技术的快速发展,三重四极杆串联质谱将会更多地应用于生物医学研究和临床诊断。
总之,三重四极杆串联质谱是一种重要的分析技术,它具有高灵敏度、高分辨率和广泛的应用领域。
随着科学技术的不断进步,三重四极杆串联质谱将会在化学、生物和医药领域发挥越来越重要的作用。
希望本文对读者对三重四极杆串联质谱有更深入的了解,并对相关研究和应用提供帮助。
三重四级杆气相色谱质谱联用仪原理

三重四级杆气相色谱质谱联用仪原理
三重四级杆气相色谱质谱联用仪是一种分析仪器,结合了气相色谱(GC)和质谱(MS)技术,用于分析复杂样品中的组分。
三重四级杆气相色谱质谱联用仪的工作原理如下:
1. 气相色谱(GC)分离:样品经过预处理后,通过进样口注
入气相色谱柱中。
然后,样品在高温条件下挥发,并通过气流带动进样口中的挥发物进入气相色谱柱。
在气相色谱柱中,样品中的成分会因为不同的亲和性而在柱上发生分离。
2. 离子化与分析:GC柱分离出的组分进入质谱部分。
首先,
离子源将分离出的化合物离子化,通常使用电子轰击(EI)或化学电离(CI)方法。
离子化后的化合物会形成离子云。
3. 气体四级杆质量分析器:离子云被引入到四级杆质量分析器中,在四级杆中通过运动激发进行质量分析。
通过调节四级杆中的偏压和交变电场的频率,只有质量-电荷比(m/z)在指定
范围内的离子可以穿过四级杆,其他离子则被排除。
4. 超过磁扇质谱仪:离子从四级杆进一步进入超过磁扇质谱仪。
在这里,离子会被分离成不同的mm/z比。
质谱仪会测量这些
离子的强度,从而得到样品中的各种成分及其相对丰度。
5. 数据分析和识别:质谱仪测量得到的数据可以通过计算机进行分析和识别。
根据谱图中离子的相对强度和m/z比,可以确定各个组分的存在和相对丰度。
通过气相色谱质谱联用仪的工作原理,可以实现对复杂样品中微量成分的快速准确分析和鉴定。
三重四级杆质谱和高分辨质谱

三重四级杆质谱和高分辨质谱三重四级杆质谱和高分辨质谱的区别如下:
原理:三重四级杆质谱是利用离子在电场和磁场中的运动轨迹不同来分离离子。
高分辨质谱是一种精确的质量过滤器,它通过在外场中使不同荷质比的离子拥有不同的轨道半径,从而分离荷质比相近的离子。
应用:三重四级杆质谱主要应用于有机物的定量分析、定性确证及结构解析。
高分辨质谱主要应用于生物大分子、多肽、蛋白质、多糖等的分析,以及复杂混合物中痕量组分的鉴定和定量分析等。
四级杆质谱仪的原理

四级杆质谱仪的原理
四级杆质谱仪是一种常见的质谱分析仪器,主要用于分离和检测样品中的离子。
它主要由四根带有直流电压(DC)和叠加的射频电压(RF)的准确平行金属或陶瓷镀金园柱杆构成。
相对的一对电极是等电位的,相邻两对电极之间电位相反。
四级杆质谱仪的工作原理如下:
1.离子生成:样品进入质谱仪后,首先经过气化室气化,然后进入离子源。
在离子源中,样品分子受到电子轰击,失去电子成为带正电荷的离子。
2.离子加速和分离:带电离子进入四级杆质谱仪,四级杆中的电场会对离子产生加速和偏转作用。
由于不同离子的质量和电荷不同,它们在电场中的运动轨迹也不同。
在四级杆中,离子会根据质荷比(m/z)进行分离。
3.离子检测:经过四级杆分离后的离子,根据其质荷比的不同,会在接收器中形成不同的信号。
质荷比越小的离子,到达接收器的时间越早,信号强度越高。
质荷比越大的离子,到达接收器的时间越晚,信号强度越低。
这样,四级杆质谱仪就可以根据离子信号的强度和到达时间,对样品中的不同成分进行定性和定量分析。
四级杆质谱仪在分析过程中,可以通过调整射频电压和直流电压的参数,实现对不同质量离子的高效分离。
此外,四级杆质谱仪具有高灵敏度、高分辨率、宽动态范围等优点,广泛应用于化学、生物、环境等领域的研究和分析。
三重四级杆质谱检测原理

三重四级杆质谱检测原理一、碰撞解离(CID)性碰撞解离(Collision Induced Dissociation,CID)是三重四级杆质谱仪中常用的离子裂解方法。
在CID过程中,选择的母离子与碰撞气体(如氮气或氩气)在高压电场作用下发生高速碰撞,这种剧烈的物理过程会导致母离子裂解,产生多个子离子。
通过对裂解的程度进行控制,可以获得具有结构信息的子离子,有助于化合物的结构解析。
二、灵敏度和速度三重四级杆质谱仪的灵敏度和速度是两个重要的性能指标。
灵敏度主要取决于离子化效率、离子传输效率以及检测器的灵敏度。
在三重四级杆质谱仪中,通过优化电离源、调整离子传输路径和采用高灵敏度检测器,可以显著提高灵敏度。
速度则取决于扫描速度和数据处理速度。
高扫描速度可以保证在短时间内获取大量数据,提高分析效率。
同时,快速的数据处理速度可以将原始数据转化为有用的信息,如化合物鉴定和定量分析。
三、量化分析三重四级杆质谱仪可以进行定量分析,其原理主要基于峰面积或峰高进行。
在质谱图中,每个化合物都会产生特定的离子峰,通过测量这些峰的面积或高,可以对其进行定量。
为了确保准确性,通常需要进行内标校正和基线校正。
四、分辨率和准确率分辨率是指仪器区分相邻两个峰的能力。
在三重四级杆质谱仪中,通过调整四级杆的扫描速度和扫描范围,可以控制峰的分离程度。
高分辨率有助于区分相近的化合物,提供更准确的定性分析结果。
准确率主要取决于仪器性能和操作者技能。
在三重四级杆质谱仪中,通过采用标准品进行校准和优化仪器参数,可以降低误差,提高定量分析的准确率。
此外,还可以利用多级质谱技术(如CID、ECD等)对目标化合物进行深度解析,提高鉴定的准确率。
五、极性切换三重四级杆质谱仪通常具有正负极性切换功能,这有助于扩大其应用范围。
通过极性切换,可以实现对不同极性的化合物进行检测。
例如,对于带有较强极性的化合物,可以选择正极性模式进行检测;对于带有较弱极性的化合物,可以选择负极性模式进行检测。
三重四级杆质谱仪原理(全)

酸性氯代除草剂的基本知识
• 常用于除去草地和谷类农作物中阔叶杂草 • 潜在的地下水污染物 • 公众的误用 • 需要对痕量级别定量
传统方法
• 液-液萃取 • 重氮甲烷衍生化 • 气相色谱方法和选择性检测器(例如电子捕获检测器) • 仪器二次运行确认 • 存在问题 • 溶剂的过量使用 • 问题数据的解释 • 甲基化试剂的安全关注
三重四级杆质谱仪原理
内容
质量分析
– 基础知识 – 质量分析器的性能特点
• 分辨率 • 准确率 • 质量范围
多级质量分析
– 什么是多级质谱? – 多级质谱如何工作? – 碰撞诱导解离(CID) – 采集方式
• SRM • MRM
QQQ的优点(选择性、灵敏度和速度)
质量分析: 基本基础知识
在质量分析器里所产生的离子是根据他们的质荷比(m/z). 进行分离的
三重四极杆不是最好的获取质谱图的仪器,平行测量 的质谱系统会更好些:
• 三重四极杆质谱/质谱不如离子阱质谱仪( TRAPS )灵敏(定性) • 三重四极杆质谱不如飞行时间质谱仪(TOF)所获取的质谱图那么
有说服力(定性)
质量分析器的性能特点
• 质量范围
– 不同类型质量分析器质荷比的范围。四极杆分析器典型 的扫描范围高达3000 m/z。
一个单四极杆质谱仪
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
四极杆质量过滤器如何工作的?
四极杆质量过滤器稳定性图表
马修稳定图
选择性离子监测与全扫描对比
三重四极杆与其他液相/质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性 最好的仪器。
– 在质谱应用领域里三重四极杆在执行中性丢失扫描和 母子扫描模式具有最好的灵敏性和准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一个单四极杆质谱仪
四极杆质量过滤器
合成电压在两个对杆上数量是相同的,极性 是相反的。
四极杆质量过滤器如何工作的?
四极杆质量过滤器稳定性图表
马修稳定图
选择性离子监测与全扫描对比
三重四极杆与其他液相/质谱联用技术的比较 质谱联用技术的比较
– 在质谱应用领域里三重四极杆是最灵敏和定量重现性最好 的仪器。 – 在质谱应用领域里三重四极杆在执行中性丢失扫描和母子扫描模 式具有最好的灵敏性和准确性。 三重四极杆不是最好的获取质谱图的仪器,平行测量的质谱系统 会更好些: 三重四极杆质谱/质谱不如离子阱质谱仪( TRAPS )灵敏(定性) 三重四极杆质谱不如飞行时间质谱仪(TOF)所获取的质谱图那么 有说服力(定性)
质量分析器的性能特点
质量范围 – 不同类型质量分析器质荷比的范围。四极杆分析器典型 的扫描范围高达3000 m/z。
三重四级杆质谱仪原理
内容
质量分析 – 基础知识 – 质量分析器的性能特点 分辨率 准确率 质量范围 多级质量分析 – 什么是多级质谱? – 多级质谱如何工作? – 碰撞诱导解离(CID) – 采集方式 SRM MRM QQQ的优点(选择性、灵敏度和速度
质量分析: 基本基础知识
在质量分析器里所产生的离子是根据他们的质荷 比(m/z).进行分离的
质荷比
与小分子不同,一个更大分子的同位素质量簇中丰度最大的离子可能不 是最低同位素质量。注意这个变化是同位素分布,它将影响你分析的结果。
质量分析器的性能特点
分辨率= M/ΔM 分辨率为200时,准确率是~2000ppm 分辨率为2500时,准确率是~100ppm
准确率(ppm级误差的例子)
一个质量为1000 道尔顿的化合物 1000 ± 2.0 Da (or ± 2000 ppm) 1000 ± 0.5 Da (or ± 500 ppm) 1000 ± 0.1 Da (or ± 100 ppm) 1000 ± 0.01 Da (or ± 10 ppm) 1000 ± 0.002 Da (or ± 2 ppm)