2019届高三年级三校联考数学试题卷及参考答案
东北三三校2019高三3月第一次联考-数学理(解析版)

东北三三校2019高三3月第一次联考-数学理(解析版)理科数学全解析本试卷分为第I 卷〔选择题〕和第II 卷〔非选择题〕两部分,共150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回。
本卷须知1、答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2、选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚。
3、请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4、作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5、保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第I 卷〔选择题 共60分〕【一】选择题:本大题共12小题,每题5分,共60分。
在每题给出的四个选项中,只有一项符合题目要求。
1、全集U R =,集合{}|2A x x =≥,{|05}B x x =≤<,那么集合)U C A B ⋂=( 〔 〕A 、{|02}x x <<B 、{|02}x x <≤C 、{|02}x x ≤<D 、{|02}x x ≤≤解析:{}|2U C A x x =<){|02}U C A B x x ∴⋂=≤<(,应选CA 、假设1x >,那么0x ≤B 、假设1x ≤,那么0x >C 、假设1x ≤,那么0x ≤D 、假设1x <,那么0x <解析:、命题“假设1,x >那么0x >”的否命题是:假设1x ≤,那么0x ≤,应选C 3、在复平面内复数3+41i z i=-的对应点在〔〕A 、第一象限B 、第二象限C 、第三象限D 、第四象限解析:3+4(3+4)(1)1717+1(1)(1)222i i i i z ii i i +-+====---+,而点17(,)22-在第二象限,应选B4数列{}n a 是等差数列,且1472a a a π++=,那么35tan()a a +的值为〔〕AB、CD、解析:1472a a a π++=,43=2a π∴42=3a π∴3544tan()=tan 2=tan 3a a a π∴+应选C5、与椭圆:C 2211612y x +=共焦点且过点的双曲线的标准方程为〔〕A 、2213y x -=B 、2221y x -=C 、22122y x -=D 、2213y x -= 解析:由题知:焦距为4,排除B,又焦点在y 轴上排除A,将代入C 、D 可得C 正确,应选C6、将4名实习教师分配到高一年级的3个班实习,假设每班至少名教师,那么不同的分配方案的种数为〔〕A 、12B 、36C 、72D 、108 解析:先从4名实习教师选出2名教师有24C 种情形,再将选出的2名教师看成1名教师与余下的2名全排列有33A 种情形,所以不同的分配方案的种数为:2343=36C A ⋅,应选B7、按如下图的程序框图运行后,假设输出的结果是63,那么判断框的整数M 的值是〔〕A 、5B 、6C 、7D 、8解析:按框图推演可得:M 的值为:6,应选B 8、假设n的展开式中第四项为常数项,那么n =〔〕第10小题DCBO 1OAA 、4 B、5 C 、6 D、7解析:n的展开式中第四项为:35331332211()()22n n nn C xx C x---∙-∙=-,又第四项为常数项 所以52n -=,从而5n =,应选B9、函数sin()y A x k ωϕ=++的最大值为4,最小值为0,最小正周期为2π,直线3x π=是其图像的一条对称轴,那么下面各式中符合条件的解析式为〔〕 A 、4sin(4)6y x π=+B 、2sin(2)23y x π=++C 、2sin(4)23y x π=++D 、2sin(4)26y x π=++解析:由题得:40A k A k +=⎧⎨-+=⎩,解得:22A k =⎧⎨=⎩又函数sin()y A x k ωϕ=++最小正周期为2π242πωπ∴==()2sin(4)2f x x ϕ∴=++又直线3x π=是()f x 图像的一条对称轴432k ππϕπ∴⨯+=+5,6k k Zπϕπ∴=-∈ 故可得:2sin(4)26y x π=++符合条件,所以选D10、点A B C D 、、、在同一个球的球面上,AB BC ==,2AC =,假设四面体ABCD 体积的最大值为23,那么这个球的表面积为〔〕A 、1256π3B 、8πC 、254πD 、2516π解析:AB BC ==,2AC =,ABC ∴∆是直角三角形,ABC ∴∆的外接圆的圆心在边1AC 的中点O 如下图,假设使四面体ABCD 体积的最大值只需使点D 平面ABC 的距离最大,又1OO ⊥平面ABC ,所以点D 是直线1OO 与球的交点最大。
2019年5月2019届高三第三次全国大联考(新课标Ⅲ卷)-理数(全解全析)

理科数学 第 1页(共 10页)22019 年第三次全国大联考【新课标Ⅲ卷】理科数学·全解全析1. 【答案】D【解析】由 A = {x | x 2 < 2} = {x | - < x < 2} ,B = {x | y = x + 1} = {x | x ≥ -1} ,得 A B = {x | -1 ≤ x < 2} ,故选 D .2. 【答案】A【解析】因为 z = 3 - i= (3 - i)(1 + 2i)=3 + 2 - i + 6i= 1 + i ,所以复数 z 在复平面内对应的点的坐标为(1,1) ,故选 A . 3.【答案】B1 - 2i (1 - 2i)(1 + 2i) 5【解析】由三视图得,该几何体是棱长为 3 的正方体截去一个棱长为 1 的正方体,如图所示,所以该几何体的表面积与棱长为 3 的正方体的表面积相等,即所求表面积为 S = 6 ⨯ 32 = 54 .故选 B .4.【答案】C【解析】2016 年,2017 年,2018 年容易题分值分别为 40,55,96,逐年增加,①正确;近三年中档题分值所占比例最高的年份是 2016 年,②错误;2018 年的容易题与中档题的分值之和为 96+42=138, 138 = 0.92 > 90% ,③正确,故选 C .1505. 【答案】B【解析】(x - 2)( 2 + 1)5 的展开式中的常数项为 x ⨯ C 4 ⨯ 2⨯14 - 2 ⨯15 = 10 - 2 = 8 ,故选 B .x 6. 【答案】Dn 2 - 1n 2 + 1 5xn 2 - 1n 2 + 1n 2 n 2 【解析】A ,当 n 为偶数时, , 2 2 不是整数,所以 n , , 2 2 不是勾股数;B ,n 2+ ( )2 ≠ ( 2 2+ 1)2 ,12 3 4 5 6 7 8 9 10 11 12 D ABCBDBDBCAC理科数学 第 2页(共 10页)3 3 2n 2 n 2 n 2 - 2 n 2 + 2 n 2 - 2 n 2+ 2 所以 n , , + 1不是勾股数;C , n 2 + ( )2 ≠ ( )2 ,所以 n , , 不是勾股数;D ,当 n 2 2 n 2 n 2 4 4 n 2 n 2 4 4n 2 n 2 为偶数时, n ,7. 【答案】B- 1, 4 4 + 1 都是整数,且 n 2 + ( -1)2 = ( 4 4 + 1)2,所以 n , - 1, 4 4+ 1 是勾股数,故选 D .【解析】模拟运行该程序:x =1,y =1,z =11,满足循环条件;x =1,y =11,z =21,满足循环条件;x =11, y =21,z =131,满足循环条件;x =21,y =131,z =341,不满足循环条件,终止循环,输出 z 的值为 341, 观察 A 、B 、C 、D 四个选项,可知只有 B 选项符合题意,故选 B .8. 【答案】D【解析】由题意得 a 2 = 1⨯ a = a + 6 ,所以 a = 3 (负值舍去),所以 a = 3 + 2 = 5 ,因为数列141121, a , a , b , b , b , , b , 成等比数列,设其公比为 q ,则 q = a 1 = 3 ,所以b = 35 = 243 ,所以 b 3 = 243,1 4 123 n故选 D .1 3 a 5 9. 【答案】B【解析】设双曲线C 的焦距为2c (c > 0) ,则由△OPF 为等边三角形,得 c P ( ,3c ) ,代入双曲线 C 的方c 2 3c 2 2 23e 2程得 - = 4 ,即e 2 - = 4 ,解得e = + 1 (或 e = - 1 ,舍去),故选 B . a 2 b 2 e 2 - 110. 【答案】C【解析】解法一:如图,连接 D 1 A , AC , D 1C ,易证平面 ACD 1 平面 EFG ,因为 D 1 P 与平面 EFG 没有公共点,所以直线 D 1 P 平面 EFG ,所以点 P 在直线 AC 上,所以当 P 为 AC 中点时,线段 D 1 P 的长度最小,最小值为 ,故选 C .解法二:如图,连接 D 1C , AC ,因为直线 D 1 P 与平面 EFG 没有公共点,所以直线 D 1 P 平面 EFG .延长 EF ,与 DC 的延长线交于点 H ,连接GH ,则 D 1C GH ,AC EF ,所以点 P 在直线 AC 上,易得6理科数学 第 3页(共 10页)当 P 为 AC 中点时,线段 D 1 P 的长度最小,最小值为 ,故选 C .11. 【答案】A【解析】由 f (a ) = 1, f (a + 2) = 0 得函数 f (x ) 的图象关于直线 x = a 对称,且关于点(a + 2, 0) 对称,由存在不相等的实数 x 1 , x 2 ∈(a , a + 2) 使得 f (x 1 ) = f (x 2 ) 成立,可得 f (x ) 在(a , a + 2) 上不单调,所以区间 (a , a + 2)的长度不小于 3T (其中T 为函数 f (x ) 的最小正周期),即 2 ≥ 3 ⨯ 2π ,即ω≥ 3π,故选 A .4 12. 【答案】C4 ω 4【解析】由(a + 1)x - ln x + b - 2 ≤ 0 ,得ln x ≥ (a + 1)x + b - 2 ,若存在唯一实数 x 0 ,使得 f (x 0 ) ≤ 0 ,则 直线 y = (a +1)x + b - 2 与曲线 y = ln x 相切,设切点为 P (t , ln t ) ,则切线方程为 y - ln t = 1(x - t ) ,即ty = 1 x + ln t - 1 ,所以 a + 1 = 1 ,b - 2 = ln t - 1 ,所以 a + b = 1 + ln t ,设 g (t ) = 1 + ln t (t > 0) ,则 g'(t ) =t - 1, t t t t t 2所以 g (t ) 在(0,1) 上单调递减,在(1, +∞) 上单调递增,所以 g (t ) ≥ g (1) = 1,所以 a + b 的取值范围是[1, +∞) ,故选 C . 13.【答案】[-1,5]【解析】作出不等式组表示的平面区域如图中阴影部分所示,由 z = 2x - y +1得 y = 2x - z + 1,平移直线 y = 2x ,可知直线 y = 2x - z + 1过点 A (2, 0) 时 z 取到最大值, z max = 2 ⨯ 2 - 0 + 1 = 5 ,过点 B (0, 2) 时 z 取到最小值, z min = 0 - 2 + 1 = -1 ,所以 z = 2x - y + 1的取值范围是[-1,5] .6理科数学 第 4页(共 10页)( , 14.【答案】 - 12【解析】由| a ⋅ b |=| a | ⋅ | b | 可知向量 a , b 共线,所以cos α+ 2 sin α= 0 ,所以tan α= - 1.215.【答案】( 1, +∞) 21 1 1⎧ 1 , n 为奇数 【解析】由 a = 1 且 a - = ,得 a = , a = , a = 1 , ,∴ a = ⎪ 2 ,因为数2 n +12 1 23 2 4n ⎨ ⎪⎩ 1, n 为偶数列{b } 是递增数列,当 n 为奇数时,b - b = 1 + λ> 0 ,∴ λ> - 1 ,当 n 为偶数时,b - b = - 1+ λ> 0 ,n n +1 n 2 2 n +1 n2∴ λ> 1 ,综上,实数λ的取值范围是 1+∞) .2 2 16.【答案】(4, 4)【解析】由题意知直线 OA 的斜率为正,设直线 OA 的斜率为 k (k > 0) ,则直线 OA 的方程为 y = kx , ⎧ y 2 = 4x 4 4 16 16 ⎧ y 2 = 4x 直线 MN 的方程为 y = k (x -1) ,联立⎨ ,得 A ( , ) ,所以| OA |2= + ;联立⎨ ,⎩ y = kx k 2k k 4 k 2 ⎩ y = k (x - 1)2 2 2 22k 2 + 4 4 消去 y ,整理得 k x - (2k + 4)x + k = 0 ,设 M (x 1 , y 1 ), N (x 2 , y 2 ) ,则 x 1 +x 2 =k 2 =2+ k2 , x 1 x 2 = 1 , | MF | ⋅ | NF |= (1 + k 2 ) | x -1| ⋅ | x -1| = (1 + k 2 ) | x x - (x + x ) + 1| = 4(1 + 1 ) .因为1成 1 2 1 2 1 2| MF |, | OA |,| NF | k 2 2等比数列,所以| MF | ⋅ | NF |= 1 | OA |2 ,即 4(1 + 4 1 ) = 4 k 2 k 4 + 4 ,所以 k 4= 1 ,解得 k = 1 ,故点 A 的坐标k 2 为(4, 4) .17.(本小题满分 12 分)【解析】解法一:(1)由 AB = AC 可得∠BAC = π - 2C , ∴ cos ∠BAC = -cos 2C = 2 sin 2 C - 1 = 2 ⨯ ( 2 5 )2 - 1 = 3.(2 分)5 5 ∵ AB = AC = AE + EC = 5 + 2 = 7 ,∴ BE 2 = AB 2 + AE 2 - 2AB ⋅ AE cos ∠BAE = 49 + 25 - 42 = 32 ,∴ BE = 4 .(6 分)(2)由(1)知, cos ∠BAE = 3 ,∴ sin ∠BAE = 4,5 5∴ S △ABE= 1 AB ⋅ AE ⋅ sin ∠BAE = 1 ⨯ 7 ⨯ 5⨯ 4 = 14 .(12 分) 2 2 5 解法二:(1)如图,取 BC 的中点 D ,连接 AD ,交 BE 于点 F .a - a 2 n n 2理科数学 第 5页(共 10页)22 ⨯ 7 ⨯ 4 2由题意得 AD ⊥ BC ,∵ AC = AE + EC = 5 + 2 = 7 , sin C = 2 5 ,∴ cos C =5 ,55∴ CD = AC ⋅ cos C = 7 ⨯5 = 7 5 ,∴ BC = 2CD = 14 5,(3 分 ) 5 5 5∴ BE 2 = BC 2 + EC 2 - 2BC ⋅ EC ⋅ cos C = 196 + 22 - 2 ⨯ 14 5 ⨯ 2 ⨯ 5= 32 ,∴ BE = 4.(6 分) 5 5 5(2)由(1)知 BE = 4 ,AB 2 + BE 2 - AE 249 + 32 - 25 ∴ cos ∠ABE = = = 2 AB ⋅ BE ,(9 分) 2 ∴ sin ∠ABE = 2 ,2 ∴ S= 1 AB ⋅ BE ⋅ sin ∠ABE = 1 ⨯ 7 ⨯ 4 2 ⨯ 2= 14 .(12 分) △ABE2 2 218.(本小题满分 12 分)【解析】(1)如图,作 PO ⊥ AC 于 O ,连接 BO ,由 PA = BA , ∠PAC = ∠BAC , AO = AO ,可得△PAO ≌△BAO , 所以∠AOB = ∠AOP = 90︒ ,所以OB ⊥ AC ,(3 分) 又 PO BO = O ,所以 AC ⊥ 平面 PBO , 因为 PB ⊂ 平面 PBO ,所以 PB ⊥ AC .(6 分)2 2理科数学 第 6页(共 10页)3 6 3 2 72 7 144 ⎧⎪n ⋅ (2)由 PA = AB = 2 , ∠PAC = ∠BAC = 60︒ ,可得OP = OB = 2sin 60︒ = , OA = 2 cos 60︒ = 1 , 又 PB = ,所以OP 2 + OB 2 = PB 2 ,所以OP ⊥ OB ,所以OA ,OB ,OP 两两垂直,分别以OA ,OB ,OP 所在直线为 x 轴、y 轴、z 轴建立空间直角坐标系O - xyz (如图),则 O (0, 0, 0), A (1, 0, 0), B (0,3, 0), C (-3, 0, 0) , P (0, 0, 3) ,AB = (-1, 3, 0) , BC = (-3, - 3, 0) ,BP = (0, - 3, 3) ,BC = 0⎪⎧ -3x -3y = 0 设平面 BCP 的法向量为 n = (x , y , z ) ,则⎨,即⎨ , ⎪⎩n ⋅ BP = 0 ⎪⎩- 3y + 3z = 0取 x = -1 ,则 y = 3, z = ,所以n = (-1, 3, 3) 是平面 BCP 的一个法向量,(10 分)设直线 AB 与平面 PBC 所成角为θ,则sin θ=| cos AB , n | AB ⋅ n | |= =| AB | ⋅ | n | =4= , 7所以直线 AB 与平面 PBC 所成角的正弦值为19.(本小题满分 12 分).(12 分) 【解析】(1)由茎叶图可知:甲校学生数学成绩的中位数为128 + 135= 131.5 ,乙校学生数学成绩的中2位数为128 + 129= 128.5 ,所以这 40 份试卷的成绩,甲校学生数学成绩的中位数比乙校学生数学成绩的2 中位数高.(2 分)(2)由题意,作出 2 ⨯ 2 列联表如下:甲校乙校 合计 数学成绩优秀 10 7 17 数学成绩不优秀10 13 23 合计20204040 ⨯ (10 ⨯13 -10 ⨯ 7)2计算得 K 2的观测值 k = ≈ 0.9207 < 2.706 ,20 ⨯ 20 ⨯17 ⨯ 23所以没有 90 0 0 的把握认为数学成绩在 100 分及以上的学生中数学成绩是否优秀与所在学校有关.(8 分)(3)因为 X ~ N (110,144) ,所以μ= 110 ,σ== 12 ,| -1⨯ (-1) + 3 ⨯ 3 + 0 ⨯ 3 |(-1)2 + ( 3)2 + 02 ⨯ (-1)2 + ( 3)2 + ( 3)2 2 77理科数学 第 7页(共 10页)(1, ) (1, ) ⎨ x PM PN ⎩所以 P (86 < X ≤ 134) = 0.9544 ,所以 P ( X > 134) =1 - 0.9544= 0.0228 , 2由题意可知ξ~ B (3, 0.0228) ,所以 E ξ= 3⨯ 0.0228 = 0.0684 .(12 分)20.(本小题满分 12 分)【解析】(1)由 e = 1(其中 e 为椭圆C2圆 x 2 + y 2 - 2x - 3y = 0 的圆心为 3 ,由 3 在椭圆 C 上,得 1 + 9= 1 ,即3a 2 = 1 ,2 = 4b 2 ,⎧3a 2 = 4b 2 联立⎪ 2 2⎧⎪a 2= 4 ,解得⎨, a 24b 2 ⎨ 1 ⎪⎩a 2 + 9 = 1 4b 2⎪⎩b 2= 3 x 2 + y 2 =故椭圆 C 的标准方程为 4 3⎧ y = mx + n 1 .(4 分)(2)联立⎪ 2 + y 2 ,消去 y ,整理得(3 + 4m 2 )x 2 + 8mnx + 4n 2 -12 = 0 , = 1 ⎪⎩ 4 3因为直线 y = mx + n 与椭圆 C 只有一个公共点 M ,所以∆= 64m 2 n 2 - 4(3 + 4m 2 )(4n 2 -12) = 0 ,即 n 2 = 3 + 4m 2 ,(6 分)设点 M 的坐标为(x , y ) ,则 x = - 4mn = - 4m , y = mx + n = 3 ,即 M (-4m 3,(8 分) M M M3 + 4m 2 n M Mn n , n )假设 x 轴上存在点 P (t , 0) ,使得以 MN 为直径的圆恒过点 P ,4m 3因为 N (4, 4m + n ) ,所以 PM = (- - t , ) , PN = (4 - t , 4m + n ) ,n n则 ⋅ = (- 4m - t )(4 - t ) + 3 (4m + n ) = t 2 - 4t + 3 + 4m (t - 1) = 0 恒成立,n n n⎧t = 1所以⎨t 2 - 4t + 3 = 0 ,所以t = 1 ,即在 x 轴上存在点 P (1, 0) ,使得以 MN 为直径的圆恒过点 P .(12 分)21.(本小题满分 12 分)【解析】(1)若 a = 2 ,则 g (x ) = x 2 - 2x ln x + 2 + x ln x = x 2 - x ln x + 2 , 所以 g' (x ) = 2x - ln x - 1 ,(2 分)因为函数 g (x ) 的图象在 x = t 处的切线的斜率 k = g' (t ) = 2t - ln t - 1 = 1 ,即 2t - ln t - 2 = 0 , 设ϕ(t ) = 2t - ln t - 2(t > 1 ) ,则ϕ' (t ) = 2 - 1> 0 ,2 t理科数学 第 8页(共 10页)⎩ 所以ϕ(t ) 在( 1 ,+∞) 上是增函数,又ϕ(1) = 0 ,2所以 2t - ln t - 2 = 0 有唯一实数解t = 1 ,(2 分)因为 g (1) = 3 ,把(1, 3) 代入 y = x + b 得b = 2 .(4 分) (2) ∀x ∈[1, e] , f (x ) > -1 ,即 x - a ln x + a + 1> 0 . x设 h (x ) = x - a ln x + a + 1,则 h (x ) 在[1, e]上的最小值 h (x ) x因为 h' (x ) = 1 - a - a + 1 = (x + 1)(x - a - 1),(5 分)min> 0 ,x x 2 x 2①当 a + 1 ≤ 1即a ≤ 0 时,在区间[1, e] 上, h'(x ) ≥ 0 ,所以 h (x ) 单调递增, 所以 h (x )min = h (1) = 2 + a > 0 ,所以-2 < a ≤ 0 .(7 分)②当1 < a + 1 < e ,即0 < a < e - 1 时, x ∈[1, a + 1] 时 h'(x ) ≤ 0 , h (x ) 单调递减, x ∈[a + 1, e] 时 h'(x ) ≥ 0 , h (x ) 单调递增,所以 h (x )min = h (a + 1) = 2 + a - a ln(a + 1) ,由1 < a + 1 < e 可得0 < a ln(a + 1) < a , 所以 h (a + 1) > 2 > 0 ,满足题意.(9 分)③当 a + 1 ≥ e 即 a ≥ e - 1 时,在区间[1, e] 上, h'(x ) ≤ 0 ,所以 h (x ) 单调递减, a + 1e 2 + 1 e 2 + 1 所以 h (x )min = h (e) = e +e 2+ 1- a > 0 ,解得 a < e ,因为 > e -1, e -1 e -1所以e -1 ≤ a < e -1.(11 分) e 2 +1综上可得实数 a 的取值范围是(-2, ) .(12 分)e -1 22.(本小题满分 10 分)选修 4-4:坐标系与参数方程【解析】(1)将ρcos θ= x , ρ2 = x 2 + y 2 代入ρ2 - 2 | ρcos θ|= 3 ,得曲线C 的直角坐标方程为 x 2 + y 2 - 2 | x |= 3 ,即(| x | -1)2 + y 2 = 4 ,(3 分)所以曲线 C 表示圆弧(x -1)2 + y 2 = 4(x ≥ 0) 及圆弧(x + 1)2 + y 2 = 4(x < 0) .(5 分)⎧x = a - 2t (2)由⎨ y = 2t消去参数 t 得直线 l 的普通方程为 x + y - a = 0 ,当直线 l 与圆弧(x -1)2 + y 2 = 4(x ≥ 0) 相切时(如图),得|1 + 0 - a |= 2 , 2解得 a = 2 + 1 或 a = -2 + 1 (舍去);(8 分)2 2理科数学 第 9页(共 10页)2f (x ) ⎨x > 1 ⎩当直线 l 与圆弧(x + 1)2 + y 2 = 4(x < 0) 相切时,得| -1 + 0 - a |= 2 , 2解得 a = 2 - 1 (舍去)或 a = -2 - 1,所以当-2 - 1 < a < 2 + 1 时直线l 与曲线C 有 2 个公共点,故 a 的取值范围为(-2 -1, 2 2 + 1) .(10 分)23.(本小题满分 10 分)选修 4-5:不等式选讲【解析】(1)当 a = 0 时, f (x ) =| 2x - 2 | + | x + 1| ,由题意, x ≠ 0 , ①当 x < 0 时, f (x ) ≥ 3 | x | ⇔ f (x ) ≥ -3 ⇔| 2x - 2 | + | x + 1|> -3 ,该不等式恒成立;(3 分) x②当 x > 0 时, f (x ) ≥3 | x | ⇔| 2x - 2 | + | x + 1|≥ 3 ,x⇔ ⎧2x - 2 + x + 1 ≥ 3 ⎩ ⇔ x ≥ 4 .3⎧-2x + 2 + x + 1 ≥ 3或⎨0 < x ≤ 1 综上可得 x < 0 或 x ≥ 4 ,故不等式 f (x ) ≥ 3 | x |的解集为(-∞, 0) [ 4 , +∞) .(5 分)3 x 3(2)因为| 2x - 2 | + | x + 1| = 2 | x -1| + | x + 1| ≥| x - 1| + | x + 1| ≥| (x - 1) - (x + 1) | =2,当且仅当 x = 1 时等号成立,所以| 2x - 2 | + | x + 1| -a ≥ 2 - a .(8 分)所以要使函数 y = 的值域为[0, +∞) ,应满足 2 - a ≤ 0 ,即 a ≥ 2 , 所以实数 a 的取值范围是[2, +∞) .(10 分)2 2 2 2理科数学第10页(共10页)。
2019届浙江湖州三校普通高等学校招生全国统一考试数学试题及答案

2019届浙江省湖州三校普通高等学校招生全国统一考试数学试题一、单选题1.已知集合,,则()A.B.C.D.【答案】B【】根据交集定义求解.选B.【】本题考查集合交集,考查基本求解能力,属基本题.2.双曲线的一个焦点到一条渐近线的距离是()A.1 B.2 C.4 D.【答案】A【】根据双曲线的焦点到渐近线的距离等于虚轴长一半,即得结果.因为双曲线的焦点到渐近线的距离等于虚轴长一半,所以双曲线的一个焦点到一条渐近线的距离是1,选A.【】本题考查双曲线的焦点与渐近线,考查基本分析求解能力,属基本题.3.复数(为虚数单位)的共轭复数是()A.B.C.D.【答案】C【】先化简复数为代数形式,再根据共轭复数概念求解.因为,所以其共轭复数是,选C.【】本题考查共轭复数概念,考查基本分析求解能力,属基本题.4.若变量,满足约束条件,则的最大值是()A.1 B.2 C.3 D.4【答案】D【】先作可行域,再求范围,最后可得的最大值.作可行域,如图,则直线过点A(-1,-1)时取最小值-4,过点时取最大值2,因此的最大值是4,选D.【】本题考查线性规划求最值,考查基本分析求解能力,属基本题.5.设函数,则函数的图像可能为()A.B.C.D.【答案】C【】先判断函数奇偶性,舍去B,D,再根据函数值正负确定选项.因为,所以舍去B,D,因为ln3>0,所以选C.【】本题考查函数图象识别,考查基本分析判断能力,属基本题.6.设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A【】根据面面垂直性质定理可证得充分性成立,举反例说明必要性不成立.因为,平面与平面相交于直线,直线在平面内,且,所以,因为直线在平面内,所以,即充分性成立,若,,但时,与不一定垂直,即不一定垂直,即必要性不成立. 选A.【】本题考查面面垂直性质定理与充要关系,考查基本分析判断能力,属中档题.7.已知袋子中装有若干个大小形状相同且标有数字1,2,3的小球,每个小球上有一个数字,它们的个数依次成等差数列,从中随机抽取一个小球,若取出小球上的数字的数学期望是2,则的方差是()A.B.C.D.【答案】B【】根据题意可假设标有数字1,2,3的小球各有1个,再根据方差定义求结果.因为取出小球上的数字的数学期望是2,且个数依次成等差数列,所以不妨设标有数字1,2,3的小球各有1个,从而随机抽取一个小球概率皆为,方差为,选B.【】本题考查数学期望与方差,考查基本分析与求解能力,属中档题.8.已知三棱锥中,为正三角形,,且在底面内的射影在的内部(不包括边界),二面角,二面角,二面角的大小分别为,,,则()A.B.C.D.【答案】C【】作出三个二面角,再根据,确定二面角大小.设在底面内的射影为O,过O分别作AB,BC,CA垂线,垂足分别为D,E,F,则,,,从而,,,因为,所以,,即,即,选C.【】本题考查二面角,考查基本分析与判断能力,属中档题.9.已知向量,的夹角为,且,则的最小值为()A.B.C.5 D.【答案】B【】建立坐标系,将转化为直线上一动点到两定点距离和,再根据对称求最小值.由题意可设,,因此表示直线上一动点到定点距离的和,因为关于直线的对称点为,所以选B.【】本题考查向量坐标表示与直线对称,考查等价转化与数形结合思想方法,考查基本求解能力,属难题.10.已知数列满足,,则使的正整数的最小值是()A.2018 B.2019 C.2020 D.2021【答案】C【】令,利用裂项相消法得,再根据范围求正整数的最小值.令,则,所以,从而,因为,所以数列单调递增,设当时, 当时,所以当时,,,从而,因此,选C.【】本题考查数列递推关系与裂项相消法,考查等价转化与构造法,考查综合分析与求解能力,属难题.二、填空题11.我国古代某数学著作中记载了一个折竹抵地问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”意思是:有一根竹子(与地面垂直),原高二丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离为六尺,则折断处离地面的高为__________尺.【答案】9.1尺【】根据题意列方程,解得结果.设折断处离地面的高为尺.则【】本题考查数学文化与应用,考查基本分析与求解能力,属基础题.12.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)等于_______,表面积(单位:)等于__________.【答案】【】先还原几何体,再根据柱体与锥体性质求体积与表面积.几何体一个边长为2的正方体挖去一个正四棱锥(顶点在正方体下底面中心,底面为正方体上底面),因此几何体的体积为,表面积为【】本题考查三视图与柱体与锥体性质,考查空间想象能力与基本求解能力,属基础题. 13.在中,内角,,所对的边分别为,,.已知,则的值为__________,若,,则的面积等于_________.【答案】16【】第一空根据两角和正切公式得,再根据同角三角函数关系得的值,第二空先根据正弦定理得,再根据两角和正弦公式得,最后根据面积公式得结果.因为,所以,因此因为,所以因为()=,所以的面积等于【】本题考查两角和正切公式、两角和正弦公式与正弦定理,考查基本分析求解能力,属基础题.14.若,则_________,_________.【答案】-27-940【】利用赋值法求系数.令得,所以,令得,令得,两式相加得【】本题考查利用赋值法求二项展开式系数,考查基本分析求解能力,属基础题.15.已知函数,则__________,若实数,且,则的取值范围是__________.【答案】4【】第一空直接代入对应式求解即可,第二空先根据函数图象确定关系及取值范围,再求的取值范围.),因为,且,所以,,因此.【】本题考查分段函数求值以及函数图像,考查综合分析与求解能力,属中档题.16.现有排成一排的7个不同的盒子,将红、黄、蓝、白颜色的4个小球全部放入这7个盒子中,若每个盒子最多放一个小球,则恰有两个空盒相邻且红球与黄球不相邻的不同放法共有_______种.(结果用数字表示)【答案】336【】根据相邻问题捆绑法,不相邻问题插空法进行求解.先不考虑红球与黄球不相邻,则4个小球有种排法,再安排空盒,有种方法,再考虑红球与黄球相邻,则4个小球有种排法,再安排空盒,有种方法,因此所求放法为【】本题考查排列组合应用,考查综合分析与求解能力,属中档题.17.已知椭圆的两个顶点,,过,分别作的垂线交该椭圆于不同于的,两点,若,则椭圆的离心率是__________.【答案】【】先求出,两点坐标,再根据弦长公式化简,解得离心率.过作的垂线的方程为,与联立方程组解得,过作的垂线的方程为,与联立方程组解得,因为,所以【】本题考查椭圆的离心率,考查综合分析与求解能力,属中档题.三、解答题18.已知函数.(Ⅰ)求函数的单调递减区间;(Ⅱ)求方程在区间内的所有实根之和.【答案】(Ⅰ),.(Ⅱ).【】(Ⅰ)先根据二倍角公式、辅助角公式化基本三角函数,再根据正弦函数性质求减区间,(Ⅱ)根据正弦函数图像与性质求简单三角方程的根.(Ⅰ),由单调递减可知,递增,故,,即.∴函数的单调递增区间是,.(Ⅱ)由,得.由在上递增,在上递减,且,得,方程在上有两不等实根,,且满足.∴.【】本题考查二倍角公式、辅助角公式以及正弦函数图像与性质,考查综合分析与求解能力,属中档题.19.如图,在四棱锥中,底面是边长为2的正方形,且,平面平面,二面角为.(Ⅰ)求证:平面;(Ⅱ)求与平面所成角的正弦值.【答案】(Ⅰ)见(2)【】(Ⅰ)根据面面垂直性质定理得平面,即得即为二面角的平面角,利用余弦定理解得,根据勾股定理得.最后根据线面垂直判定定理得结论,(Ⅱ)先利用等体积法求点到平面的距离,再根据解三角形得结果.(Ⅰ)证明:平面平面,交线为,且,∴平面,从而,,∴即为二面角的平面角,即.又,,由余弦定理得,∴,即.又,∴平面.(Ⅱ)由(Ⅰ)知,平面,从而,,又,,故.由已知,点到平面的距离等于点到平面的距离,设点到平面的距离为,则点到平面的距离也为,由得:,.∴与平面所成角的正弦值.【】本题考查面面垂直性质定理、二面角、线面垂直判定定理、等体积法求点到平面的距离以及线面角,考查综合分析与求解能力,属中档题.20.已知等差数列的前项和为,,公差,且,,成等比数列,数列满足,的前项和为.(Ⅰ)求数列和的通项公式;(Ⅱ)记,试比较与的大小.【答案】(Ⅰ),(Ⅱ)见【】(Ⅰ)根据待定系数法求得公差,再利用和项与通项关系得的通项公式,(Ⅱ)先利用裂项相消法求,利用等比数列求和公式得,最后作差,利用二项展开式比较大小.(Ⅰ)由已知得,即,又,∴,∴,.由得.时,.∴,显然也满足,∴.(Ⅱ),,,当时,,,当时,,,当时,,∴.综上,当时,;当时.【】本题考查利用和项与通项关系求通项公式、裂项相消法求和以及二项展开式应用,考查综合分析与求解能力,属中档题.21.已知抛物线:的焦点为,过点的动直线与抛物线交于,两点,直线交抛物线于另一点,的最小值为4.(Ⅰ)求抛物线的方程;(Ⅱ)记、的面积分别为,,求的最小值.【答案】(Ⅰ)(Ⅱ).【】(Ⅰ)根据抛物线性质可得,即得结果,(Ⅱ)设直线方程,与抛物线方程联立,利用韦达定理以及弦长公式求,再利用基本不等式求最值.(Ⅰ)由已知及抛物线的几何性质可得,∴,∴抛物线的方程为.(Ⅱ)设直线:,:,,,,由,,同理可得,从而,点到的距离,,∴.又,∴.当且仅当,即时有最小值.【】本题考查抛物线定义与性质以及基本不等式求最值,考查综合分析与求解能力,属中档题.22.已知函数,,曲线与有且仅有一个公共点.(Ⅰ)求的值;(Ⅱ)若存在实数,,使得关于的不等式对任意正实数恒成立,求的最小值.【答案】(Ⅰ)(Ⅱ)4【】(Ⅰ)根据导数研究函数图象,再根据图象确定有且仅有一个公共点的条件,解得结果,(Ⅱ)先根据特殊值缩小的取值范围,再根据二次函数性质确定成立的条件,利用导数确定成立的条件,结合两个条件消得关于满足的条件,最后利用导数分析取值范围,即得最小值.(Ⅰ)由题意知,即,令,则.∵在上递增,在上增减,∴,∴.(Ⅱ)解法一:由题意知必有,即,当时,,,不符合题意;当时,有,此时,,不符合题意,因此有,因此①令,则,在递增,在递减,故②由①②两式知,构造函数,则,在递减,在递增,故,此时.解法二:由(1)知,,设,可知,,∵在恒成立,即,又,∴,即①由在恒成立,即在恒成立,设,,则,由得,在上单调递增,由得,在上单调递减,故,得②由①②得③存在,使得③成立的充要条件是,即,记,显然,,∴在上单调递增,在上单调递减,,,故在存在,使,∴不等式的解为,∴的最小值为4,从而由③得.【】本题考查利用导数研究函数零点以及利用导数研究不等式恒成立,考查综合分析与求解能力,属难题.。
精品2019高三数学三校联考试题 理(含解析)

2019高三数学三校联考试题理(含解析)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B.C. D.【答案】D【解析】求解一元二次不等式可得:,求解指数不等式可得:,据此可得:,本题选择D选项.2. 记复数的虚部为,已知复数(为虚数单位),则为()A. B. 2 C. D. 3【答案】A【解析】由题意可得:,则.本题选择A选项.3. 已知曲线在点处的切线的倾斜角为,则()A. B. C. 2 D.【答案】B【解析】由题意可得:,则:,结合同角三角函数基本关系可得:.本题选择B选项.点睛:同角三角函数基本关系式的应用:(2)关于sin α,cos α的齐次式,往往化为关于tan α的式子.4. 2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币.如图所示是一枚8克圆形金质纪念币,直径,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是()A. B. C. D.【答案】A【解析】根据题意,可估计军旗的面积大约是.故选B.5. 已知圆(),当变化时,圆上的点与原点的最短距离是双曲线()的离心率,则双曲线的渐近线为()A. B. C. D.【答案】C【解析】圆E的圆心到原点的距离,据此可得,当m=4时,圆上的点与原点的最短距离是,即双曲线的离心率为,据此可得:,双曲线()的渐近线为.本题选择C选项.6. 已知数列为等比数列,且,则()A. B. C. D.【答案】B【解析】由等比数列的性质可得:,,结合可得:,结合等比数列的性质可得:,即:.本题选择B选项.7. 执行如图的程序框图,若输出的的值为,则①中应填()A. B. C. D.【答案】B【解析】由题意可得:,即时推出循环,则①中应填.本题选择C选项.8. 已知函数为内的奇函数,且当时,,记,,,则间的大小关系是()A. B. C. D.【答案】C【解析】利用奇函数的性质可得:,即当时,函数的解析式为:,令,由函数的奇偶性的定义可得函数g(x)是定义域内的偶函数,且:,,即函数在区间上单调递减,且:,结合函数的单调性可得:.本题选择C选项.9. 已知一几何体的三视图如图所示,俯视图是一个等腰直角三角形和半圆,则该几何体的体积为()A. B. C. D.【答案】D【解析】结合三视图可知,该几何体是一个半圆柱与一个底面是等腰直角三角形的三棱锥组成的组合体,其体积为:.本题选择D选项.点睛:(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.10. 已知函数()的部分图象如图所示,其中.即命题,命题:将的图象向右平移个单位,得到函数的图象.则以下判断正确的是()A. 为真B. 为假C. 为真D. 为真【答案】C【解析】由可得:,解得:,结合可得:,结合可得:,函数的解析式为:,则命题p是真命题.将函数的图像上所有的点向右平移个单位,所得函数的解析式为:的图像,即命题q为假命题,则为假命题;为真命题;为真命题;为假命题.本题选择C选项.11. 抛物线有如下光学性质:过焦点的光线经抛物线反射后得到的光线平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线的焦点为,一条平行于轴的光线从点射出,经过抛物线上的点反射后,再经抛物线上的另一点射出,则的周长为()A. B. C. D.【答案】D【解析】抛物线方程中:令可得,即,结合抛物线的光学性质,AB经过焦点F,设执行AB的方程为,与抛物线方程联立可得:,据此可得:,且:,将代入可得,故,故,故△ABM的周长为,本题选择D选项.12. 已知数列与的前项和分别为,,且,,,,若,恒成立,则的最小值是()A. B. 49 C. D.【答案】C【解析】当时,,解得:或(舍去),且:,两式作差可得:,整理可得:,结合数列为正项数列可得:,数列是首项为3,公比为3的等差数列,,则:,据此裂项求和有:结合恒成立的条件可得:.本题选择C选项.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知在中,,,若边的中点的坐标为,点的坐标为,则__________.【答案】1【解析】依题意,得,故是以为底边的等腰三角形,故,所以.所以.14. 在的展开式中,含项的为,的展开式中含项的为,则的最大值为__________.【答案】【解析】展开式的通项公式为:,令可得:,则,结合排列组合的性质可知,由,当且仅当时等号成立.综上可得:的最大值为.....................................(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.15. 已知满足其中,若的最大值与最小值分别为1,,则实数的取值范围为__________.【答案】【解析】作出可行域如图所示(如图阴影部分所示)设,作出直线,当直线过点时,取得最小值;当直线过点时,取得最大值.即,当或时,.当时,.所以,解得.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一、准确无误地作出可行域;二、画标准函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三、一般情况下,目标函数的最大或最小会在可行域的端点或边界上取得.16. 在《九章算术》中,将四个面都为直角三角形的三棱锥称之为鳖臑(biē nào).已知在鳖臑中,平面,,则该鳖臑的外接球与内切球的表面积之和为__________.【答案】【解析】设的中点为,如图,由,且为直角三角形,得.由两两垂直,可知为和的斜边,故点到点的距离相等,故点为鳖臑的外接球的球心,设高鳖臑的外接球的半径与内切球的半径分别为,则由.得,解得.由等体积法,知.即,解得.故该鳖臑的外接球与内切球的表面积之和为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知向量,,设函数.将函数的图象向右平移个单位,得到函数的图象.(1)若,求函数的值域;(2)已知分别为中角的对边,且满足,,,,求的面积.【答案】(1);(2).【解析】试题分析:(1)结合题意可得..结合函数的定义域和三角函数的性质可得函数的值域是;(2)由题意得到三角方程:.据此可得,然后利用余弦定理求得.最后利用面积公式可得的面积是.试题解析:(1)由题意,得.所以.因为,所以,所以,所以,所以函数的值域为.(2)因为,所以.因为,所以.所以,解得.所以.又,且,,所以.所以的面积.18. 如图,在四棱锥中,底面为直角梯形,其中,,侧面平面,且,动点在棱上,且.(1)试探究的值,使平面,并给予证明;(2)当时,求直线与平面所成的角的正弦值.【答案】(1)当时,平面.证明见解析;(2).【解析】试题分析:(1)连接交于点,连接通过证得,即可证得平面;(2)取的中点,连接,可得两两垂直,建立空间直角坐标系,设与平面所成的角为,则,为平面的一个法向量.试题解析:(1)当时,平面.证明如下:连接交于点,连接.∵,∴.∵,∴.∴.又∵平面,平面,∴平面.(2)取的中点,连接.则.∵平面平面,平面平面,且,∴平面.∵,且,∴四边形为平行四边形,∴.又∵,∴.由两两垂直,建立如图所示的空间直角坐标系.则,,,,,.当时,有,∴可得.∴,,.设平面的一个法向量为,则有即令,得,.即.设与平面所成的角为,则.∴当时,直线与平面所成的角的正弦值为.点睛:高考对空间向量与立体几何的考查主要体现在以下几个方面:①求异面直线所成的角,关键是转化为两直线的方向向量的夹角;②求直线与平面所成的角,关键是转化为直线的方向向量和平面的法向量的夹角;③求二面角,关键是转化为两平面的法向量的夹角.建立空间直角坐标系和表示出所需点的坐标是解题的关键.19. 如今我们的互联网生活日益丰富,除了可以很方便地网购,网上叫外卖也开始成为不少人日常生活中不可或缺的一部分.为了解网络外卖在市的普及情况,市某调查机构借助网络进行了关于网络外卖的问卷调查,并从参与调查的网民中抽取了200人进行抽样分析,得到下表:(单位:人)(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用网络外卖的情况与性别有关?(2)①现从所抽取的女网民中利用分层抽样的方法再抽取5人,再从这5人中随机选出3人赠送外卖优惠券,求选出的3人中至少有2人经常使用网络外卖的概率;②将频率视为概率,从市所有参与调查的网民中随机抽取10人赠送礼品,记其中经常使用网络外卖的人数为,求的数学期望和方差.参考公式:,其中.参考数据:【答案】(1)不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关.(2)①;②;.【解析】试题分析:(1)计算的值,进而可查表下结论;(2)①由分层抽样的抽样比计算即可;②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为,由题意得.试题解析:(1)由列联表可知的观测值,.所以不能在犯错误的概率不超过0.15的前提下认为市使用网络外卖情况与性别有关.(2)①依题意,可知所抽取的5名女网民中,经常使用网络外卖的有(人),偶尔或不用网络外卖的有(人).则选出的3人中至少有2人经常使用网络外卖的概率为.②由列联表,可知抽到经常使用网络外卖的网民的频率为,将频率视为概率,即从市市民中任意抽取1人,恰好抽到经常使用网络外卖的市民的概率为.由题意得,所以;.20. 已知椭圆()的左、右焦点分别为点,其离心率为,短轴长为.(1)求椭圆的标准方程;(2)过点的直线与椭圆交于两点,过点的直线与椭圆交于两点,且,证明:四边形不可能是菱形.【答案】(1);(2)证明见解析.【解析】试题分析:(1)由,及,可得方程;(2)易知直线不能平行于轴,所以令直线的方程为与椭圆联立得,令直线的方程为,可得,进而由是菱形,则,即,于是有由韦达定理代入知无解.试题解析:(1)由已知,得,,又,故解得,所以椭圆的标准方程为.(2)由(1),知,如图,易知直线不能平行于轴.所以令直线的方程为,,.联立方程,得,所以,.此时,同理,令直线的方程为,,,此时,,此时.故.所以四边形是平行四边形.若是菱形,则,即,于是有.又,,所以有,整理得到,即,上述关于的方程显然没有实数解,故四边形不可能是菱形.21. 已知函数(),其中为自然对数的底数.(1)讨论函数的单调性及极值;(2)若不等式在内恒成立,求证:.【答案】(1)答案见解析;(2)证明见解析.【解析】试题分析:(1)由题意可得导函数的解析式,分类讨论可得:当时,在内单调递增,没有极值;当时,在区间内单调递减,在区间内单调递增,的极小值为,无极大值.(2)分类讨论:当时,明显成立;当时,由(1),知在内单调递增,此时利用反证法可证得结论;当时,构造新函数,结合函数的单调性即可证得题中的结论.试题解析:(1)由题意得.当,即时,,在内单调递增,没有极值.当,即时,令,得,当时,,单调递减;当时,,单调递增,故当时,取得极小值,无极大值.综上所述,当时,在内单调递增,没有极值;当时,在区间内单调递减,在区间内单调递增,的极小值为,无极大值.(2)当时,成立.当时,由(1),知在内单调递增,令为和中较小的数,所以,且,则,.所以,与恒成立矛盾,应舍去.当时,,即,所以.令,则.令,得,令,得,故在区间内单调递增,在区间内单调递减.故,即当时,.所以.所以.而,所以.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在平面直角坐标系中,已知曲线的参数方程为(,为参数).以坐标原点为极点,轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线的极坐标方程为.(1)当时,求曲线上的点到直线的距离的最大值;(2)若曲线上的所有点都在直线的下方,求实数的取值范围.【答案】(1);(2).【解析】试题分析:(1)由题意结合点到直线距离公式可得距离的解析式为,结合三角函数的性质可得曲线上的点到直线的距离的最大值为.(2)原问题等价于对,有恒成立,结合恒成立的条件可得实数的取值范围是. 试题解析:(1)直线的直角坐标方程为.曲线上的点到直线的距离,当时,,即曲线上的点到直线的距离的最大值为.(2)∵曲线上的所有点均在直线的下方,∴对,有恒成立,即(其中)恒成立,∴.又,∴解得,∴实数的取值范围为.23. 已知函数.(1)解不等式;(2)记函数的值域为,若,证明:.【答案】(1);(2)证明见解析.【解析】试题分析:(1)将函数的解析式写成分段函数的形式,然后分类讨论可得不等式的解集为;(2)利用绝对值不等式的性质可得,g(x)的值域为.然后结合恒成立的条件即可证得题中的不等式. 试题解析:(1)依题意,得于是得或或解得.即不等式的解集为.(2)当且仅当时,取等号,∴.原不等式等价于.∵,∴,.∴.∴.点睛:绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。
浙江省湖州三校2019年普通高等学校招生全国统一考试数学试题卷(扫描版)

22.
解:(Ⅰ)由题意知
f (x)
g(x) ,即 2x 2
m ln x ,令 F (x)
ln x x2
2, m
则
F ' ( x)
1
2 ln x3
x
.
……………
F (x) 在 (0, e ) 上递增,在 ( e,) 上增减,
F (x)max F (
e) 1 2 2e m
m 4e . ………………
12
b2
22
bn
n2
6
n2
4n 6 2n
得 b1
1 2
n
2 时, bn
n2
6
n2
4n 6 2n
6
(n 1)2
4(n 1) 6 2 n1
=
n2 2n
bn
1 2n
,显然 b1
1
也满足
2
bn
1 2n
(n N*)
7分
(Ⅱ) Tn
1
1 2n
,
1 2
Tn
=
1 2
(1
1 2n
)
9分
5分
O
C
F
M
x
B
x ty 5
由
y
2
4x
y2
4ty
20
0
y1
y2
4t, y1 y2
20
同理可得
y1 y3
4 ,从而 C(
4 y12
,
4 ), y1
9分
点C
到
AB
的距离 d
|
4 y12
4t y1
5|
1 t2
1 1 t2
2019届吉林省高三三校联考理科数学试卷【含答案及解析】

D. 3
7. A.
的展开式中含
项的系数为 (
)
______________ B . ______________ C .
______________ D .
8. 若如图所示的程序框图输出的
是
,则条件 ① 可为(
)
A.
___________________________________ B .
C.
22. 设函数 ( Ⅰ )当 ( Ⅱ )若
(
).
时,求函数
的单调区间;
在
内有极值点,当
,
.(
)
,求证:
23. 选修 4—— 1 几何证明选讲
如图,
是圆
外一点,
是圆
交于 , ,
,
为
中点,
的延长线交圆
的切线,
为切点,割线
于点
,证明:
与圆
( Ⅰ)
;
( Ⅱ)
.
24. 选修 4—— 4 坐标系与参数方程
在直角坐标系中,曲线
(其中
为函数 在 定义域 上的积分下限和上限 ); ⑤
④ 为
函数
图象上任意不同两点,则
描述的序号 为(
)
A . ①②⑤ ______________ B .
___________ D . ②④
. 则 关于函数 ①③⑤ ______________ C .
性质正确 ②③④
二、填空题
13. 向量
,
.
_________________________________ D .
5. 如图 为某 几何体的三视图,则该几何体的表面积为 (
)
A. C.
浙江省湖州三校2019年普通高等学校招生全国统一考试数学试题(解析版)
2019年普通高等学校招生全国统一考试数学试题一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A.B.C.D.【答案】B 【解析】 【分析】根据交集定义求解. 【详解】选B.【点睛】本题考查集合交集,考查基本求解能力,属基本题. 2.双曲线的一个焦点到一条渐近线的距离是( )A. 1B. 2C. 4D.【答案】A 【解析】 【分析】根据双曲线的焦点到渐近线的距离等于虚轴长一半,即得结果. 【详解】因为双曲线的焦点到渐近线的距离等于虚轴长一半, 所以双曲线的一个焦点到一条渐近线的距离是1,选A. 【点睛】本题考查双曲线的焦点与渐近线,考查基本分析求解能力,属基本题. 3.复数(为虚数单位)的共轭复数是( )A.B.C.D.【答案】C 【解析】 【分析】先化简复数为代数形式,再根据共轭复数概念求解.【详解】因为,所以其共轭复数是,选C.【点睛】本题考查共轭复数概念,考查基本分析求解能力,属基本题.4.若变量,满足约束条件,则的最大值是()A. 1B. 2C. 3D. 4 【答案】D【解析】【分析】先作可行域,再求范围,最后可得的最大值.【详解】作可行域,如图,则直线过点A(-1,-1)时取最小值-4,过点时取最大值2,因此的最大值是4,选D.【点睛】本题考查线性规划求最值,考查基本分析求解能力,属基本题.5.设函数,则函数的图像可能为()A. B.C. D. 【答案】C【解析】【分析】先判断函数奇偶性,舍去B,D,再根据函数值正负确定选项.【详解】因为,所以舍去B,D,因为ln3>0,所以选C.【点睛】本题考查函数图象识别,考查基本分析判断能力,属基本题.6.设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据面面垂直性质定理可证得充分性成立,举反例说明必要性不成立.【详解】因为,平面与平面相交于直线,直线在平面内,且,所以,因为直线在平面内,所以,即充分性成立,若,,但时,与不一定垂直,即不一定垂直,即必要性不成立.选A.【点睛】本题考查面面垂直性质定理与充要关系,考查基本分析判断能力,属中档题.7.已知袋子中装有若干个大小形状相同且标有数字1,2,3的小球,每个小球上有一个数字,它们的个数依次成等差数列,从中随机抽取一个小球,若取出小球上的数字的数学期望是2,则的方差是()A. B. C. D.【答案】B【解析】【分析】根据题意可假设标有数字1,2,3的小球各有1个,再根据方差定义求结果.【详解】因为取出小球上的数字的数学期望是2,且个数依次成等差数列,所以不妨设标有数字1,2,3的小球各有1个,从而随机抽取一个小球概率皆为,方差为,选B.【点睛】本题考查数学期望与方差,考查基本分析与求解能力,属中档题.8.已知三棱锥中,为正三角形,,且在底面内的射影在的内部(不包括边界),二面角,二面角,二面角的大小分别为,,,则()A. B. C. D.【答案】C【解析】【分析】作出三个二面角,再根据,确定二面角大小.【详解】设在底面内的射影为O,过O分别作AB,BC,CA垂线,垂足分别为D,E,F,则,,,从而,,,因为,所以,,即,即,选C.【点睛】本题考查二面角,考查基本分析与判断能力,属中档题.9.已知向量,的夹角为,且,则的最小值为()A. B. C. 5 D.【答案】B【解析】【分析】建立坐标系,将转化为直线上一动点到两定点距离和,再根据对称求最小值.【详解】由题意可设,,因此表示直线上一动点到定点距离的和,因为关于直线的对称点为,所以选B.【点睛】本题考查向量坐标表示与直线对称,考查等价转化与数形结合思想方法,考查基本求解能力,属难题.10.已知数列满足,,则使的正整数的最小值是()A. 2018B. 2019C. 2020D. 2021【答案】C【解析】【分析】令,利用裂项相消法得,再根据范围求正整数的最小值.【详解】令,则,所以,从而,因为,所以数列单调递增,设当时, 当时,所以当时,,,从而,因此,选C.【点睛】本题考查数列递推关系与裂项相消法,考查等价转化与构造法,考查综合分析与求解能力,属难题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.我国古代某数学著作中记载了一个折竹抵地问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”意思是:有一根竹子(与地面垂直),原高二丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离为六尺,则折断处离地面的高为__________尺.【答案】9.1尺【解析】【分析】根据题意列方程,解得结果.【详解】设折断处离地面的高为尺.则【点睛】本题考查数学文化与应用,考查基本分析与求解能力,属基础题.12.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)等于_______,表面积(单位:)等于__________.【答案】(1). (2).【解析】【分析】先还原几何体,再根据柱体与锥体性质求体积与表面积.【详解】几何体一个边长为2的正方体挖去一个正四棱锥(顶点在正方体下底面中心,底面为正方体上底面),因此几何体的体积为,表面积为【点睛】本题考查三视图与柱体与锥体性质,考查空间想象能力与基本求解能力,属基础题.13.在中,内角,,所对的边分别为,,.已知,则的值为__________,若,,则的面积等于_________.【答案】(1). (2). 16【解析】【分析】第一空根据两角和正切公式得,再根据同角三角函数关系得的值,第二空先根据正弦定理得,再根据两角和正弦公式得,最后根据面积公式得结果.【详解】因为,所以,因此因为,所以因为()=,所以的面积等于【点睛】本题考查两角和正切公式、两角和正弦公式与正弦定理,考查基本分析求解能力,属基础题.14.若,则_________,_________.【答案】(1). -27(2). -940【解析】【分析】利用赋值法求系数.【详解】令得,所以,令得,令得,两式相加得【点睛】本题考查利用赋值法求二项展开式系数,考查基本分析求解能力,属基础题.15.已知函数,则__________,若实数,且,则的取值范围是__________.【答案】(1). 4 (2).【解析】【分析】第一空直接代入对应解析式求解即可,第二空先根据函数图象确定关系及取值范围,再求的取值范围.【详解】),因为,且,所以,,因此.【点睛】本题考查分段函数求值以及函数图像,考查综合分析与求解能力,属中档题.16.现有排成一排的7个不同的盒子,将红、黄、蓝、白颜色的4个小球全部放入这7个盒子中,若每个盒子最多放一个小球,则恰有两个空盒相邻且红球与黄球不相邻的不同放法共有_______种.(结果用数字表示)【答案】336【解析】【分析】根据相邻问题捆绑法,不相邻问题插空法进行求解.【详解】先不考虑红球与黄球不相邻,则4个小球有种排法,再安排空盒,有种方法,再考虑红球与黄球相邻,则4个小球有种排法,再安排空盒,有种方法,因此所求放法为【点睛】本题考查排列组合应用,考查综合分析与求解能力,属中档题.17.已知椭圆的两个顶点,,过,分别作的垂线交该椭圆于不同于的,两点,若,则椭圆的离心率是__________.【答案】【解析】【分析】先求出,两点坐标,再根据弦长公式化简,解得离心率.【详解】过作的垂线的方程为,与联立方程组解得,过作的垂线的方程为,与联立方程组解得,因为,所以【点睛】本题考查椭圆的离心率,考查综合分析与求解能力,属中档题.三、解答题:本大题共5小题,共74分。
2019届高三第三次全国大联考(新课标Ⅱ卷)数学(理)学试题(解析版)
2019届2019年5月高三第三次全国大联考 (新课标H卷)数学(理)学试题一、单选题1.已知集合A 二{x | x - 2 _ 0}, B 二{x| log 2 x :: 2},则A - B 二A. (0,2]B.(」:,2]C. (0,2)D.(」:,4)【答案】A【解析】解一元一次不等式以及对数不等式得到集合A和B,结合交集的定义计算即可•【详解】由题可得集合A=(-::,2] , B=(0,4),所以A B=(0,2],故选A .【点睛】本题主要考查了不等式的解法以及交集的运算,需注意对数函数的定义域,属于基础题.2.已知i为虚数单位,若复数z在复平面内对应的点的坐标为(2,-1),则复数z(1 - 3i)的虚部为A. 7B. -7iC. -1D. -7【答案】D【解析】根据复数的几何意义得到Z = 2 - i,计算出Z(1 - 3i)结合虚部的概念即可得结果.【详解】由题可得复数z =2 -i,所以z(1 _3i) =(2 _i)(1 _3i) = “ _7i ,所以复数z(1 -3i)的虚部为-7,故选D.【点睛】本题主要考查了复数的几何意义,复数乘法的运算以及复数的分类,属于基础题.3.某几何体的三视图如图所示,则该几何体的体积为A •圭B .主C . 5-D .三123 3【答案】B1【解析】由三视图可知该几何体是底面半径为 2,高为• 5的圆锥的一,由椎体体积公+ 4式即可得结果• 【详解】1由三视图可知该几何体是底面半径为 2,高为、5的圆锥的 ,4【点睛】的数据是解题的关键,属于中档题【答案】C最后利用两角差的正弦公式即可得结果 【详解】因为 sin( )5,所以 sin 二 11 cos : =—10 ,45 5【点睛】故该几何体的体积V =1124 3、、5 二—,故选 B .3本题考查了由三视图求几何体的体积,根据三视图判断几何体的结构特征及相关几何量JI4 .已知 ::::■,若 sin( )44n ,则 sin(2)=4A .一三10B . 一 -I10C .丄10D .耳10【解析】将sin (「?=¥展开,两边同时平方可得sin 2-,根据〉的范围cos2〉,、 2两边同时平方可得1 2sin -::cos ,所以sin2-::53 ■: JI因为 二23-… 盲,所以一 2「石,所以W3 54 5所以sin 2「4拧(sin 2: ®?)凉,故选C .sin2_:的本题主首先得到是解题的关键,属于中档题x y 仁05•已知x , y 满足约束条件 x - y • 1乞0 ,若使z 二ax- y 取得最小值的最优解x-2y 4 _ 0有无穷多个,则实数 a =1A • -1B .C • 1D • 22【答案】B【解析】作出不等式组表示的平面区域, z =ax -y 可化为y =ax -z ,由z =a y 取 得最小值的最优解有无穷多个可得 y 二ax - z 的斜率与直线 AB 的斜率相等,即可得 a 的值. 【详解】作出不等式组表示的平面区域如下图中阴影部分所示,z 二ax-y 可化为y=ax-z ,要使z 二ax - y 取得最小值,只需直线y=ax-z 在y 轴上的截距最大,又 z 二ax - y 取得最小值的最优解有无穷多个,所以直线y 二ax - z 的1 1 斜率与直线 AB 的斜率相等,因为直线 AB 的斜率为一,所以a ,故选B . 22【点睛】本题主要考查线性规划的应用,利用数形结合是解决此类问题的基本方法,利用 z 的几何意义是解决本题的关键,属于中档题•6•在边长为2的正方形OABC 中,点D 为线段BC 的中点,点 M 在线段0D 上,则MA MB 的最大值为【答案】C 【解析】 设线段AB 的中点为N ,连接MN ,根据1 2 2 1 2MA MB [(MA MB) -(MA-MB)][(2 MN ) 44【详解】 设线段AB 的中点为N , 连接MN ,贝U•BA]=MN -1即可得结A •B .MA MB =MB )2 _(MA _MB )2] = 一 (2 M N )2 - BA 2^ M N 2 _1,易得44所以 MA MB 的最大值为4,故选c .【点睛】 得到MA M B‘ = MN "2 _1是解题的关键,属于中档题•【解析】模拟程序的运行过程,寻找其规律第2018 12018次循环:N, T 二20192019i =2019,此时i :::2019不成立,结束循环,可得结果【详解】 初始值: 1 1―1, □,第1 次循环:, T s , ‘2;础题•2(MN )max =0N = 5,7 •执行如图所示的程序框图,则输出的T 的值为1A. —2020【答案】BB .1 20192018C .20192019 D .2020本题主第2次循环:N 第2017次循环: 第2018次循环:2 T 1 . ,T,i 33 M 2017- N , T 2018M 2018 -N , T2019 20181 2019i =2018;i =2019,此时i ::: 2019不成立,结束循1环,输出T =,故选B .【点本题主要考查了程序框图的应用问题,模拟程序的运行过程是解题的常用方法, 属于基8 •已知点P位于第一象限,双曲线C : y2=1的左、右顶点分别为A, A,记411直线PA 1,PA 2的斜率分别为k ! , k 2,若点P在双曲线C 上,则-E 的取值范围A • [1, ::)B . [1,4]C . [4, ::)D . (4,::)【答案】Dx 21【解析】设P(x o , y o )且y 2-1,根据两点间斜率计算公式得 k*2,结合基本4 411 kj+k 2不等式得k 1 k 2 1,根据 1一2即可得结果•【详解】2由题可得A 1( -2,0),A 2(2,°),设P(x o , y o ),因为点P 在双曲线C 上,所以y :=也-1,41 1故的取值范围为(4, •::),故选D .k 1 k 2【点睛】本题主要考查了双曲线上点的特征, 整体代换思想的应用, 基本不等式在求最值中的应用,属于中档题•9 •已知定义在R 上的函数f(x)满足f (1 • x) • f (-1 -X )=O ,f (2 x)-f(2-x)=O •当 x (O,2]时,f(x)=3x ,则 f(-2O18)f(2O19)二A . -6B . -3C . 3D . 12【答案】A且 x o 2, y o • 0 ,则 k 1y ox o 2o,k 2y oX o —2 O ,所以 y oy o k )k 2 :X o +2 x o -22yo所以宁1,当且仅当因为 K = k2,所以k 1 k 21,所以丄丄==4(k 1 , k 2) . 4,【解析】由f (1 x) f ^^xHO得f(x)是定义在R上的奇函数,所以f(O) =O ,由f(2・x) — f(2—x)=:0得函数f(x)的周期为8,结合(0,2]时,f(x)=3x 即可得结果• 【详解】令 t =1 x ,由 f(1 x)f(_1 _x) =0 可得 f(t) - _f(_t),所以函数f(x)是定义在R 上的奇函数,所以f(0) =0 • 由 f (2 x) 一 f (2 一 x) = 0 可得 f (2 x)二 f (2 一 x), 所以 f (4 x)二 f ( —x)二—f (x),所以 f (8 x) = f (x), 故函数 f (x)的周期为 8,所以 f (一2018)= f(—252 8-2) = f (-2) = - f (2)= -9 ,f (2019) = f(252 8 3) = f (3) = f(1) = 3,所以 f (-2018) f (2019) = -6,故选【点睛】本题主要考查了函数的奇偶性与周期性在求值中的应用, 关键,属于中档题• 10•已知函数f(xt 人刑我」)(A 。
浙江省湖州三校2019年普通高等学校招生全国统一考试数学试题(解析版)
2019年普通高等学校招生全国统一考试一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A. B. C. D.【答案】B【解析】【分析】根据交集定义求解.【详解】选B.【点睛】本题考查集合交集,考查基本求解能力,属基本题.2.双曲线的一个焦点到一条渐近线的距离是()A. 1B. 2C. 4D.【答案】A【解析】【分析】根据双曲线的焦点到渐近线的距离等于虚轴长一半,即得结果.【详解】因为双曲线的焦点到渐近线的距离等于虚轴长一半,所以双曲线的一个焦点到一条渐近线的距离是1,选A.【点睛】本题考查双曲线的焦点与渐近线,考查基本分析求解能力,属基本题.3.复数(为虚数单位)的共轭复数是()A. B. C. D.【答案】C【解析】【分析】先化简复数为代数形式,再根据共轭复数概念求解.【详解】因为,所以其共轭复数是,选C.【点睛】本题考查共轭复数概念,考查基本分析求解能力,属基本题.4.若变量,满足约束条件,则的最大值是()A. 1B. 2C. 3D. 4【答案】D【解析】【分析】先作可行域,再求范围,最后可得的最大值.【详解】作可行域,如图,则直线过点A(-1,-1)时取最小值-4,过点时取最大值2,因此的最大值是4,选D.【点睛】本题考查线性规划求最值,考查基本分析求解能力,属基本题.5.设函数,则函数的图像可能为()A. B.C. D.【答案】C【解析】【分析】先判断函数奇偶性,舍去B,D,再根据函数值正负确定选项.【详解】因为,所以舍去B,D,因为ln3>0,所以选C.【点睛】本题考查函数图象识别,考查基本分析判断能力,属基本题.6.设平面与平面相交于直线,直线在平面内,直线在平面内,且,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】根据面面垂直性质定理可证得充分性成立,举反例说明必要性不成立.【详解】因为,平面与平面相交于直线,直线在平面内,且,所以,因为直线在平面内,所以,即充分性成立,若,,但时,与不一定垂直,即不一定垂直,即必要性不成立.选A.【点睛】本题考查面面垂直性质定理与充要关系,考查基本分析判断能力,属中档题.7.已知袋子中装有若干个大小形状相同且标有数字1,2,3的小球,每个小球上有一个数字,它们的个数依次成等差数列,从中随机抽取一个小球,若取出小球上的数字的数学期望是2,则的方差是()A. B. C. D.【答案】B【解析】【分析】根据题意可假设标有数字1,2,3的小球各有1个,再根据方差定义求结果.【详解】因为取出小球上的数字的数学期望是2,且个数依次成等差数列,所以不妨设标有数字1,2,3的小球各有1个,从而随机抽取一个小球概率皆为,方差为,选B.【点睛】本题考查数学期望与方差,考查基本分析与求解能力,属中档题.8.已知三棱锥中,为正三角形,,且在底面内的射影在的内部(不包括边界),二面角,二面角,二面角的大小分别为,,,则()A. B. C. D.【答案】C【解析】【分析】作出三个二面角,再根据,确定二面角大小.【详解】设在底面内的射影为O,过O分别作AB,BC,CA垂线,垂足分别为D,E,F,则,,,从而,,,因为,所以,,即,即,选C.【点睛】本题考查二面角,考查基本分析与判断能力,属中档题.9.已知向量,的夹角为,且,则的最小值为()A. B. C. 5 D.【答案】B【解析】【分析】建立坐标系,将转化为直线上一动点到两定点距离和,再根据对称求最小值.【详解】由题意可设,,因此表示直线上一动点到定点距离的和,因为关于直线的对称点为,所以选B.【点睛】本题考查向量坐标表示与直线对称,考查等价转化与数形结合思想方法,考查基本求解能力,属难题.10.已知数列满足,,则使的正整数的最小值是()A. 2018B. 2019C. 2020D. 2021【答案】C【解析】【分析】令,利用裂项相消法得,再根据范围求正整数的最小值.【详解】令,则,所以,从而,因为,所以数列单调递增,设当时, 当时,所以当时,,,从而,因此,选C.【点睛】本题考查数列递推关系与裂项相消法,考查等价转化与构造法,考查综合分析与求解能力,属难题.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.我国古代某数学著作中记载了一个折竹抵地问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”意思是:有一根竹子(与地面垂直),原高二丈(1丈=10尺),现被风折断,尖端落在地上,竹尖与竹根的距离为六尺,则折断处离地面的高为__________尺.【答案】9.1尺【解析】【分析】根据题意列方程,解得结果.【详解】设折断处离地面的高为尺.则【点睛】本题考查数学文化与应用,考查基本分析与求解能力,属基础题.12.某几何体的三视图如图所示(单位:),则该几何体的体积(单位:)等于_______,表面积(单位:)等于__________.【答案】(1). (2).【解析】【分析】先还原几何体,再根据柱体与锥体性质求体积与表面积.【详解】几何体一个边长为2的正方体挖去一个正四棱锥(顶点在正方体下底面中心,底面为正方体上底面),因此几何体的体积为,表面积为【点睛】本题考查三视图与柱体与锥体性质,考查空间想象能力与基本求解能力,属基础题.13.在中,内角,,所对的边分别为,,.已知,则的值为__________,若,,则的面积等于_________.【答案】(1). (2). 16【解析】【分析】第一空根据两角和正切公式得,再根据同角三角函数关系得的值,第二空先根据正弦定理得,再根据两角和正弦公式得,最后根据面积公式得结果.【详解】因为,所以,因此因为,所以因为()=,所以的面积等于【点睛】本题考查两角和正切公式、两角和正弦公式与正弦定理,考查基本分析求解能力,属基础题.14.若,则_________,_________.【答案】(1). -27(2). -940【解析】【分析】利用赋值法求系数.【详解】令得,所以,令得,令得,两式相加得【点睛】本题考查利用赋值法求二项展开式系数,考查基本分析求解能力,属基础题.15.已知函数,则__________,若实数,且,则的取值范围是__________.【答案】(1). 4 (2).【解析】【分析】第一空直接代入对应解析式求解即可,第二空先根据函数图象确定关系及取值范围,再求的取值范围.【详解】),因为,且,所以,,因此.【点睛】本题考查分段函数求值以及函数图像,考查综合分析与求解能力,属中档题.16.现有排成一排的7个不同的盒子,将红、黄、蓝、白颜色的4个小球全部放入这7个盒子中,若每个盒子最多放一个小球,则恰有两个空盒相邻且红球与黄球不相邻的不同放法共有_______种.(结果用数字表示)【答案】336【解析】【分析】根据相邻问题捆绑法,不相邻问题插空法进行求解.【详解】先不考虑红球与黄球不相邻,则4个小球有种排法,再安排空盒,有种方法,再考虑红球与黄球相邻,则4个小球有种排法,再安排空盒,有种方法,因此所求放法为【点睛】本题考查排列组合应用,考查综合分析与求解能力,属中档题.17.已知椭圆的两个顶点,,过,分别作的垂线交该椭圆于不同于的,两点,若,则椭圆的离心率是__________.【答案】【解析】【分析】先求出,两点坐标,再根据弦长公式化简,解得离心率.【详解】过作的垂线的方程为,与联立方程组解得,过作的垂线的方程为,与联立方程组解得,因为,所以【点睛】本题考查椭圆的离心率,考查综合分析与求解能力,属中档题.三、解答题:本大题共5小题,共74分。
2019年5月浙江省三校2019届高三毕业班第二次联考测试数学试题(解析版)
绝密★启用前浙江省三校2019届高三毕业班下学期第二次联考测试数学试题(解析版)2019年5月一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}{}0,1U x x A x x =≥=≥,则U C A =( )A. ∅B. {}1x x <C. {}01x x ≤<D. {}0x x ≥【答案】C【解析】【分析】由补集的定义计算即可.【详解】由{}|0U x x =≥,{|1}A x x =≥,可得{}|01U C A x x =≤<.故选C.【点睛】本题主要考查补集的计算.2.双曲线2214y x -=的焦距是( )B. D. 【答案】D【解析】【分析】该双曲线的焦点在y 轴,利用222c a b =+可求得双曲线的焦距.【详解】双曲线22221y x a b-=的焦距为2c ===故选D.【点睛】双曲线中222c a b =+,椭圆中222c a b =-,要注意区别并判断焦点在x 轴上还是在y 轴上.3.已知i 是虚数单位,则复数2i i +的共轭复数对应的点位于( ) A. 第一象限B. 第二象限C. 第三象限D. 第四象限 【答案】D【解析】【分析】 将i 2+i的分子分母同乘以2i -,化成()i ,a b a b R +∈的形式,其共轭复数i a b -对应的点为(),a b -. 【详解】()()()i 2-i i 12==+i 2+i 2+i 2-i 55,其共轭复数为12i 55-,对应的点为12,55⎛⎫- ⎪⎝⎭,在第四象限.故选D.【点睛】将分式形式复数的分子分母同乘以分母的共轭复数,可以化得()i ,a b a b R +∈的形式.4.已知实数,x y 满足()()201x y x y x ⎧-+≥⎨≥⎩,则2x y -( ) A. 有最小值,无最大值B. 有最大值,无最小值C. 有最小值,也有最大值D. 无最小值,也无最大值【答案】A【解析】【分析】作出不等式组表示的可行域,设2x y z -=,则2y x z =-,平移直线2y x z =-可得z 是否能取得最大值和最小值.【详解】作出不等式组表示的可行域如图阴影部分所示.设2x y z -=,则2y x z =-,z 表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2019届高三年级三校联考数学试题卷
姓名 准考证号 参考公式: 如果事件
A ,
B 互斥,那么 柱体的体积公式
()()()P A B P A P B +=+
V
Sh =
如果事件
A ,
B 相互独立,那么 其中S 表示柱体的底面积,h 表示柱体的高
()()()P A B P A P B ⋅=⋅ 锥体的体积公式
如果事件
A 在一次试验中发生的概率是p ,那 1
3
V Sh =
么n 次独立重复试验中事件
A 恰好发生k 次的概率 其中S 表示锥体的底面积,h 表示锥体的高
()(1)(0,1,2,,)k k
n k n n P k C p p k n -=-=⋅⋅⋅ 球的表面积公式
台体的体积公式 24πS
R =
121
()3V S S h =+
球的体积公式
其中12,S S 分别表示台体的上、下底面积,h 表 3
4π3
V R =
示台体的高 其中R 表示球的半径
第I 卷(共40分)
一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.若集合{
}
2
10A x x =-≥,{}
04B x x =<<,则A B =
A .(,1)-∞-
B. [)0,4
C. [)1,4
D. (4,)+∞
2.已知i 为虚数单位,2i
i
z +=,则z 的虚部为 A .1
B. 2-
C. 2
D. 2i -
2
3.已知双曲线22221-=y x a b 的渐近线方程为1
2
=±y x ,则该双曲线的离心率为
C. 3
D. 2
4.函数1
()||=-
f x x x
的图象是
A.
B. C.
D.
5.已知随机变量ξ满足(0)ξ==P x ,(1)1P x ξ==-,若1
02
<<x ,则 A .()E ξ随着x 的增大而增大,()D ξ随着x 的增大而增大 B .()E ξ随着x 的增大而减小,()D ξ随着x 的增大而增大 C .()E ξ随着x 的增大而减小,()D ξ随着x 的增大而减小 D .()E ξ随着x 的增大而增大,()D ξ随着x 的增大而减小 6.某几何体的三视图如图所示,则该几何体的体积是 A.
23 B. 4
3
C. 83
D. 163
7. “21-<x y
”是“ln
0<x
y
”的 A .充要条件 B .充分不必要条件 C .必要不充分条件
D .既不充分也不必要条件
8.如图,圆O 是半径为1的圆,1
2
OA =,设,B C 为圆上的任意2个点,则AC BC ⋅的 取值范围是
(第6题图)
正视图
侧视图
俯视图
(第8题图)
3
A .1
[,3]8
- B .[1,3]-
C .[1,1]-
D .1[,1]8
-
9.
在棱长为D ABC -中,过点D 的平面Γ与底面ABC 所成锐二面角的
,设平面Γ与底面ABC 的交线为l ,当平面Γ运动时,直线l 在ABC ∆内 的部分形成的区域的面积为 A
.6π B
.12π C
.6π
D
.6π
10.已知二次函数2
()f x ax bx c =++有零点,且1a b c ++=,则max{min{,,}}a b c = A .
1
2
B .
13
C .
14
D .
16
第II 卷(共110分)
二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)
11.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.现
有一“阳马”-P ABCD ,⊥PA 底面ABCD ,21PA AB AD ===,,则该“阳马”
的最长棱长等于 ▲ ;外接球表面积等于 ▲ .
12.设,x y 满足约束条件210
201
x y x y x ì-+?ïï
-?íï£ïî,则23z x y =+的最大值为 ▲ ;
满足条件的,x y 构成的平面区域的面积是 ▲ .
13.已知56
016(2)(25)x x a a x a x +-=+++L ,则0a = ▲ ;5a = ▲ .
14.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若6
π
=
A
,(4cos =+b a B , 且1=b ,则B = ▲ ;△ABC 的面积为 ▲ .
15.从0,1,2,3,4,5这6个数中随机抽取5个数构成一个五位数abcde ,则满足条件
a b c d e <<>>“”
的五位数的个数有 ▲ .。