第3章_音频处理技术
第03章_数字音频基础

3.2.2 量化(Quantization)
量化是指用若干比特表示一个样本的过程;表示一个样本所使用的比特数称为量化深度 (bit depth)。常见的量化深度有 4 比特、8 比特、16 比特、32 比特等等。不难理解,量化实 际上是一个对声音样本的幅值进行离散化处理的一个过程。虽然采样已经在时间上将模拟信号 离散化了,但是样本的大小(即幅值)仍然有无限种可能的取值(所以本质上还是连续量), 而数字系统只能表示有限种状态,例如,用 8 个比特表示样本大小的话,则只能有 256 种取值。 所以,量化是一个将无限多种可能取值归结为有限多个数字值的过程。通常,系统会将一个样 本以最接近其值大小的数字表示。总之,采样是时间上的离散化,而量化则是空间上的离散化。 需要强调的是,量化深度也是影响数字音频信号质量的重要因素。4 比特只有 16 种取值, 显然,试图通过这样少数几个状态来恢复原始模拟音频信号是十分困难的。但是,量化深度越 多,数据量也会越大,传输和存储的压力自然越大。所以,也需要根据实际应用环境来采用合 适的量化深度。例如,一般的网络音频应用采用了 8 位的量化深度,CD 音频的量化深度则是 16 比特,而有些高级数字音频系统采用了 32 位的量化深度。 3.2.3 编码(Coding) 在采样、量化处理后,模拟音频数字化的第三个步骤是编码。编码实际上是以某种格式最 终生成数字音频数据流的过程,所得到的数字音频数据将会被存储、传输或者进行各种处理。 本章第 3 节将介绍几种重要的音频编码技术。 需要读者注意的是,把数字化过程分解成采样、量化、编码三个阶段实际上是一种简化描 述,各种不同的数字音频技术会有不同的采样、量化与编码机制,特别是量化与编码往往是同 步进行的,而且编码还包括后续的数据流格式化。因此,多数介绍数字音频技术的教科书或学 术著作在提到音频编码的时候,都将这三个步骤合称为编码系统或编码技术,并在编码系统的 框架下对整个模数转换过程进行整体性介绍。本教程下面的阐述也沿用了这一模式。
第3章 数字音频处理技术

信息科学技术学院·曹晓兰 20
3.2.4 音频的编码与压缩技术
音频压缩编码时考虑的因素: 音频质量
数据量
计算复杂度
多媒体技术
信息科学技术学院·曹晓兰
21
常见音频编码算法和标准
多媒体技术
信息科学技术学院·曹晓兰
22
1.波形编码
基于音频数据的统计特性进行的编码,其目 标是使重建语音波形保持原波形的形状。 特点:算法简单,易于实现,可获得高质量 语音。
MIDI音频文件是一个脚本语言,它通过对“事 件”编码,产生声音。一个MIDI事件包含一个音 阶的音调、持续时间和音量等参数。
多媒体技术
信息科学技术学院·曹晓兰
31
1.MIDI乐音合成方法
频率调制(FM)合成法
FM声音合成器波形
原理:根据傅立叶级数理论,任何一种波形信号都可 被分解成若干个频率不同的正弦波
需要以音乐为背景的音响效果,同时从CD -ROM中装载其他数据时; 需要以音乐为背景的音响效果,同时播放波形音 频或实现文-语转换,实现音乐和语音同时输出时。
多媒体技术
信息科学技术学院·曹晓兰
37
多媒体技术
信息科学技术学院·曹晓兰
38
3.4.1 常见音频软件简介
1.Cool Edit Pro
专业级多轨录音和音频处理软件。 Syntrillium Software Corporation公司开发。 功能强大、效果出色。 详见下节介绍。
多媒体技术
信息科学技术学院·曹晓兰
时域掩蔽
除了同时发出的声 音之间有掩蔽现象之外, 在时间上相邻的声音之 间也有掩蔽现象。包括 超前掩蔽和滞后掩蔽。
9
3.1.4 音频信号处理过程 音频数字化过程
多媒体技术与应用答案

第一章多媒体技术概述1、什么是媒体?媒体是如何分类的?(简答题)答:(1)媒体指的是信息表示和传输的载体,是人与人之间沟通及交流观念、思想或意见的中介物。
在计算机科学中,媒体具有两种含义:一是承载信息的物理实体,例如磁带、磁盘、光盘、半导体存储器;二是表示信息的物理载体,例如文本、图形、图像、声音、动画及影像等。
多媒体技术中的媒体一般指后者。
(2)按照国际上一些标准化组织制定的分类标准,媒体主要有一下6种类型。
(1)感觉媒体(2)表示媒体(3)显示媒体(也称表现媒体)(4)存储媒体(5)传输媒体2、什么是多媒体?它有哪些关键特性?(简答题)答:(1)多媒体是由两种以上单一媒体融合而成的信息综合表现形式,是多种媒体的综合、处理和利用的结果。
(2)多维化:计算机处理媒体信息的多样化,使人与计算机之间的交互不再局限于顺序的、单调的、狭小的范围,而有充分自由的余地。
交互性:人、机对话,是多媒体技术的关键特征。
在多媒体系统中,除了操作上控制自如之外,在媒体的综合处理上也可以随心所欲。
集成性:将各种不同的媒体信息有机地进行同步组合,形成一个完整的多媒体信息;把不同的媒体设备集成在一起,形成多媒体系统。
3、多媒体技术如何定义?多媒体技术有哪些特点?答:(1)多媒体技术是以计算机(或微处理芯片)为中心,将文本、图形、图像、音频、视频和动画等多种媒体信息进行数字化综合处理,使多种媒体信息建立逻辑连接,并集成一个具有交互性的系统技术。
(2)多媒体技术特征:多样性,集成性,交互性,实时性和数字化。
4、什么是多媒体系统?答:多媒体系统是指由多媒体网络设备、多媒体终端设备、多媒体软件、多媒体服务系统及相关的多媒体数据组成的有机整体。
5、什么是虚拟现实技术?答:虚拟现实技术(VR)是一种可以创建和体验虚拟世界的计算机系统,一种逼真的模拟人在自然环境中视觉、听觉和运动等行为的高级人机交互(界面)技术。
一、单选题1.媒体有两种含义,即表示信息的载体和 ( B )。
数字音视频技术讲义第三章 模拟信号数字处理

短距离传送PCM信号是采用并行 传送方式,即每一个抽样的N个码位 以及为收、发同步用的抽样时钟, 在n+1条传输线中并行传送。 中、远距离传输时采用全串行传 送方式,即对n个码位首先进行并/ 串转换,然后在同一条线路上依次 传出。
*3.2 彩色电视图像信号的 数字编码
• ~两种PCM编码方式:全信号编码和分 量编码。 • 全信号编码是对彩色电视信号直接进行 编码。 • 分量编码是对亮度信号及两个色差信号 (或对三个基色信号)分别进行编码。
• 满足正交结构的条件是抽样频率是 行频的整数倍。 • 根据副载频与行频的偏置关系,只 当时fs=4fsc才形成正交抽样结构。 • 抽样频率较高可降低模拟低通滤波 器及数字滤波器的设计难度。随着 器件速度的提高和成本的下降,4fsc 抽样频率目前被广泛地采用。
二、量化等级
• 在全信号编码中,一般采用四舍五入的 均匀量化。主观实验表明,为获得满意 的图像质量,一般采用8bit量化。当编解 码次数较多时,考虑到量化噪波的累积, 应采用9-10bit量化。
3.2.2 分量编码
一、抽样频率 • 主观实验表明,当亮度信号Y的带宽为 5.8~6MHz、两个色差信号R-Y和B-Y的 带宽2MHz时,可获得满意的图像质量。 • 分量编码时,一般应先根据需要,用低 通滤波器适当地限制三个分量信号的带 宽。所选定的抽样频率应不小于2.2倍信 号最高频率。
• 三个分量信号的抽样频率之间以及它们与 行频之间,一般应有整数倍的关系,以便 于时分复用和形成正交抽样结构。• 考 虑 525 行 制 和 625 行 制 的 兼 容 性 , Y/RY/B-Y的抽样频率为:13.5/6.75/6.75MHz。 • 色差信号的抽样频率为亮度信号的2/4,简 称为4:2:2标准。根据标准,525行制亮 度信号的每行样点数为858,625行制为864, 色差信号每行样点数均为亮度信号的一半 。
音频处理技术ppt课件

15
上海建桥学院信息技术系
16
上海建桥学院信息技术系
借助于A/D或D/A转换器,模拟信号和数字信号可以互相转换
17
上海建桥学院信息技术系
18
上海建桥学院信息技术系
▪ 4.2.1采样
为实现A/D转换,需要把模拟音频信号波形进行分 割(每隔一定的时间间隔测一次模拟音频的值(如电压) ),
以转变成数字信号,这种方法称为采样(Sampling)。每 秒钟采样的次数称为采样率。
22
输出
输入
非均匀量化
上海建桥学院信息技术系
数字音频等级
信号类型
频率范围Hz
电话语音 宽带音频 调频广播 CD-DA SACD DVD-AUDIO HDTA …
200~3400 50~7000 20~15k 20~22k 2-100k 100k
23
采样频率KHz 量化精度(位)
8
8
16
16
37.8
44 100(Hz)×(16/8)(B)×2×5×60=51600kb
26
上海建桥学院信息技术系
▪ 4.2.3 声音采样与量化过程示例
27
上海建桥学院信息技术系
图4-10 采样频率为1000Hz,10个量化等级的波形
28
上海建桥学院信息技术系
图4-11 经过D/A转换器得到的信号波形(直线段的波形)有较大的失真
非语音信号:音乐,自然界的声音,信息量 低,识别简单。
6
上海建桥学院信息技术系
图4-4 在自然界,声波与水波一样都是一种振动波
7
上海建桥学院信息技术系
图4-5 用声音录制软件记录的英文单词”Hello”语音的实际波形
第3章 音频处理软件CoolEditPro-1

调整方法: 调整方法: • 右键单击,出现滑钮调整 右键单击, • 按住左键的同时鼠标上下拖动
裁剪音频波形
拖放鼠标, 拖放鼠标,选择需处理的音频波形
• 剪切([编辑]—[剪切]) 剪切( 编辑] 剪切] • 修剪到选区([编辑]—[反向]) 修剪到选区( 编辑] 反向]
要注意对录音电平(录音音量)的调整。 要注意对录音电平(录音音量)的调整。在录音时我 们要尽量保证录制的声音以最高电平进入麦克风。 们要尽量保证录制的声音以最高电平进入麦克风。声 音的电平越高,声音也就越清晰。不过, 音的电平越高,声音也就越清晰。不过,声卡对可处 理的声音电平也有一个限度,太高的电平会使声音出 理的声音电平也有一个限度, 现爆音,听起来不舒服。 现爆音,听起来不舒服。 数字音频中的声音强度与生活中的声音强度概念有所 不同,虽然单位都是dB 分贝), dB( ),且数字越高表示声 不同,虽然单位都是dB(分贝),且数字越高表示声 音强度越大。 生活中的声音强度都是正数, 音强度越大。但生活中的声音强度都是正数,最小的 声音被规定为0dB 而在数字音频领域中 0dB; 数字音频领域中, 声音被规定为0dB;而在数字音频领域中,声音强度则 以负数形式记录,最大的声音被规定为0dB,而最小的 以负数形式记录,最大的声音被规定为0dB, 0dB 声音是负无穷。 声音是负无穷。 为了录制的声音尽可能清晰, 为了录制的声音尽可能清晰,我们既需要尽量大的音 又不能超过系统可以接受的0dB最大音量, 0dB最大音量 量, 又不能超过系统可以接受的0dB最大音量,这是录 音时要严格掌握的尺度。 音时要严格掌握的尺度。
三、多轨音频编辑
3章 数字音频处理技术

3 WMA文件
Windows Media Audio 7压缩的文件,其扩展名是.WMA, 主要优点是在较低的采样频率下保持良好的音质。
4 MIDI文件
乐器数字接口,文件扩展名为.mid。MIDI文件记录的是一 系列指令不是数字化后的波形数据,因此占用存储空间很小。 播放时使用软件波表,可以达到与真实乐器几乎一样的效果。
教学进程
3.2.5 数字音频处理
1 基本编辑
删除声音文件中不需要的声音片段,比如噪音、杂音、口 误、重复、过长的停顿等。
2 声道编辑
将单声道变成双声道的声音;或将双声道的变成单声道声 音以节省存储空间;或让声音交替地从左右声道发出,产生声 音的立体效果。
3 淡入淡出
常用于节目的开始、结尾和两段声音之间的过渡。
教学进程
主板
主机箱
声音适配器 数字信号
音频信号 音箱
音箱
● 作用: 数字信号与模拟信号之间的双向转换 ● 单板 (输出功率大,抗干扰,音质好) ● 主板集成 (易受干扰,性能指标比单板略差)
教学进程
2 声卡的结构体系
教学进程
3 声卡的分类 按连接方式分为:板卡式、集成式、外置式
4 声卡的性能指标 (1) 采样和量化能力 (2) 芯片类型 (3) 总线类型 (4) 输出声道数
1 WAV文件
WAV(Wave)文件,又名波形文件,扩展名为.WAV。是 Windows本身存放数字声音的标准格式,几乎所有的音频处理 软件都支持WAV格式。 质量较高,但文件体积大。
最简单的数字音频采集方式:利用Windows中的录音机通 过声卡进行采集。
教学进程
准备工作
麦克风已经插到声卡的MIC插孔上,且能正常工作。每次 用户打开录音机时,它都是等待录音的状态 。最后以以.wav的 音频文件格式保存
网络游戏产业游戏引擎技术研发与应用研究

网络游戏产业游戏引擎技术研发与应用研究第1章游戏引擎技术概述 (3)1.1 游戏引擎的发展历程 (3)1.2 游戏引擎的核心技术 (3)1.3 游戏引擎在网络游戏产业中的应用 (4)第2章游戏引擎架构设计 (4)2.1 游戏引擎架构模式 (5)2.1.1 分层架构模式 (5)2.1.2 组件架构模式 (5)2.1.3 插件式架构模式 (5)2.2 游戏引擎模块划分 (5)2.2.1 渲染模块 (5)2.2.2 物理模块 (6)2.2.3 音频模块 (6)2.2.4 逻辑模块 (6)2.3 游戏引擎功能优化 (6)2.3.1 渲染功能优化 (6)2.3.2 物理功能优化 (7)2.3.3 内存管理优化 (7)2.3.4 多线程优化 (7)第3章图形渲染技术 (7)3.1 图形渲染管线 (7)3.1.1 顶点处理阶段 (7)3.1.2 图元装配与光栅化阶段 (7)3.1.3 片段处理阶段 (7)3.2 光照模型与阴影技术 (7)3.2.1 光照模型 (8)3.2.2 阴影技术 (8)3.3 纹理与材质处理 (8)3.3.1 纹理映射 (8)3.3.2 材质系统 (8)3.4 高动态范围渲染 (8)3.4.1 HDR图像的获取与存储 (8)3.4.2 HDR渲染与合成 (9)第4章物理引擎与碰撞检测 (9)4.1 物理引擎原理 (9)4.1.1 牛顿运动定律 (9)4.1.2 矢量运算 (9)4.1.3 数值积分 (9)4.2 碰撞检测算法 (9)4.2.2 碰撞检测优化 (10)4.2.3 碰撞响应 (10)4.3 刚体与软体物理模拟 (10)4.3.1 刚体物理模拟 (10)4.3.2 软体物理模拟 (10)4.4 粒子系统 (10)4.4.1 粒子系统的基本原理 (10)4.4.2 粒子系统的实现方法 (10)4.4.3 粒子系统在游戏中的应用 (10)第5章音频处理技术 (11)5.1 音频引擎架构 (11)5.2 3D音效处理 (11)5.3 音乐与音效合成 (11)5.4 声音空间化 (11)第6章网络通信技术 (11)6.1 网络游戏通信协议 (11)6.1.1 通信协议概述 (11)6.1.2 TCP/IP协议族 (12)6.1.3 HTTP/协议 (12)6.2 客户端与服务器架构 (12)6.2.1 C/S架构 (12)6.2.2 B/S架构 (12)6.2.3 P2P架构 (12)6.3 网络同步与延迟补偿 (12)6.3.1 网络同步机制 (12)6.3.2 延迟补偿技术 (12)6.4 网络安全与加密 (12)6.4.1 网络安全概述 (12)6.4.2 加密技术 (12)6.4.3 与游戏安全 (13)第7章游戏人工智能 (13)7.1 游戏概述 (13)7.2 行为树与状态机 (13)7.2.1 行为树 (13)7.2.2 状态机 (13)7.3 路径搜索与导航 (13)7.3.1 路径搜索 (13)7.3.2 导航 (13)7.4 群体智能与模拟 (14)7.4.1 群体智能 (14)7.4.2 模拟 (14)第8章用户界面与交互设计 (14)8.1 游戏界面设计原则 (14)8.1.2 一致性原则 (14)8.1.3 简洁性原则 (14)8.1.4 易用性原则 (14)8.1.5 美观性原则 (15)8.2 虚拟控制器与输入设备 (15)8.2.1 虚拟控制器设计 (15)8.2.2 输入设备兼容性 (15)8.3 游戏交互技术创新 (15)8.3.1 增强现实(AR)技术 (15)8.3.2 虚拟现实(VR)技术 (15)8.3.3 语音交互技术 (15)8.3.4 体感交互技术 (15)8.4 用户体验优化 (15)8.4.1 界面流畅性优化 (16)8.4.2 界面布局优化 (16)8.4.3 操作反馈优化 (16)8.4.4 菜单系统优化 (16)第9章游戏引擎跨平台开发 (16)9.1 跨平台开发技术概述 (16)9.2 游戏引擎跨平台架构 (16)9.3 移植与优化策略 (17)9.4 跨平台游戏案例分析 (17)第10章游戏引擎未来发展与应用趋势 (17)10.1 游戏引擎技术发展趋势 (17)10.2 虚拟现实与增强现实技术 (18)10.3 云游戏与边缘计算 (18)10.4 游戏引擎在其他领域的应用摸索 (18)第1章游戏引擎技术概述1.1 游戏引擎的发展历程游戏引擎作为网络游戏产业的核心技术,其发展历程见证了游戏产业的变革与进步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.音色B.响度C.频率D.音调
19.音色又称音品,它与_____C____有关。
A.响度B.振幅C.频率D.音调
20.响度即声音的响亮程度,它与_____B__有关。
A.音色B.振幅C.频率D.音调
21.人耳能够听到的声音信号是:_____C_______
A.次声波B.超声波C.音频D.声波
22.人们把频率范围为20Hz~20KHz的声音信号称为____C_____信号。
A.次声波B.超声波C.音频D.声波
23.人们把高于20KHz的声音信号称为___B___信号。
A.次声波B.超声波C.音频D.声波
24.假设CD格式的某立体声音乐的采样频率是44.1KHz,量化位数为16bit,
那么该音乐每分钟的数据量为:____C___
一、选择题
1、下列选项不属于多媒体组成部分的是:( C )。
A、视频 B、声音 C、像素D、文字
2、声波不能在( D )中传播。
A、水 B、空气 C、墙壁 D、中空
3、下列选项不属于声音的重要指标的是:( B )。
A、频率 B、音色C、周期 D、振幅
4、下列选项表示波的高低幅度即声音的强弱的是:( D )。
2.怎样进行采样频率的选择?
答:数码音频系统是通过将声波波形转换成一连串的二进制数据来再现原始声音的,实现这个步骤使用的设备是模/数转换器(A/D)它以每秒上万次的速率对声波进行采样,每一次采样都记录下了原始模拟声波在某一时刻的状态,称之为样本。将一串的样本连接起来,就可以描述一段声波了,把每一秒钟所采样的数目称为采样频率或采率,单位为HZ(赫兹)。采样频率越高所能描述的声波频率就越高。
4.声音压缩算法主要是利用语音信号的相关性和人耳的听觉特性进行压缩的。
1)利用语音信号的相关性
语音信号的相关性是相邻采样点之差很小,其包含的信息量远小于采样值本身,差值编码比采样值编码所需的比特率下降。语音信号中有两种类型的相关性:样点之间的短时相关性和相邻基音周期之间存在的长时相关性,减弱这些相关性再编码即可实现语音压缩编码
C.是有损压缩D.模拟声音
15、从听觉角度看,声音不具有(C)要素
A.音调B.响度C.音长D.音色
16、声音的高低叫做(),他与频率(B)
A.音调无关B.音调成正比C.音调 成反比 D.响度无关
17、下列表示人耳对声音音质的感觉的是(C)
A.音调B.响度C.音色D.音量
18、从电话,广播中分辨出是熟人的根据(A)的不同,它是由谐音的多寡,各
答:概念:声音数字化就是将模拟的连续声音波形在时间上和幅值上进行离散化处理。
分为两个步骤:采样和量化。
采样就是将声音信号在时间上进行离散化处理,即每隔相等的一段时间在声音信号波形曲线上采集一个信号样本(声音的幅度)。
量化就是把采样得到的声音信号幅度转换成相应的数字值。采样后的数值不一定能在计算机内部进行方便的表示,所以将每一个样本值归入预先编排的最近的量化级上,该过程称为量化。
A. 连续变化的模拟 离散化 B. 离散变化的模拟 连续化
C. 连续变化的数字 离散化 D. 离散变化的数字 连续化
8、对声音信号进行数字化处理,是对声音因信号——。 (D)
A. 先量化再采样 B. 仅采样 C. 仅量化 D.先采样再量化
9、对声音信号进行数字化处理首先需要确定的两个问题是——。 (A)
27.MP3的压缩比____D__.
A . 2:1 B. 4:1 C. 6:1 D.10:1
二.填空题。
1、声音的三个重要指标是(频率),(周期)和(振幅)。
2.声音所具有的三个要素是指(音调)(音色)和(响度)。
3.笛子和小提琴演奏相同的乐曲时,我们能够正确地分辨出不同的乐器是因为它们的(音色)不同。
A.42.336Mbps B.21.168Mbps C.10.584Mbps D.5.292Mbps
25.下面哪个不属于波形编码器:____D________
A.脉冲编码调制B.自适应差分编码
C.自适应增量调制D.线性预测编码
26.语音的压缩技术通常采用______B___技术。
A.霍夫曼编码B.波形编码C.行程编码D.算术编码
9.数字化声音的技术指标包括量化精度、采样频率和声道数等参数。
10.采样频率指单位时间内采样次数。它的值越高,在一定的时间间隔内采集的样本数越多,音质越好,数字化声音的数据量越大。
11.数字化声音的数据量是由(采样频率),量化精度,(声道数)和声音持续时间所决定的。
12.音频压缩技术按照语音的压缩编码方法可分为三类:(波形编码),参数编码和(混合编码),其中(波形编码)是基于语音波形的编码方码方法。目前的音频压缩方法中,只有(波形编码)能用于音乐信号的压缩
13.声音压缩算法主要是利用(语音信号相关)和(人耳听觉特性)进行压缩的。
14.语音信号中存在两种类型的相关性,即样点之间(短时)相关性和相邻基音周期之间存在的(长时)相关性。
15.声卡的采样频率有11.025KHz ,22.05KHz和(44.1)KHz。
第三章
1.声音的数字化概念,它包括那几个步骤,并简述每个步骤的过程。
答:(1)波形编码
编码前根据采样定理对模拟语音信号进行采样,然后进行幅度量化与二进制编码。
波形编码比较简单,具有适应能力强、话音质量好、抗噪、抗误码的能力强等特点,但所需的编码速率高。
(2)参数编码
根据声音的形成模型,把声音变换成参数的编码方式,直接针对音频PCM码流的采样值进行处理,通过静音检测、非线性量化、分差等手段对码进行压缩,根据声音的波形,取中间值,删除反差较大的值来实现对声音的压缩。
A.采样频率和量化精度B. 压缩和解压缩
C. 录音与播放 D. 模拟与压缩
10、对声音信号进行数字化时,间隔时间相等的采样称为——采样。 (B)
A. 随机 B.均匀C. 选择 D. 模拟
11、对声音信号进行数字化时,用多少哥二进制位来存储表示数字化声音的
数据,称为——。 (D)
A. 采样 B.采样频率 C.量化 D.量化精度
2)利用了人耳的听觉特性
利用人耳的掩蔽效应也可以进行语音压缩编码,降低比特率。
量化精度是指每个声音样本需要用多少位二进制数来表示,反映了度量声音波形幅度的精确度。它的值越高,数字化后的声音信号就越可能接近原始信号,但所需要的存储空间也越大。
数字化声音的技术指标包括量化精度、采样频率和声道数等参数。
采样频率指单位时间内采样次数。它的值越高,在一定的时间间隔内采集的样本数越多,音质越好,数字化声音的数据量越大。
7.量化就是把采样得到的声音信号幅度转换成相应的数字值,将每一个值归入预先编排的最近的量化级上,并赋予相同的量化值。如果复读的划分是等时间隔的,就称为线性量化。
8.量化精度是指每个声音样本需要用多少位二进制数来表示,反映了度量声音波形幅度的精确度。它的值越高,数字化后的声音信号就越可能接近原始信号,但所需要的存储空间也越大。
由于参数编码是保护语音模型,重建清晰可识别的语音,而不注重波形的拟合,所以这类编码技术实现的是合成语音质量下的低速或极低速的编码。
(3)混合编码
在波形编码和参数编码的基础上,以相对较低的比特率获得较高的语音质量,所以其数据率和音质介于波形编码和参数编码二者之间。
混合编码因为克服了波形编码和参数编码的弱点、结合了它们的有点,所以在4—16kbps速率上能够得到高质量的合成语音。在本质上具有波形编码的优点,有一定抗噪和抗误码的性能,但时延较大。
A、频率 B、音色 C、周期 D、振幅
5、下列选项表示两个相邻的波之间的时间长度的是:( C )。
A、频率 B、音色 C、周期D、振幅
6、下列选项表示每秒中振动的次数的是:( A )。
A、频率B、音色 C、周期 D、振幅
7、自然界的声音是——信号,要使计算机能处理的音频信号必须将其——,
这种转换过程即声音的数字化。 (A/D)
根据奈魁斯特(NYQUIST)采样定理,用两倍于一个正弦波的频繁率进行采样就能完全真实地还原该波形,因此一个数码录音波的休样频率直接关系到它的最高还原频率指标例如,用44.1KHZ的采样频率进行采样,则可还原最高为22.05KHZ的频率-----这个值略高于人耳的听觉极限。
3.音频压缩技术按照语音的压缩编码方法的分类,简述每种方法的思想及特点。
如果幅度的划分是等间隔的,就称为线性量化,否则就称为非线性量化。
量化的过程如下:将采样后的信号按整个声波的幅值划分为若干个区段,把落入某区段的样值归为一类,并赋予相同的量化值。
采样就是将声音信号在时间上进行离散化处理,即每隔相等的一段时间在声音信号波形曲线上采集一个信号样本(声音的幅度)。
量化就是把采样得到的声音信号幅度转换成相应的数字值,将每一个值归入预先编排的最近的量化级上,并赋予相同的量化值。如果复读的划分是等时间隔的,就称为线性量化。
12、对声音信号进行数字化时,每秒钟需要采集多少个声音样本,称为——。
(B)
A. 压缩 B.采样频率C. 解压缩 D. 量化精
13、乃奎斯特采样理论指出,采样频率不超过声音最高频率的(B)倍
A. 1 B.2C.3 D.4
14、满足奈奎斯特采样理论,则经过采样后的采样信号(A)
A.可以还原成原来的声音B.不能还原成原来的声音
4.按照人们听觉的频率范围,声音可分为(次声波),(超声波)和(音频)三类,其中(次声波)指频率低于20Hz的信号,(超声波)指频率高于20KHz的信号,而(音频)指频率范围在20Hz~20KHz的声音信号。
5.声音数字化分为两个步骤:(采样)和(量化)。
6..采样就是将声音信号在时间上进行离散化处理,即每隔相等的一段时间在声音信号波形曲线上采集一个信号样本(声音的幅度)。