15专题十五 椭圆双曲线抛物线
椭圆双曲线抛物线(PPT文档)

X 椭圆综合复习
一、基础知识
1.椭圆的定义和标准方程
定义
图形
方程 焦点
a,b,c之间的关系
|MF1|+|MF2|=2a (2a>2c>0)
y
y
M
F2 M
F1 o F2 x
x2 a2
y2 b2
1
a
b 0
F(±c,0)
ox
F1
y2 a2
x2 b2c)
c2=a2-b2
. 地心为椭圆的一个焦点。求卫星轨迹
椭圆的标准方程。
A1
分析:远地点A1C1+c1F2=a+c
近地点A2C2+F2C2=a-c
地球半径=c1F2=F2C2
LOGO
Y
. . . . C1 OO
F2
C2 A2
X
LOGO
问题1:此时椭圆的长轴长是多少?
提示:aa- +cc= =66
371+200 371+5 100
3.长轴长等于20,离心率等于 3/5
x2 y2 1 36 32
x2 y2 1 或 x2 y2 1
100 64
64 100
4.长轴是短轴的2倍,且椭圆经过点(-2,x2-4)y2 1 或
x2 y2 1
68 17
8 32
5.过点P(5,2)、焦点为(-6,0)(6,0) x2 y2 1 45 9
四个顶点坐标是
焦点坐标分别是
F1(3,0), F2 (3,0)
A1(5,0), A2 (5,0), B1(0,4), B2 (0,4)
例2 中国第一颗探月卫星——“嫦娥
一号”发射后,首先进入一个椭圆形
椭圆双曲线抛物线知识点汇总

椭圆双曲线抛物线知识点汇总一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。
1、椭圆的标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
2、椭圆的性质范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b\leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
对称性:椭圆关于 x 轴、y 轴和原点对称。
顶点:焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e <1\)),它反映了椭圆的扁平程度,\(e\)越接近0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。
3、椭圆的参数方程焦点在 x 轴上:\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)(\(\theta\)为参数)焦点在 y 轴上:\(\begin{cases}x = b\cos\theta \\ y =a\sin\theta\end{cases}\)(\(\theta\)为参数)4、椭圆中的焦点三角形设 P 为椭圆上一点,F1、F2 为焦点,\(\angle F1PF2 =\theta\),则三角形 PF1F2 的面积为\(S = b^2\tan\frac{\theta}{2}\)。
圆锥曲线(椭圆、双曲线、抛物线)知识点总结

双曲线知识点一、 双曲线的定义:1. 第一定义:到两个定点F 1与F 2的距离之差的绝对值等于定长(<|F 1F 2|)的点的轨迹(21212F F a PF PF <=-(a 为常数))这两个定点叫双曲线的焦点.要注意两点:(1)距离之差的绝对值.(2)2a <|F 1F 2|.当|MF 1|-|MF 2|=2a 时,曲线仅表示焦点F 2所对应的一支; 当|MF 1|-|MF 2|=-2a 时,曲线仅表示焦点F 1所对应的一支;当2a =|F 1F 2|时,轨迹是一直线上以F 1、F 2为端点向外的两条射线;当2a >|F 1F 2|时,动点轨迹不存在.2. 第二定义:动点到一定点F 的距离与它到一条定直线l 的距离之比是常数e (e >1)时,这个动点的轨迹是双曲线这定点叫做双曲线的焦点,定直线l 叫做双曲线的准线二、双曲线的标准方程:12222=-by a x (a >0,b >0)(焦点在x 轴上);12222=-bx a y (a >0,b >0)(焦点在y 轴上); 1. 如果2x 项的系数是正数,则焦点在x 轴上;如果2y 项的系数是正数,则焦点在y 轴上. a 不一定大于b.2. 与双曲线12222=-by a x 共焦点的双曲线系方程是12222=--+k b y k a x 3. 双曲线方程也可设为:221(0)x y mn m n-=> 例题:已知双曲线C 和椭圆221169x y +=有相同的焦点,且过(3,4)P 点,求双曲线C 的轨迹方程。
三、点与双曲线的位置关系,直线与双曲线的位置关系: 1 点与双曲线:点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的内部2200221x y a b ⇔->点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>的外部2200221x y a b ⇔-<点00(,)P x y 在双曲线22221(0,0)x y a b a b -=>>上220022-=1x y a b⇔2 直线与双曲线:(代数法)设直线:l y kx m =+,双曲线)0,0(12222>>=-b a by a x 联立解得02)(222222222=----b a m a mkx a x k a b1) 0m =时,b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点);b k a ≥,bk a≤-,或k 不存在时直线与双曲线没有交点;2) 0m ≠时,k 存在时,若0222=-k a ba bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;若2220b a k -≠,222222222(2)4()()a mk b a k a m a b ∆=-----2222224()a b m b a k =+-0∆>时,22220m b a k +->,直线与双曲线相交于两点; 0∆<时,22220m b a k +-<,直线与双曲线相离,没有交点;0∆=时22220m b a k +-=,2222m b k a +=直线与双曲线有一个交点; 若k 不存在,a m a -<<时,直线与双曲线没有交点; m a m a ><-或直线与双曲线相交于两点; 3. 过定点的直线与双曲线的位置关系:设直线:l y kx m =+过定点00(,)P x y ,双曲线)0,0(12222>>=-b a by a x1).当点00(,)P x y 在双曲线内部时:b bk a a-<<,直线与双曲线两支各有一个交点; a bk ±=,直线与双曲线渐近线平行,直线与双曲线相交于一点;b k a >或bk a<-或k 不存在时直线与双曲线的一支有两个交点;2).当点00(,)P x y 在双曲线上时:bk a =±或2020b x k a y =,直线与双曲线只交于点00(,)P x y ;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 2020b x k a y >(00y ≠)或2020b x b k a a y <<(00y ≠)或bk a <-或k 不存在,直线与双曲线在一支上有两个交点; 当00y ≠时,bk a =±或k 不存在,直线与双曲线只交于点00(,)P x y ;b k a >或bk a <-时直线与双曲线的一支有两个交点;b bk a a-<<直线与双曲线交于两点(左支一个点右支一个点); 3).当点00(,)P x y 在双曲线外部时:当()0,0P 时,b bk a a -<<,直线与双曲线两支各有一个交点; b k a ≥或bk a≤或k 不存在,直线与双曲线没有交点;当点0m ≠时,k =时,过点00(,)P x y 的直线与双曲线相切 bk a=±时,直线与双曲线只交于一点;几何法:直线与渐近线的位置关系例:过点(0,3)P 的直线l 和双曲线22:14y C x -=,仅有一个公共点,求直线l 的方程。
椭圆双曲线抛物线知识点

椭圆,双曲线,抛物线知识点- 椭圆、双曲线和抛物线是三种重要的圆锥曲线,它们在数学和实际生活中都有广泛的应用。
以下是关于这三种曲线的一些主要知识点:1.椭圆:定义:椭圆是平面上到两个固定点(焦点)的距离之和等于常数(大于两个焦点间的距离)的点的轨迹。
这个常数称为椭圆的焦距。
性质:•椭圆上的任意一点到两个焦点的距离之和是常数(2a)。
•在椭圆长轴的顶点处,短轴的半径最小。
•在短轴顶点处,长轴的半径最大。
•椭圆的离心率是数学中一个重要的概念,定义为e=c/a,其中a是半长轴,c是半短轴。
椭圆的离心率越接近1,椭圆的形状就越扁。
2.双曲线:定义:双曲线是平面上到两个固定点(焦点)的距离之差的绝对值等于常数(小于两个焦点间的距离)的点的轨迹。
这个常数称为双曲线的实轴长度。
性质:•双曲线上的任意一点到两个焦点的距离之差是常数(2a)。
•双曲线的两个分支是无限延伸的,它们不会相交。
•双曲线的离心率是数学中一个重要的概念,定义为e=c/a,其中a是半实轴长度,c是半虚轴长度。
双曲线的离心率越大,双曲线的形状就越扁。
3.抛物线:定义:抛物线是平面上到定点(焦点)和直线(准线)的距离相等的点的轨迹。
定点(焦点)和直线(准线)的距离d称为抛物线的焦距。
性质:•抛物线上的点到定点(焦点)的距离等于到直线(准线)的距离。
•抛物线的开口大小由焦距决定,焦距越大,开口越小。
•抛物线可以被认为是圆锥曲线的一种特殊形式,因为它可以看作是由一个平面切割圆锥体得到的。
在数学中,这三种曲线都有广泛的应用,包括解决各种几何问题、优化问题、微分方程等。
它们也是很多科学和工程学科的基础,如物理学、天文学、经济学等。
此外,在计算机图形学、动画制作、摄影等领域,这三种曲线也经常被用到。
在求解具体问题时,需要根据具体的问题选择合适的曲线。
例如,在解决航天工程中的轨道问题时,可能需要使用椭圆;在解决一些需要快速下降或者远离某一点的运动问题时,可能需要使用双曲线;在解决一些需要速度最大或者最小的问题时,可能需要使用抛物线。
完整版)椭圆,双曲线,抛物线知识点

完整版)椭圆,双曲线,抛物线知识点左老师备战考高基础复资料-椭圆椭圆是平面内与两个定点F1,F2的距离的和等于定长(定长大于两定点间的距离)的点的轨迹。
这两个定点叫焦点,两定点间距离为焦距。
椭圆的标准方程分为焦点在x轴和焦点在y轴的情况,分别为x^2/a^2+y^2/b^2=1和y^2/a^2+x^2/b^2=1,其中a>b>0.椭圆的范围为x≤a。
y≤b或y≤a。
x≤b,顶点坐标为(±a。
0)和(0.±b),对称轴为x轴和y轴,对称中心为原点O(0,0),焦点坐标为F1(c,0)和F2(-c,0)或F1(0,c)和F2(0,-c),其中c为焦距的一半,即c^2=a^2-b^2,离心率为e=c/a,离心率越大,椭圆越扁,离心率越小,椭圆越圆。
椭圆的准线为垂直于长轴且在椭圆外的直线,两准线间的距离为2b,准线方程为x=±a^2/c或y=±b^2/c。
椭圆上的点到焦点的最大(小)距离分别为a+c和a-c,椭圆的参数方程为x=acosθ。
y=bsinθ或x=bcosθ。
y=asinθ,其中θ为参数。
利用参数方程可以简便地求解椭圆上一点到直线Ax+By+C=0的距离,距离公式为d=|Ax+By+C|/√(A^2+B^2)。
注意:文章中的公式可能无法正确显示,建议查看原文。
双曲线是一种常见的曲线形式,其方程可以表示为y=±(b/x)或x=±(b/y),其中a和b为实数。
我们可以将其转化为一元二次方程,用判别式确定其位置关系。
如果二次项系数为零,则直线与渐近线平行。
另外,如果有相交弦AB,则其弦长可以表示为AB=1+k^2(x1+x2)^2-4x1x2,通径为AB=y2-y1.抛物线是另一种常见的曲线形式,其方程可以表示为y^2=2px或x^2=2py,其中p为正实数。
抛物线的焦点是其轨迹上与一定直线距离相等的点,而准线是该直线。
抛物线关于x轴对称,焦点在对称轴上,离心率为1,顶点到准线的距离等于焦点到准线的距离。
椭圆、双曲线、抛物线PPT课件

(2)证明:设线段 AB 的中点坐标为 N(x0,y0),A(x1, y1),B(x2,y2),因为 AB 不垂直于 x 轴, 则直线 MN 的斜率为x0y-0 4,直线 AB 的斜率为 4-x0,
y0 直线 AB 的方程为 y-y0=4-y0x0(x-x0),
联立方程y-y0=4-y0x0x-x0, y2=4x,
第13页/共50页
【解】 (1)由已知得 c=2 2,ac= 36, 解得 a=2 3. 又 b2=a2-c2=4, 所以椭圆 G 的方程为1x22+y42=1.
第14页/共50页
(2)设直线 l 的方程为 y=x+m.
y=x+m, 由1x22 +y42=1,
得 4x2+6mx+3m2-12=0.①
第31页/共50页
消去 x 得(1-x40)y2-y0y+y20+x0(x0-4)=0, 所以 y1+y2=4-4y0x0, 因为 N 为 AB 的中点, 所以y1+2 y2=y0, 即4-2y0x0=y0, 所以 x0=2,即线段 AB 中点的横坐标为定值 2.
第32页/共50页
轨迹问题
例4 (1)若动圆 P 过点 N(-2,0),且与另一圆 M: (x-2)2+y2=8 相外切,则动圆 P 的圆心的轨迹方 程是__________; (2)已知直线 l:2x+4y+3=0,P 为 l 上的动点, O 为坐标原点.若 2O→Q=Q→P,则点 Q 的轨迹方程 是__________.
第18页/共50页
变式训练 2 已知过抛物线 y2=2px(p>0)的焦点, 斜率为 2 2的直线交抛物线于 A(x1,y1),B(x2, y2)(x1<x2)两点,且|AB|=9. (1)求该抛物线的方程; (2)O 为坐标原点,C 为抛物线上一点,若O→C=O→A +λO→B,求 λ 的值.
椭圆、双曲线、抛物线课件课件

[自主解答] (1)设椭圆E的方程为ax22+by22=1.
由e=12,即ac=12,得a=2c,得b2=a2-c2=3c2. ∴椭圆方程可化为4xc22+3yc22=1.
将A(2,3)代入上式,得c12+c32=1,解得c=2, ∴椭圆E的方程为1x62+1y22 =1.
(2)由(1)知F1(-2,0),F2(2,0),所以直线AF1的方程为: y=34(x+2),即3x-4y+6=0,直线AF2的方程为:x=2. 由点A在椭圆E上的位置知,直线l的斜率为正数. 设P(x,y)为l上任一点,则|3x-54y+6|=|x-2|. 若3x-4y+6=5x-10,得x+2y-8=0(因其斜率为负,舍去). 于是,由3x-4y+6=-5x+10,得2x-y-1=0, 所以直线l的方程为:2x-y-1=0.
y1+y2=-8k,y1y2=16,
ห้องสมุดไป่ตู้
因为直线l交轨迹C于两点,所以Δ=64-64k2>0,
再由y1>0,y2>0,得-8k>0,故-1<k<0, 因为线段ST的中点坐标为(-k42+2,-4k) 所以线段ST的垂直平分线的方程为 y+4k=-1k(x+k42-2) 令y=0得点Q的横坐标为xQ=-2-k42. 而xQ=-2-k42<-6, 所以Q点的横坐标取值范围为(-∞,-6).
心率是54,且∠F1PF2=90°,若△F1PF2的面积是9,则a+b的值
(a>0,b>0)等于
()
A.4
B.7
C.6
D.5
(2)设焦点在x轴上的双曲线xa22-by22=1的右准线与两条渐近线交于A、
B两点,右焦点为F,且 FA ·FB =0,则双曲线的离心率e=_______.
[思路点拨] (1)利用双曲线的第一定义,(2)由渐近线 方程和准线方程先求A、B两点坐标.
高中数学椭圆双曲线抛物线考点精讲

专题椭圆双曲线抛物线.一、椭圆二、双曲线(a,0), (a,0)(0,a), (0,a)F1(c,0),F2(c,0),F1(0,c),F2(0,c). 1.从双曲线一个焦点到一条渐近线的距离等于b.2.共渐进线双曲线系:与22221x y a b -=共渐进线的双曲线方程是22x a-22y b =λ(λ≠0)双曲线的渐近线为0=±b ya x 时,它的双曲线方程可设为)0(2222≠=-λλby a x . 3.双曲线方程中化1为0,因式分解可得渐进线方程4.等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,2=e .5.直线与双曲线仅有一个交点的位置关系:区域①:无切线,2条与渐近线平行的直线,合计2条; 区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条;区域③:2条切线,2条与渐近线平行的直线,合计4条;区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条;区域⑤:即过原点,无切线,无与渐近线平行的直线.小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.三、抛物线定义 到定点的距离与到定直线的距离之比等于1的点的轨迹方程 px y 22=px y 22-=pyx 22= py x 22-=图形焦点 )0,2(p F )0,2(p F -)2,0(p F )2,0(p F -准线 2p x -= 2p x = 2p y -= 2p y =范围 0,x y ≥∈R0,x y ≤∈R ,0x y ∈≥R ,0x y ∈≤R 对称轴 x轴y 轴顶点 (0,0)离心率 1=e通经 2p焦半径12x pPF +=12x pPF +=12y pPF +=12y pPF +=1.抛物线22y px =中p 的几何意义是焦点到准线的距离,恒正;焦点坐标、准线方程与2p 相关,是一次项的四分之一2.注意抛物线焦点弦的特点: 如22ypx =中22121212,,4p y y p x x AB x x p =-==++例题精讲例1例2.已知圆C.直C.例3 .已知F1、F2过F1的直线交椭圆于A、B两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十五 椭圆双曲线抛物线1.(2013年新课标理数全国卷1) 已知双曲线C:x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为 () A 、y =±14x (B )y =±13x(C )y =±12x(D )y =±x2.(2013年新课标理数全国卷1)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。
若AB 的中点坐标为(1,-1),则E 的方程为 ()A 、x 245+y 236=1B 、x 236+y 227=1 C 、x 227+y 218=1 D 、x 218+y 29=1 3.(2013年新课标理数全国卷2)设抛物线y 2=2px(p>0)的焦点为F ,点M 在C 上,|MF |=5,若以MF 为直径的圆过点(0,2),则C 的方程为( ) (A )y 2=4x 或y 2=8x (B )y 2=2x 或y 2=8x(C )y 2=4x 或y 2=16x (D )y 2=2x 或y 2=16x4.(2014年新课标理数全国卷1).已知F 为双曲线()22:30C x my m m -=>的一个焦点,则点F 到C 的一条渐近线的距离为( )A B .3 C D .3m5.(2014年新课标理数全国卷1).已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =,则QF =( )A .72 B .3 C . 52D .2 6.(2014年新课标理数全国卷2).设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,O 为坐标原点,则△OAB 的面积为( )A.334B.938C.6332D.947.(2015年新课标理数全国卷1)已知M (x 0,y 0)是双曲线C :2212x y -= 上的一点,F 1、F 2是C 上的两个焦点,若12MF MF ⋅<0,则y 0的取值范围是( )(A )(-3,3(B )(-6,6 (C )(3-,3) (D )() 8.(2015年新课标理数全国卷2)已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( )(A )3 (B )2 (C (D9.(2016年新课标理数全国卷1)已知方程132222=--+n m y n m x 表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( )(A )()3,1- (B )()3,1- (C )()3,0 (D )()3,010.(2016年新课标理数全国卷1).以抛物线C 的顶点为圆心的圆交C 于A 、B两点,交C 的标准线于D 、E 两点.已知|AB |=,|DE|=C 的焦点到准线的距离为( )(A)2 (B)4 (C)6 (D)811.(2016年新课标理数全国卷2)已知F 1,F 2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F 1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为( )(A (B )32(C (D )2 12.(2016年新课标理数全国卷3)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E.若直线BM 经过OE 的中点,则C 的离心率为( )(A )13 (B )12 (C )23 (D )3413.(2017年新课标理数全国卷1).已知F 为抛物线C :y 2=4x 的焦点,过F作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为( )A .16B .14C .12D .1014.(2017年新课标理数全国卷2)若双曲线C :)0,0(12222>>=-b a b y a x 的一条渐近线被圆4)2(22=+-y x 所截得的弦长为2,则C 的离心率为 ( ) A 、2 B 、3 C 、2 D 、332 15.(2017年新课标理数全国卷3)已知双曲线22221x y C a b-=:(0a >,0b >)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为( )A .221810x y -=B .22145x y -=C .22154x y -=D .22143x y -=16.(2017年新课标理数全国卷3).已知椭圆2222:1x yC a b+=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )ABCD .1317.(2018年新课标理数全国卷1).设抛物线C :y2=4x 的焦点为F ,过点(–2,0)且斜率为的直线与C 交于M ,N 两点,则=( )A .5B .6C .7D .818.(2018年新课标理数全国卷1)已知双曲线C :,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N.若为直角三角形,则|MN|=( )A .B .3C .D .419.(2018年新课标理数全国卷2).双曲线则其渐近线方程为()A .B .C .D .23FM FN ⋅2213xy -=OMN △3222221(0,0)x y a b a b-=>>y =y =2y =y =20.(2018年新课标理数全国卷2).已知,是椭圆的左、右焦点,是的左顶点,点在过的直线上,为等腰三角形,,则的离心率为()A.B.C.D.21.(2018年新课标理数全国卷3)..设是双曲线()的左,右焦点,是坐标原点.过作的一条渐近线的垂线,垂足为.若,则的离心率为()AB.2C D22.(2019年新课标理数全国卷1).已知椭圆C的焦点为121,01,0F F-(),(),过F2的直线与C交于A,B两点.若22||2||AF F B=,1||||AB BF=,则C的方程为()A.2212xy+=B.22132x y+=C.22143x y+=D.22154x y+= 23.(2019年新课标理数全国卷2).若抛物线y2=2px(p>0)的焦点是椭圆2231x yp p+=的一个焦点,则p=()A.2 B.3 C.4 D.823.(2019年新课标理数全国卷2).设F为双曲线C:22221(0,0)x ya ba b-=>>的右焦点,O为坐标原点,以OF为直径的圆与圆222x y a+=交于P,Q两点.若PQ OF=,则C的离心率为()A B C.2 D24.(2019年新课标理数全国卷3).双曲线C:2242x y-=1的右焦点为F,点P 在C的一条渐进线上,O为坐标原点,若=PO PF,则△PFO的面积为()1F2F22221(0)x yC a ba b+=>>:A C P A12PF F△12120F F P∠=︒C2312131412F F,22221x yCa b-=:00a b>>,O2F C P 1PF=CABC. D.25.(2017年新课标理数全国卷1).已知双曲线C :(a>0,b>0)的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于M 、N 两点。
若∠MAN=60°,则C 的离心率为________。
26.(2017年新课标理数全国卷2)已知F 是抛物线x y C 8:2=的焦点,M 是C 上一点,FM 的延长线交y 轴于点N ,若M 为FN 的中点,则=FN ________.27.(2019年新课标理数全国卷1)已知双曲线C :22221(0,0)x y a b a b -=>>的左、右焦点分别为F1,F2,过F1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =,120F B F B ⋅=,则C 的离心率为____________.28.(2019年新课标理数全国卷3)设12F F ,为椭圆C:22+13620x y=的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________.22221x y a b -=。