双曲线典型例题

合集下载

双曲线的简单几何性质(二)(2)

双曲线的简单几何性质(二)(2)
四、点拨升华:
五、达标检测:
1.已知双曲线 的一条渐近线为 ,离心率 ,则双曲线方程为( )
A. B. C. D. .
2.已知双曲线 的左右焦点分别是 , 是以 为圆心以 为半径的圆与该双曲线左支的两个交点,且 是等边三角形,则双曲线离心率是( )A. B. C. D.
3.翰林汇翰林汇翰林汇下列各对曲线中,即有相同的离心率又有相同渐近线的是( )
二)渐近线与离心率的综合运用
例2.一双曲线的渐近线方程是 ;求双曲线的离心率
解:
反之若由离心率如何求渐近线的方程呢?
变式训练:一双曲线的离心率是 ;求双曲线的渐近线方程
解:
例3.已知双曲线的中心在原点,焦点 在坐标轴上,离心率为 且过点 ,
(1)求双曲线方程.
(2)若点 在双曲线上,求证 .
(3)求 的面积
如果已知一双曲线的渐近线方程为 ,那么此双曲线方程就一定是: 或写成
(三)典型例题:
一)有共同渐近线的双曲线系方程及其运用
例1翰林汇.求下列双曲线的标准方程
1.若双曲线经过点 ,且渐近线方程是 ;
2.以 为渐近线,一个焦点是
变题:若把焦点坐标去掉,则方程怎么求?
3.与双曲线 有相同的渐近线且一个焦点为
课题
双曲线的简单几何性质(二)
主备
周绍健
复备
罗全明
课标要求
牢固掌握双曲线的性质,并能初步运用
(一)复习联想:
双曲线的几何性质:
标准方程








对称性




离心率
渐近
线Hale Waihona Puke 基础练习:1.已知双曲线 的一条渐近线与直线 垂直,则这条双曲线的离心率是

中职数学拓展模块一(上册)3.2双曲线

中职数学拓展模块一(上册)3.2双曲线

情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
例2 已知双曲线的方程,求焦点坐标和焦距.
解 (2)将双曲线的方程化为标准方程,为
因为含y的项的系数为正数,所以双曲线的焦点在y轴上,并且
a²=8,b²=8.于是有
c²=a²+b²=16,
从而可得
c=4,2c=8.
所以,双曲线的交点坐标分别为(0,-4)、(0,4),焦距为8.
3.2 双曲线
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
我们可以通过一个实验来完成.
(1)取一条拉链,把它拉开分成两条,将其中一条剪 短.把长的一条的端点固定在点F1出,短的一条的端点固 定在点F2处;
(2)将笔尖放在拉链锁扣M 处,随着拉链的拉开或 闭合,笔尖 就画出一条曲线(图中右边的曲线);
(3)再把拉链短的一条的端点固定在点F1处,长的 一条的端点固定在点F2处.类似地,笔尖可面出另一条曲 线(图中左边的曲线).
3.2 双曲线
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
拉链是不可伸缩的,笔尖(即点M )在移动过程中,与两个点 F1、F2 的距离之差的绝对值始终保特不变.
3.2双曲线
3.2 双曲线
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
广州塔是目前世界上已经建 成的最高的塔桅建筑,广州塔的 两侧轮廓线是什么图形?有什 么特点?
3.2 双曲线
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
可以看出,广州塔两侧的轮廓 线是关于塔中轴对称的两条曲线, 它们分别从塔的腰部向上下两个 方向延伸,人们称这样的曲线为双 曲线.那么,如何画出双曲线呢?
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业

双曲线及其标准方程(2)

双曲线及其标准方程(2)

班级姓名座号2.2.1 双曲线及其标准方程(二)※典型例题A,两地相距800m,在A地听到炮弹爆炸声比在B地晚2s,且声速为340m/s,例2已知B求炮弹爆炸点的轨迹方程。

例3 如图,点B A ,的坐标分别为()0,5-,()0,5,直线BM AM ,相交于点M ,且它们的斜率之积是94,使求点M 的轨迹方程,并由点M 的轨迹方程判断轨迹的形状。

与2.1例3比较,你有什么发现?例4 已知定点()0,3A 和定圆()163:22=++y x C ,定圆与圆C 相外切,并过点A ,求动圆圆心P 的轨迹方程。

※ 课堂练习1. 如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点。

线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q2.相距1400m 的B A ,两个哨所,听到炮弹爆炸声的时间相差3s ,已知声速是340m/s ,问炮弹爆炸点在怎样的曲线上,为什么?三、小结反思1.双曲线8822=-ky kx 的一个焦点为()3,0,那么k 等于 ( )A .1 B.-1 C.97 D. 97- 2.已知两圆()24:221=++y x C ,()24:222=+-y x C ,动圆M 与两圆21,C C 都相切,则动圆圆心M 的轨迹方程是 ( )A .0=x B.)2(114222≥=-x y x C. 114222=-y x D. 114222=-y x 或0=x 3.已知()0,51-F ,()0,51F ,动圆P 满足a PF PF 221=-,当a 为3和5时,点P 的轨迹分别是( )A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条直线D .双曲线的一支和一条射线4.求到定点()0,c F 与到定直线c a x l 2:=距离之比是⎪⎭⎫ ⎝⎛>1a c a c 的点M 的轨迹.。

双曲线【知识要点】双曲线的定义第...

双曲线【知识要点】双曲线的定义第...

双曲线【知识要点】1.双曲线的定义第一定义:平面内与两个定点F 1、F 2的距离的差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距.第二定义:平面内到定点F 的距离和到定直线的距离的比等于常数(大于1)的点的轨迹叫做双曲线,即dMF ||=e(e>1). F 为直线l 外一定点,动点到定直线的距离为d ,e 为大于1的常数. 2.双曲线的标准方程与几何性质M(x 0,y 0)为22a x -22b y =1右支上的点,则|MF 1|=ex 0+a ,|MF 2|=ex 0-a.(1)当M(x,y)为22a x -22b y =1左支上的点时,|MF 1|=-(a+ex),|MF 2|=ex-a.(2)当M(x,y)为22a y -22bx =1上支上的点时,|MF 1|=ey 0+a ,|MF 2|=ey 0-a.【基础训练】1.(2004年春季北京)双曲线42x -92y =1的渐近线方程是 ( )A.y =±23xB.y =±32xC.y =±49xD.y =±94x2.过点(2,-2)且与双曲线22x -y 2=1有公共渐近线的双曲线方程是( )A.22y -42x =1B.42x -22y =1C.42y -22x =1D.22x -42y =13.如果双曲线642x -362y =1上一点P 到它的右焦点的距离是8,那么P 到它的右准线距离是( )A.10B.7732 C.27 D.5324.已知圆C 过双曲线92x -162y =1的一个顶点和一个焦点,且圆心在此双曲线上,则圆心到双曲线中心的距离是____________. 5.求与圆A :(x +5)2+y 2=49和圆B :(x -5)2+y 2=1都外切的圆的圆心P 的轨迹方程为________________.【典型例题】题型一:求双曲线的标准方程例1、 根据下列条件,求双曲线的标准方程:(1)与双曲线92x -162y =1有共同的渐近线,且过点(-3,23);(2)与双曲线162x -42y =1有公共焦点,且过点(32,2).(3)实轴长为16,离心率为45e(4)经过两点P )7,26()72,3(---Q题型二:双曲线的定义及应用例2、(2002年全国,19)设点P 到点M (-1,0)、N (1,0)距离之差为2m ,到x 轴、y 轴距离之比为2,求m 的取值范围.例3、如下图,在双曲线122y -132x =1的上支上有三点A (x 1,y 1),B (x 2,6),C (x 3,y 3),它们与点F (0,5)的距离成等差数列. (1)求y 1+y 3的值;(2)证明:线段AC 的垂直平分线经过某一定点,并求此点坐标.变式:、已知(2,1),A F ,P 是曲线221(0)x y x -=>上一点,当||||2PA PF +取最小值时,P 的坐标是,|||PA PF 最小值是 .题型三:双曲线的性质及应用例4、 已知双曲线22a x -22by =1的离心率e >1+2,左、右焦点分别为F 1、F 2,左准线为l ,能否在双曲线的左支上找一点P ,使得|PF 1|是P 到l 的距离d 与|PF 2|的等比中项?变式:过双曲线22a x -22by =1.的右焦点F 作渐近线的垂线,垂足为M ,交双曲线的左右两支于A 、B 两点,求双曲线离心率的取值范围。

第八章 第9节 双曲线渐近线的几个常用结论-原卷版

第八章  第9节  双曲线渐近线的几个常用结论-原卷版

第9节 双曲线渐近线的几个常用结论知识与方法设双曲线2222:1x y C a b-=()0,0a b >>的焦点分别为1F 、2F ,则有以下结论:1.双曲线的焦点到渐近线的距离等于虚半轴长b .2.如图1所示,以12F F 为直径的圆与双曲线C 的渐近线在第一象限的交点为(),a b . 3.如图2所示,过双曲线C 上任意一点P 作C 的两条渐近线的平行线,则它们与两条渐近线所围成的平行四边形PIOJ 的面积是定值2ab.4.如图3所示,双曲线C 上任意一点P 处的切线与C 的两条渐近线分别交于A 和B 两点,则P 为AB 的中点,且AOB 的面积为定值ab .5.如图4所示,A 、B 分别在双曲线C 的两条渐近线上,D 为AB 的中点,若直线OD 、AB的斜率都存在,则它们的斜率之积为22b a.典型例题【例1】已知双曲线()222:10x C y a a-=>的右焦点为F ,则F 到双曲线C 的渐近线的距离为_______.变式 已知双曲线()22:10C x y a -=>的右焦点为F ,过F 且与x 轴垂直的直线与双曲线C 交于A 、B 两点,则A 、B 两点到双曲线的一条渐近线的距离之和为_______.【例2】如下图所示,双曲线22:13y C x -=的左、右焦点分别为1F 、2F ,以12F F 为直径的圆与双曲线C 的渐近线交于A 、B 、D 、E 四点,则四边形ABDE 的面积为_______.变式 (2019·新课标Ⅰ卷)已知双曲线2222:1x yC a b -=()0,0a b >>的左、右焦点分别为1F 、2F ,过1F 的直线与C 的两条渐近线分别交于A 、B 两点,若1F A AB =,120F B F B ⋅=,则C 的离心率为_______.【例3】已知双曲线22:126x y C -=的右焦点为F ,点A 为双曲线C 在第一象限上的一点,且AF x ⊥轴,过A 作C 的两条渐近线的平行线与双曲线的渐近线交于M 、N 两点,则四边形OMAN 的面积为_______.变式 已知A 为双曲线222:16x y C a -=()0a >的右顶点,过A 作C 的两条渐近线的平行线,分别与双曲线的渐近线交于M 、N 两点,若四边形OMAN 3则双曲线C 的离心率为_______.【例4】已知双曲线22:155x y C -=,过点()2,0P 的直线l 与双曲线C 有且仅有1个公共点,且直线l 与双曲线的两条渐近线分别交于点A 和B ,则AOB 的面积为_______.【例5】已知直线320x y -+=与双曲线2222:1x y C a b-=()0,0a b >>的渐近线交于A 、B 两点,若AB 的中点为()1,1M ,则双曲线C 的渐近线方程为_______.变式 (2014·浙江)设直线30x y m -+=()0m ≠与双曲线22221x y a b-=()0,0a b >>的两条渐近线分别交于点A 、B ,若点(),0P m 满足PA PB =,则该双曲线的离心率是_______.强化训练1.(★)已知双曲线22:124x y C -=的一个焦点为F ,则F 到双曲线C 的渐近线的距离为_______.2.(2018·天津·★★★)已知双曲线22221x y a b-=()0,0a b >>的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A 、B 两点.设A 、B 到双曲线的同一条渐近线的距离分别为1d 和2d ,且126d d +=,则双曲线的方程为( )A.221412x y -= B.221124x y -= C.22139x y -= D.22193x y -= 3.(★★★)己知双曲线2222:1x y C a b-=()0,0a b >>的左、右焦点分别为1F 、2F ,过1F 的直线与双曲线C 的一条渐近线交于点P ,且12PF PF ⊥,直线1PF 与双曲线的另一渐近线交于点Q ,若12FQ QP =,则双曲线C 的离心率为_______. 4.(★★★)已知双曲线2222:1x y C a b-=()0,0a b >>的左、右焦点分别为1F 、2F ,过1F 且斜率为12的直线与双曲线C 的渐近线在第一象限交于点P ,若12PF PF ⊥,则双曲线C 的离心率为_______.5.(★★★)己知P 为双曲线2222:1x y C a b-=上一点,过P 作C 的两条渐近线的平行线,与两条渐近线分别交于M 、N 两点,则平行四边形OMPN 的面积为_______.6.(★★★)已知直线20x y -+=与双曲线()22:10y C x b b-=>的两条渐近线分别交于A 、B 两点,若AB 的中点为28,33M ⎛⎫⎪⎝⎭,则b =_______.7.(★★★★)已知双曲线2222:1x y C a b-=()0,0a b >>的右焦点为()2,0F ,左、右顶点分别为A 和B ,且P 为C 上不与A 、B 重合的一点,直线PA 、PB 的斜率之积为3. (1)求双曲线C 的方程;(2)过点P 的直线l 与双曲线C 有且仅有1个交点,与C 的渐近线交于M 、N 两点,求MON 的面积.。

双曲线和抛物线复习

双曲线和抛物线复习

双曲线和抛物线复习【典型例题】【双曲线A】例1. 已知圆C方程为,定点A(-3,0),求过定点A且和圆C外切的动圆圆心P的轨迹方程。

解析:∵圆P与圆C外切,∴|PC|=|PA|+2,即|PC|-|PA|=2,∴由双曲线定义,点P的轨迹是以A,C为焦点,2为实轴长的双曲线的左支,其中,故所求轨迹方程为点评:在利用双曲线第一定义解题时,要特别注意对定义中“绝对值”的理解,以避免解题时出现片面性。

当P满足时,点P的轨迹是双曲线的一支;当时,点P的轨迹是双曲线的另一支,当时,点P的轨迹是两条射线。

不可能大于。

例 2. 如图,以和为焦点的椭圆的离心率,它与抛物线交于两点,以为两渐近线的双曲线上的动点P(x,y)到一定点Q(2,0)的距离的最小值为1,求此双曲线方程。

解析:由条件知,椭圆中则∴椭圆方程为。

解方程组得两点的坐标分别为(3,2),(3,-2)。

∴所求双曲线的渐近线方程为又Q(2,0)到的距离为所以双曲线的实轴只能在x轴上。

设所求双曲线方程为,则,方程化为,得∵P(x,y)在双曲线上,∴①当,即时,当时,解得∴所求双曲线方程为②当,即时,当时,解得或(舍去),∴所求双曲线方程为综上,所求双曲线方程为或点评:待定系数法是求曲线方程最常用的方法之一。

(1)与双曲线有共同渐近线的双曲线方程可表示为;(2)若双曲线的渐近线方程是,则双曲线的方程可表示为;(3)与双曲线共焦点的双曲线方程可表示为;(4)过两个已知点的双曲线的标准方程表示为;(5)与椭圆有共同焦点的双曲线方程表示为=1利用上述结论求关于曲线的标准方程,可简化解题过程,提高解题速度。

例3. 已知双曲线的中心在原点,焦点在坐标轴上,离心率为,且过点。

(1)求双曲线方程;(2)若点M(3,m)在双曲线上,求证:;(3)求的面积。

解析:(1),∴可设双曲线方程为∵过点,∴,即,∴双曲线方程为(2)由(1)可知,双曲线中,∵点(3,m)在双曲线上,∴故(3)的底,的高点评:双曲线的标准方程和几何性质中涉及到很多基本量,如“a,b,c,e”等,树立基本量思想对于确定曲线方程和认识其几何性质有很大帮助.另外,渐近线是双曲线特有的,双曲线的渐近线方程可记为.同时以为渐近线的双曲线方程可设为()。

双曲线新课习题集

双曲线新课习题集

双曲线及其方程 (第一课时)一、 教学目标:掌握双曲线的定义、标准方程及其推导。

二、 重点:双曲线的定义和标准方程。

难点:标准方程的推导。

三、 基本概念:1、双曲线的定义: 叫做双曲线的焦点。

叫做双曲线的焦距。

2、注意:0〈2a<21F F =2c3、思考:当2a=2c 时轨迹如何? ,当2a>2c 时又如何?四、 双曲线的标准方程及其推导。

(一) 双曲线的标准方程的推导: 1.建立直角坐标系:2.写出适合条件的动点M 的集合:3.列方程:4.化简方程:(二) 双曲线的标准方程:1、焦点在X 轴上时: 2、焦点在Y 轴上时: 3、a 、 b 、 c 的关系 五、典型例题:例1、根据下列条件,求双曲线的标准方程:(1) 两个焦点的坐标分别是(-5,0),(5,0), 双曲线上的点与两个焦点的距离的差的绝对值等于8; (2) 两个焦点的坐标分别是(0,-6),(0,6),且双曲线经过点A (-5,6).思考:如果已知点M (x,y )与点F 1(-5,0)的距离比它与点F 2(5,0)的距离大8,求M 点的轨迹方程。

并与例1(1)比较有什么联系和区别?例2、已知双曲线1453622=-y x (1)求此双曲线的左、右焦点F 1,F 2的坐标;(2) 如果此双曲线上一点P 与焦点F 1的距离等于16,求点P 与焦点F 2的距离六、基本练习:1、根据下列条件,求双曲线的标准方程: (1)a=3,b=4, 焦点在X 轴上;(2)两个焦点的坐标分别是F 1(0,-6), F 2 (0,6), 经过点A (2,-5).(3) 焦点在X 轴上,经过点P (4,-2)和点Q (2,622);(4) a=5,c=8;2、已知双曲线方程1201622=-x y (1)求双曲线的焦点F 1,F 2的坐标。

(2)如果此双曲线上一点P 与焦点F 1的距离等于8,求点P 与焦点F 2的距离。

七、巩固提高:1、若11222=+++λλy x 表示双曲线,则λ的取值范围2、求中心在原点,两对称轴都在坐标轴上,并且经过P (3,415)和Q (,3165)两点的双曲线方程。

双曲线基本知识点及例题优选版

双曲线基本知识点及例题优选版

双曲线基本知识点及例题优选版1. 过双曲线的一个焦点作x轴的垂线,求垂线与双曲线的交点到两焦点的距离。

2. 已知双曲线的离心率为2,求它的两条渐近线的夹角。

3. 在面积为1的△PMN中,,建立适当坐标系,求以M、N为焦点且过点P的双曲线方程。

4. 已知椭圆和双曲线有相同的焦点,P是两条曲线的一个交点,求的值。

5. 已知椭圆及点B(0,-2),过左焦点F1与点B的直线交椭圆于C、D两点,椭圆的右焦点为F2,求△CDF2的面积。

6. P为椭圆上任意一点,F1为它的一个焦点,求证以焦半径F1P为直径的圆与以长轴为直径的圆相切。

7. 已知两定点A(-1,0),B(1,0)及两动点M(0,y1),N(0,y2),其中,设直线AM与BN的交点为P。

(1)求动点P的轨迹C的方程;(2)若直线与曲线C位于y轴左边的部分交于相异两点E、F,求k 的取值范围。

8. 直线只有一个公共点,求直线l的方程。

1. 解:∵双曲线方程为,∴=13,于是焦点坐标为设过点F1垂直于x轴的直线l交双曲线于,∴故垂线与双曲线的交点到两焦点的距离为。

2. 解:设实轴与渐近线的夹角为,则∴∴两条渐近线的夹角为[点评](1)离心率e与。

(2)要注意两直线夹角的范围,否则将有可能误答为。

3. 解:以MN所在直线为x轴,MN的中垂线为y轴建立直角坐标系,设,(如图所示)则解得设双曲线方程为,将点∴所求双曲线方程为点评:选择坐标系应使双曲线方程为标准形式,然后采用待定系数法求出方程。

4. 解:∵P在椭圆上,,又∵点P在双曲线上,,①、②两式分别平方得两式相减得,∴5. 解:∵,由∵与椭圆有两个公共点,设为:∴又点F2到直线BF1的距离说明:本题也可用来解。

6. 略解1设为椭圆上任意一点,则又两圆半径分别为,,故此两圆内切。

略解2如图,∴此两圆内切7. 解:(1)由题意得AM的方程为,BN的方程为:。

两式相乘,得(2)由8. 解:由(1)∴此时直线l:x=3与双曲线只有一个公共点(3,0);(2)当b≠0时,直线l方程为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【例1】若椭圆()0122 n m n y m x =+与双曲线221x y a b-=)0( b a 有相同的焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是 ( )A. a m -B. ()a m -21C. 22a m -D. a m -【解析】椭圆的长半轴为()121PF PF ∴+=()122PF PF ∴-=±()()()2212121244PF PF m a PF PF m a -⋅=-⇒⋅=-:,故选A.【评注】严格区分椭圆与双曲线的第一定义,是破解本题的关键.【例2】已知双曲线127922=-y x 与点M (5,3),F 为右焦点,若双曲线上有一点P ,使PM PF21+最小,则P 点的坐标为 【分析】待求式中的12是什么?是双曲线离心率的 倒数.由此可知,解本题须用双曲线的第二定义.【解析】双曲线的右焦点F (6,0),离心率2e =,右准线为32l x =:.作MN l ⊥于N ,交双曲线右支于P ,连FP ,则122PF e PN PN PN PF ==⇒=.此时PM 1375225PF PM PN MN +=+==-=为最小.在127922=-y x 中,令3y =,得212x x x =⇒=±∴0,取x =所求P 点的坐标为().(2)渐近线——双曲线与直线相约天涯对于二次曲线,渐近线为双曲线所独有. 双曲线的许多特性围绕着渐近线而展开.双曲线的左、右两支都无限接近其渐近线而又不能与其相交,这一特有的几何性质不仅很好地界定了双曲线的范围.由于处理直线问题比处理曲线问题容易得多,所以这一性质被广泛应用于有关解题之中.【例3】过点(1,3)且渐近线为x y 21±=的双曲线方程是【解析】设所求双曲线为()2214x y k -=点(1,3)代入:135944k=-=-.代入(1): 22223541443535x y x y -=-⇒-=即为所求. 【评注】在双曲线22221x y a b-=中,令222200x y x y a b a b -=⇒±=即为其渐近线.根据这一点,可以简洁地设待求双曲线为2222x y k a b -=,而无须考虑其实、虚轴的位置.XYO F(6,0)M(5,3)P N P ′N ′X=32(3)共轭双曲线—— 虚、实易位的孪生弟兄将双曲线22221x y a b -=的实、虚轴互易,所得双曲线方程为:22221x y b a-=.这两个双曲线就是互相共轭的双曲线.它们有相同的焦距而焦点的位置不同;它们又有共同的渐近线而为渐近线所界定的范围不一样;它们的许多奇妙性质在解题中都有广泛的应用.【例4】两共轭双曲线的离心率分别为21,e e ,证明:221211e e +=1.【证明】双曲线22221x y a b -=的离心率22221122c c a b e e a a a +=⇒==;双曲线22221x y b a-=的离心率22222222c c a b e e b b b +=⇒==.∴2222222212111a b e e a b a b+=+=++.(4)等轴双曲线——和谐对称 与圆同美实、虚轴相等的双曲线称为等轴双曲线,等轴双曲线的对称性可以与圆为伴.【例5】设CD 是等轴双曲线的平行于实轴的任一弦,求证它的两端点与实轴任一顶点的连线成直角. 【证明】如图设等轴双曲线方程为()2221x y a -=,直线CD :y=m.代入(1):22x x m=±+.故有:()()2222,,,C x m m Dx m m-++.取双曲线右顶点(),0Ba .那么:()()2222,,,BC x m a m BD x m a m=-+-=+-()22220,BC BD a a m m BC BD ⎡⎤⋅=-++=∴⊥⎣⎦.即∠CBD=90°. 同理可证:∠CAD=90°.● 通法 特法 妙法(1)方程法——为解析几何正名解析法的指导思想是函数方程思想,其主要手段是列、解方程、方程组或不等式.【例6】如图,1F 和2F 分别是双曲线)0,0(12222>>=-b a by a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双 曲线的离心率为( )(A )3 (B )5 (C )25 (D )31+XOYCDA B【解析1】设AB 交x 轴于M ,并设双曲线半焦距为c ,∵△AB F 2是等边三角形,∴,.22c OM MA c ==点2c A ⎛⎫- ⎪ ⎪⎝⎭代入双曲线方程:()()2222222222222233444c b a c a b c c a a c a c a ⋅-⋅=⇒--=-.化简得:422442284084041c a c a e e e e -+=⇒-+=⇒=+=.(∵e >1,∴24e=-及1e =舍去)故选D.【解析2】连AF 1,则△AF 1F 2为直角三角形,且斜边F 1F 2之长为2c.令1122,.AF r AF r ==由直角三角形性质知:211221221222r r ar c r a c r c r r -=⎧=⎧⎪⇒⎨⎨=+⋅=⎩⎪⎩. ∵()222222222124,24220220r r c a c c c a ac c e e +=∴++=⇒+-=⇒--=.∵e ﹥1,∴取1e =.选D.【评注】即使是解析法解题,也须不失时机地引入几何手段.(2)转换法——为解题化归立意【例7】直线l 过双曲线12222=-by a x 的右焦点,斜率k =2.若l 与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是 ( )A .e >2 B.1<e <3 C.1<e <5 D.e >5【分析】就题论题的去解这道题,确实难以下手,那就 考虑转换吧.其一,直线和双曲线的两支都有交点不好掌握, 但是和两条渐近线都有交点却很好掌握.其二,因为已知直线 的斜率为2,所以双曲线的两条渐近线中,倾斜角为钝角的 渐近线肯定与之相交,只须考虑倾斜角为锐角的渐近线也与 之相交.故有如下妙解.【解析】如图设直线l 的倾斜角为α,双曲线渐近线m 的倾斜角为β.显然。

当β>α时直线l 与双曲线的两个交点分别在左右两支上.由2222tan tan 245b c a e a aβαβα->⇒>⇒>⇒>⇒>. ∵双曲线中1e >,故取e >5.选D.(3)几何法——使数形结合带上灵性【例8】设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为XYO Fl( )A.B .12C. D .24【解析】双曲线的实、虚半轴和半焦距分别是:1,a b c ===.设;12123,2.22, 2.PF r PF r PF PF a r ==-==∴= 于是2221212126, 4.52PF PF PF PF F F ==+==,故知△PF 1F 2是直角三角形,∠F 1P F 2=90°.∴121211641222PF FS PF PF ∆=⋅=⨯⨯=.选B. 【评注】解题中发现△PF 1F 2是直角三角形,是事前 不曾想到的吧?可是,这一美妙的结果不是每个考生都能 临场发现的.将最美的结果隐藏在解题过程之中以鉴别考生的思维 能力,这正是命题人的高明之处.(4)设而不求——与借舟弃舟同理减少解析几何计算量的有效方法之一便是设而不求.请看下例: 【例9】双曲线122=-y x 的一弦中点为(2,1),则此弦所在的直线方程为 ( )A.12-=x y B. 22-=x y C. 32-=x y D. 32+=x y【解析】设弦的两端分别为()()1,12,2,Ax y B x y .则有:()()222222111212121222121222101x y y y x x x x y y x x y y x y ⎧-=-+⇒---=⇒=⎨-+-=⎩.∵弦中点为(2,1),∴121242x x y y +=⎧⎨+=⎩.故直线的斜率121212122y y x x k x x y y -+===-+. 则所求直线方程为:()12223y x y x -=-⇒=-,故选C.“设而不求”具体含义是:在解题中我们希望得到某种结果而必须经过某个步骤,只要有可能,可以用虚设代替而不必真地去求它. 但是,“设而不求”的手段应当慎用.不问条件是否成熟就滥用,也会出漏子.请看:【例10】在双曲线1222=-y x 上,是否存在被点M (1,1)平分的弦?如果存在,求弦所在的直线方程;如不存在,请说明理由. 如果不问情由地利用“设而不求”的手段,会有如下解法:【错解】假定存在符合条件的弦AB ,其两端分别为:A (x 1,y 1),B (x 2,y 2).那么:()()()()()22111212121222221112011212x y x x x x y y y y x y ⎧-=⎪⎪⇒-+--+=⎨⎪-=⎪⎩.∵M (1,1)为弦AB 的中点,∴()()()1212121212122022AB x x y y x x y y k y y x x +=⎧----=∴==⎨+=-⎩代入1:2,故存在符合条件的直线AB ,其方程为:()12121y x y x -=-=-,即.这个结论对不对呢?我们只须注意如下两点就够了:其一:将点M (1,1)代入方程1222=-y x ,发现左式=1-1122=<1,故点M (1,1)在双曲线的外部;其二:所求直线AB 的斜率2ABk =,而双曲线的渐近线为y =.2,说明所求直线不可能与双曲线相交,当然所得结论也是荒唐的.问题出在解题过程中忽视了直线与双曲线有公共点的条件. 【正解】在上述解法的基础上应当加以验证.由()()222221221224302221y x x x x x y x ⎧-=⎪⇒--=⇒-+=⎨⎪=-⎩这里16240∆=-,故方程(2)无实根,也就是所求直线不合条件.此外,上述解法还疏忽了一点:只有当12x x ≠时才可能求出k=2.若12120x x y ===,必有y .说明这时直线与双曲线只有一个公共点,仍不符合题设条件.结论;不存在符合题设条件的直线.(5)设参消参——换元自如 地阔天宽一道难度较大的解析几何综合题,往往牵涉到多个变量.要从中理出头绪,不能不恰当地处理那些非主要的变量,这就要用到参数法,先设参,再消参.【例11】如图,点F 为双曲线C 的左焦点,左准线l 交x1||||==FQ PQ ,且线段PF 的中点M 在双曲线C 的左支上.(Ⅰ)求双曲线C 的标准方程;(Ⅱ)若过点F 的直线m 与双曲线C 的左右 两支分别交于A 、B 两点,设FA FB λ=,当),6[+∞∈λ时,求直线m 的斜率k 的取值范围.【分析】第(Ⅰ)问中,线段PF 的中点M 的坐标是主要变量,其它都是辅助变量.注意到点M 是直角三角形斜边的中点,所以利用中点公式是设参消参的主攻方向第(Ⅱ)中,直线m 的斜率k 是主要变量,其它包括λ都是辅助变量. 斜率k 的几何意义是有关直线倾斜角θ的正切,所以设置直线m 的参数方程,而后将参数λ用θ的三角式表示,是一个不错的选择.【解析】(Ⅰ)设所求双曲线为:22221x y a b-=.其左焦点为F (-c 。

相关文档
最新文档