(初中、高中)几何证明题一些技巧
初中数学几何图形在证明时有哪些技巧?

初中数学几何图形在证明时有哪些技巧?
首先,感谢官方邀请。
几何图形的证明在数学学习中可以算得上比较困难的一部分了,不管初中学生还是高中学生在这方面基本都认为是入门困难,题难做,没思路。
其实,求解几何证明题以下三个方面是关键:
1、掌握证明题的一般思路;
2、了解证题过程中的数学思维;
3、总结证明题的基本规律。
下面我结合自己的经验,给大家分享一下我的方法:
对于证明题,有三种思考方式:
1、正向思维;
2、逆向思维;
3、正逆向结合。
总结以上所有说法:做证明题,最主要的就是
①记住相关定理和性质。
②归纳总结。
以上是我对做证明题的一些方法,希望能帮助到你。
中考数学几何证明题答题技巧及解题思路

中考数学几何证明题答题技巧及解题思路1500字中考数学几何证明题是中考数学中的重点和难点部分,要想在考试中得到高分,需要具备一定的解题思路和答题技巧。
下面将介绍几种常见的数学几何证明题的解题思路和答题技巧。
1. 利用已知条件进行推理对于数学几何证明题,往往会给出一些已知条件,这些条件可以用来进行推理和证明。
在解题时,需要先理清题意,理解已知条件,然后运用相关的定理和性质进行推导。
2. 运用余角性质和对称性质在几何证明题中,角的余角和角的对称性质经常被使用。
如果已知两个角互为余角,可以根据余角定理进行推理;如果已知两个角互为对称角,可以根据对称性质进行推导。
3. 利用平行线性质几何证明题中经常会涉及到平行线的性质。
如果已知两条直线平行,可以根据平行线的性质来进行推理和证明。
比如,如果已知两个角的对边分别平行,可以推出这两个角相等。
4. 运用等腰三角形和相似三角形的性质在几何证明题中,等腰三角形和相似三角形的性质也经常会被使用。
如果已知两边等长,可以推导出两个角相等;如果已知两个角相等,可以推导出两边等长。
如果已知两个三角形相似,可以运用相似三角形的性质来进行推理。
5. 利用三角形的角平分线和垂直平分线的性质在几何证明题中,三角形的角平分线和垂直平分线的性质也经常会被使用。
如果已知一个角的平分线和垂直平分线重合,可以推导出这个角是直角。
6. 运用勾股定理和正弦定理勾股定理和正弦定理是解决几何证明题中常用的工具。
如果已知一个三角形是直角三角形,可以利用勾股定理进行推导;如果已知三角形的边长和角度,可以利用正弦定理进行推导。
总结起来,解决几何证明题的关键在于理清题意,抓住已知条件,灵活运用相关的定理和性质,进行推理和证明。
熟练掌握几何证明题的解题思路和答题技巧,对于提高解题效率和得到高分非常有帮助。
初中数学几何证明题思路方法和技巧

初中数学几何证明题思路方法和技巧
1.利用定义和性质:几何证明题通常需要用到几何图形的定义和性质,因此在做题前需要熟悉相关概念。
2. 运用相似三角形:相似三角形有着相同的角度和比例关系,
因此可以通过相似三角形来证明几何关系。
3. 利用角度和:三角形内角和为180度,四边形内角和为360度,因此可以通过计算角度和来证明几何关系。
4. 利用垂直和平行关系:垂直和平行线有着明显的几何特征,
因此可以通过垂直和平行关系来证明几何关系。
5. 利用勾股定理和正弦定理等定理:勾股定理和正弦定理等定
理是几何证明中常用的工具,可以通过运用这些定理来证明几何关系。
6. 利用反证法:反证法是数学证明中常见的方法,可以通过排
除其他可能性来证明几何关系。
7. 利用矛盾法:矛盾法也是数学证明中常见的方法,可以通过
假设相反的情况来证明几何关系。
在做几何证明题时,还需要注意以下一些技巧:
1. 画图:画图可以帮助我们更好地理解几何关系,同时也可以
在证明中提供一些线索。
2. 标记线段和角度:标记线段和角度可以使证明过程更加清晰,方便读者理解。
3. 步骤清晰:证明过程需要步骤清晰、逻辑性强,不能出现漏
洞或矛盾。
4. 注意细节:几何证明中有时需要注意一些细节问题,例如判
断角度是否是锐角或钝角,判断线段是否相等等。
综上所述,初中数学几何证明题需要掌握一定的思路方法和技巧,并且需要认真、仔细地推导证明。
初中几何证明题解题思路

初中几何证明题解题思路几何证明是数学中重要的一部分,通过证明题目中的几何性质,我们可以进一步理解和应用几何知识。
本文将介绍一些解题思路和方法,帮助初中学生更好地应对几何证明题。
一、直线的证明1. 平行线的证明:要证明两条线段平行,可以利用平行线的性质,如同位角相等、内错角相等等。
根据题目给出的已知条件,运用这些性质进行推导和证明即可。
2. 垂直线的证明:要证明两条线段垂直,可以利用垂直线的性质,如互余角相等、互补角相等等。
根据已知条件,使用这些性质进行推导和证明。
3. 点在线段中垂线的证明:该证明通常应用于证明等腰三角形、相似三角形等问题中。
可以利用垂直线的性质,将问题转化为垂线问题,再通过垂线的角度关系进行证明。
二、三角形的证明1. 等边三角形的证明:要证明一个三角形是等边三角形,可以利用等边三角形的性质,即三条边相等。
通过对已知条件进行推导和运算,最终得出结论。
2. 相似三角形的证明:相似三角形是几何证明中常见的一种类型。
要证明两个三角形相似,可以利用相似三角形的性质,如对应角相等、对应边成比例等。
通过对已知条件进行推导和运算,最终得出结论。
三、四边形的证明1. 矩形的证明:要证明一个四边形是矩形,可以利用矩形的性质,如对角线相等、内角为直角等。
通过对已知条件进行推导和运算,最终得出结论。
2. 平行四边形的证明:要证明一个四边形是平行四边形,可以利用平行四边形的性质,如对角线互相平分、同位角相等等。
通过对已知条件进行推导和运算,最终得出结论。
以上是一些常见的初中几何证明题解题思路。
在解题过程中,我们需要熟练掌握几何图形的性质和定理,灵活运用这些性质进行推导和证明。
同时,需要注意画图准确、逻辑严谨,清晰地呈现证明过程。
为了提高解题效率,我们可以使用分类整理法。
先根据题目中给出的几何形状,确定题目所涉及的几何性质,再找出相关的定理和公式。
将已知条件和待证事实进行对比和联系,根据已知条件推导出待证事实,最终得出结论。
初中几何题证明思路汇总

初中几何题证明思路汇总几何题是初中数学中的重要部分,它要求学生通过准确地证明来解决问题。
在证明过程中,思路的清晰与合理性对于得到正确答案是至关重要的。
本文将汇总一些常见的几何题证明思路,帮助初中生更好地理解和掌握几何题证明方法。
一、线段垂直的证明思路:要证明两条线段垂直,通常可以使用垂直定理或反证法。
垂直定理是指如果两条直线相交,且相交的四个角中有两个互为补角,则这两条直线垂直。
反证法是假设两条线段不垂直,然后通过推理和推断得出矛盾的结论,从而证明其实两条线段是垂直的。
二、三角形相似的证明思路:要证明两个三角形相似,可以使用相似三角形的性质,如对应角相等、对应边成比例等来进行证明。
另外,还可以利用三角形的辅助线进行辅助证明,如绘制高、中线、角平分线等,通过这些辅助线与三角形的性质相结合,来得出相似三角形的证明。
三、平行线的证明思路:要证明两条直线平行,通常可以使用平行定理或反证法。
平行定理是指如果一条直线与另外两条直线分别相交,且这两个交角互为补角,则这条直线与另外两条直线平行。
反证法是假设两条直线不平行,然后通过推理和推断得出矛盾的结论,从而证明其实两条直线是平行的。
四、圆的性质的证明思路:要证明圆的性质,通常可以使用圆的基本性质进行证明,如半径相等、弦相等、切线垂直等。
另外,还可以利用圆的辅助线进行辅助证明,如绘制半径、切线、割线等,通过这些辅助线与圆的性质相结合,来得出圆的性质的证明。
五、多边形的证明思路:要证明多边形的性质,通常可以使用多边形的各个角的性质进行证明。
如正多边形的内角和、外角和、对角线数目等。
另外,还可以利用多边形的辅助线进行辅助证明,如绘制对角线、中线等,通过这些辅助线与多边形的性质相结合,来得出多边形的性质的证明。
总结:几何题证明的思路汇总了线段垂直、三角形相似、平行线、圆的性质以及多边形的证明思路。
通过运用几何定理、性质和辅助线等工具,结合合理的推理和推断,可以解决各种几何题,提高初中生的几何思维能力和证明能力。
中学数学中的几何证明技巧

中学数学中的几何证明技巧几何证明是中学数学中的重要部分,是学生培养逻辑思维和推理能力的关键内容之一。
通过几何证明,学生可以掌握几何基本概念与性质,培养几何思维和逻辑推理的能力。
下面将介绍一些中学数学中常用的几何证明技巧。
一、直角三角形的证明证明一个三角形为直角三角形时,我们可以利用勾股定理或相似三角形的性质进行证明。
勾股定理是指在一个直角三角形中,直角边的平方等于两个直角边平方的和。
如果需要证明一个三角形为直角三角形,我们可以利用已知的三边长或三角形内的角度关系,利用勾股定理进行推导。
另一种方法是利用相似三角形的性质,通过已知的比例关系判断是否为直角三角形。
二、等腰三角形的证明证明一个三角形为等腰三角形时,可以利用等腰三角形的性质进行推导。
等腰三角形是指两边相等的三角形。
当我们需要证明一个三角形为等腰三角形时,我们可以通过对称性、垂直平分线或边角关系进行证明。
例如,当一条边或一组相对边相等时,可以通过中垂线的垂直性质进行推导;当我们已知两边相等时,可以利用对称性证明。
三、全等三角形的证明证明两个三角形全等时,我们可以利用三边对应相等、两边一角相等、两角一边相等的全等条件进行推导。
例如,当我们已知三边相等时,可以直接应用全等条件;当我们已知两边和夹角相等时,可以利用夹角边相等进行推导。
此外,我们还可以利用全等三角形的性质,如一一对应、对称性、重合性等进行证明。
四、平行线的证明证明两条线平行时,我们可以利用平行线的性质进行推导。
平行线是指在同一个平面内永远不相交的线。
当我们需要证明两条线平行时,我们可以利用平行线的定义或平行线的性质进行推导。
例如,当两条线被同一组平行线截断时,可以利用等割性质证明;当两条线分别与一组平行线相交时,可以利用同位角或内外角性质推导。
五、直角平分线的证明证明一条线为直角平分线时,我们可以利用直角平分线的性质推导。
直角平分线是指平分一角并且垂直于边的线段。
当我们需要证明一条线为直角平分线时,我们可以利用垂直线的性质,如两条线段互相垂直,可以通过角度的推导证明直角平分线。
高中数学几何证明题解题方法总结

高中数学几何证明题解题方法总结数学几何证明题是高中数学中的一大难点,需要学生具备较强的逻辑思维能力和几何直观的想象力。
在解决这类问题时,我们可以采用以下方法:一、直接法直接法是最常用的证明方法之一,它通过直接给出证明结论的过程,从而得出结论。
在使用直接法时,我们需要根据题目的要求,利用已知条件和几何定理,一步步推导出结论。
这种方法常用于证明一些基本的几何定理,如垂直定理、平行定理等。
例如,对于证明两条直线平行的问题,我们可以利用平行线的定义和垂直线的性质进行证明。
首先,我们可以假设两条直线不平行,然后根据垂直线的性质推导出矛盾,从而得出两条直线平行的结论。
二、间接法间接法是通过反证法来证明结论的方法。
它假设结论不成立,然后通过推理和推导,得出矛盾的结论,从而推翻假设,证明结论成立。
间接法常用于证明一些几何性质的逆命题或矛盾命题。
例如,对于证明一个角的两边平分另一个角的问题,我们可以采用间接法。
假设一个角的两边不平分另一个角,然后通过推理和推导,得出两边平分另一个角的结论,与假设矛盾,从而证明结论成立。
三、反证法反证法是通过假设结论不成立,然后通过推理和推导,得出矛盾的结论,从而推翻假设,证明结论成立。
反证法常用于证明一些几何性质的逆命题或矛盾命题。
例如,对于证明一个三角形的三个内角和为180度的问题,我们可以采用反证法。
假设三角形的三个内角和不为180度,然后通过推理和推导,得出三个内角和为180度的结论,与假设矛盾,从而证明结论成立。
四、类比法类比法是通过将一个问题转化为另一个已知的问题进行证明的方法。
它常用于证明一些几何性质的相似性或等价性。
例如,对于证明两个三角形相似的问题,我们可以采用类比法。
我们可以找到一个已知相似的三角形,然后通过类比和推理,得出两个三角形相似的结论。
综上所述,高中数学几何证明题的解题方法有直接法、间接法、反证法和类比法。
在解决这类问题时,我们可以根据题目的要求,选择合适的方法进行推导和证明。
初中数学几何证明的技巧总结

初中数学几何证明的技巧总结数学几何证明是初中数学中重要的一部分,它培养了学生的逻辑思维能力和空间想象力。
在学习数学几何证明的过程中,学生需要运用一些特定技巧来解决问题。
本文将总结几种常见的初中数学几何证明的技巧,并说明如何运用它们进行证明。
1. 使用等腰三角形技巧在解决几何证明问题时,等腰三角形是非常常见且有用的图形。
学生可以通过寻找并构造等腰三角形来完成证明过程。
常见的等腰三角形技巧包括使用等腰三角形的底角相等性质,或利用等腰三角形的两边相等性质。
例如,在证明角平分线定理时,可以通过构造等腰三角形来证明。
2. 利用全等三角形技巧全等三角形的性质在几何证明中也经常被运用。
当两个三角形的三个对应边和角分别相等时,可以推断这两个三角形全等。
通过利用全等三角形的性质,可以简化证明过程。
例如,在证明线段垂直平分定理时,可以通过构造全等三角形来证明。
3. 运用相似三角形技巧相似三角形的性质是解决几何证明问题时的常用技巧之一。
当两个三角形的对应角相等,并且对应边成比例时,可以推断这两个三角形相似。
通过利用相似三角形的性质,可以简化证明过程。
例如,在证明角平分线定理时,可以通过利用相似三角形的性质来证明。
4. 使用平行线性质平行线的性质在几何证明中也是非常重要的。
当两条平行线被一条横截线所切割时,可以推断出一些角相等的关系。
通过运用平行线性质,可以从中推导出证明结论。
例如,在证明等角定理和同位角相等定理时,可以利用平行线的性质进行证明。
5. 利用勾股定理勾股定理是几何证明中经常使用的技巧。
当三角形的两边长符合勾股定理的条件时,可以推断这个三角形为直角三角形。
通过运用勾股定理,可以证明一些与直角三角形相关的结论。
例如,在证明勾股定理及其逆定理时,可以利用勾股定理来完成证明。
6. 运用辅助线辅助线技巧在几何证明中也是常用的。
通过合理地引入辅助线,可以帮助学生发现隐藏的性质和关系,从而简化证明过程。
有时,引入辅助线可以将复杂的证明问题转化为简单的几何形状。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中几何证明技巧(分类)证明两线段相等1.两全等三角形中对应边相等。
2.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
4.平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
6.线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
*12.两圆的内(外)公切线的长相等。
13.等于同一线段的两条线段相等。
证明两个角相等1.两全等三角形的对应角相等。
2.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
*9.圆的内接四边形的外角等于内对角。
10.等于同一角的两个角相等。
证明两条直线互相垂直1.等腰三角形的顶角平分线或底边的中线垂直于底边。
2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
*10.在圆中平分弦(或弧)的直径垂直于弦。
*11.利用半圆上的圆周角是直角。
证明两直线平行1.垂直于同一直线的各直线平行。
2.同位角相等,内错角相等或同旁内角互补的两直线平行。
3.平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
6.平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
证明线段的和差倍分1.作两条线段的和,证明与第三条线段相等。
2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
证明角的和差倍分1.与证明线段的和、差、倍、分思路相同。
2.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。
证明线段不等1.同一三角形中,大角对大边。
2.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
*5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
证明两角的不等1.同一三角形中,大边对大角。
2.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
*4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
证明比例式或等积式1.利用相似三角形对应线段成比例。
2.利用内外角平分线定理。
3.平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
*5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
证明四点共圆*1.对角互补的四边形的顶点共圆。
*2.外角等于内对角的四边形内接于圆。
*3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。
*4.同斜边的直角三角形的顶点共圆。
*5.到顶点距离相等的各点共圆知识归纳:1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
一. 证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
例1. 已知:如图1求证:DE =DF分析:由∆ABC 连结CD ,易得CD = 证明:连结CDAC BC A BACB AD DBCD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=︒=∴==∠=∠=∠=∠=∠=90,,,,∴≅∴=∆∆ADE CDF DE DF说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。
显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。
本题亦可延长ED 到G ,使DG =DE ,连结BG ,证∆EFG 是等腰直角三角形。
例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。
求证:∠E =∠FABC CDA SSS B D AB CD AE CFBE DF∴≅∴∠=∠==∴=,∆∆() 在∆BCE 和∆DAF 中,BE DF B D BC DA BCE DAF SAS E F=∠=∠=⎧⎨⎪⎩⎪∴≅∴∠=∠∆∆()说明:利用三角形全等证明线段求角相等。
常须添辅助线,制造全等三角形,这时应注意:(1)制造的全等三角形应分别包括求证中一量; (2)添辅助线能够直接得到的两个全等三角形。
二. 证明直线平行或垂直 在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。
证两条直CQ AH∵BH 平分∠ABC ∴=∠∠ABH NBH又BH ⊥AH ∴==︒∠∠AHB NHB 90 BH =BH∴≅∴==∆∆ABH NBH ASA BA BN AH HN(),同理,CA =CM ,AK =KM ∴KH 是∆AMN 的中位线 ∴KH MN // 即KH//BC说明:例4. 已知:如图 求证:FD ⊥ 证明一:连结ADAB AC BD BAC BD ADB DAB DAE =∴+==︒∴=∴==,∠∠∠∠∠∠129090 在∆ADE 和∆BDF 中,AE BF B DAE AD BD ADE BDF FD ED===∴≅∴∠=∠∴∠+∠=︒∴⊥,∠∠,∆∆313290用辅助线。
证明二:如图5BD DCBDM CDE DM DE BDM CDE CE BM C CBM BM ACA ABM AAB AC BF AE AF CE BM =∠=∠=∴≅∴=∠=∠∴∠=︒∴∠=︒=∠==∴==,,,∆∆//9090∴≅∴==∴⊥∆∆AEF BFMFE FM DM DE FD ED说明:证明两直线垂直的方法如下:(1)首先分析条件,观察能否用提供垂直的定理得到,包括添常用辅助线,见本题证二。
(2)找到待证三直线所组成的三角形,证明其中两个锐角互余。
(3)证明二直线的夹角等于90°。
三. 证明一线段和的问题(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。
(截长法)例5. 已知:如图6所示在∆ABC 中,∠=︒B 60,∠BAC 、∠BCA 的角平分线AD 、︒60,,得:()∴≅∴∠=∠AEO AFO SAS ∆∆42又∠=︒B 60∴∠+∠=︒∴∠=︒∴∠+∠=︒∴∠=∠=∠=∠=︒∴≅∴=566016023120123460∆∆FOC DOC AAS FC DC()即AC AE CD =+(二)延长一较短线段,使延长部分等于另一较短线段,则两较短线段成为一条线段, 例6. 已知:如图7 求证:EF =BE + 分析:使BG =DF 。
证明:延长CB 至 在正方形ABCD∴≅∴=∠=∠∆∆ABG ADF AG AF ,13又∠=︒EAF 45∴∠+∠=︒∴∠+∠=︒23452145即∠GAE =∠FAE∴=∴=+GE EFEF BE DF中考题:AE =∆ABC 是正三角形 ∴∆BFD 是正三角形 又AE =BD∴==∴==AE FD BF BA AF EF即EF =ACAC FDEAC EFD EAC DFE SAS EC ED//()∴∠=∠∴≅∴=∆∆题型展示:DCE B DCE E∠>∠∴∠>∠∴>BD DC的垂线BP和CQ。
设M为BC的中点。
又∠+∠=︒∠+∠=︒14901390,∴∠=∠=∴≅∴=∴=4312AC CEACF CED ASA CF EDDE CD∆∆()CD CD CBD CEDB EBAC BBAC E=⎩⎪∴≅∴∠=∠∠=∠∴∠=∠∆∆22又∠=∠+∠BAC ADE E∴∠=∠∴==ADE E BC CE 3. 证明:延长 CQ AP BP BP CQ PBM ⊥∴∴∠=∠,// 又BM CM =,11∴≅∆∆BPM CRM ()AD AB AC BC AD AB AC BC ∴<++∴<++414。