九年级数学上册 23.2中心对称23.2.2中心对称图形2_1-5

合集下载

人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)

人教版数学九年级上册23.2.2中心对称图形课件(29张PPT)

美丽的中心对称图形
你能设计出中心对称图形吗?
巩固训练
1. 剪纸是我国具有独特艺术风格的民间艺术,反 映了劳动人民对现实生活的深刻感悟. 下列剪纸 图案中,是中心对称图形的有( A )
A. ①②③ B. ①②④ C. ①③④ D. ②③④
2. 下列图形是轴对称图形但不是中心对称 图形的是( D )
A
B
C
D
3. 如图,直线 a⊥b 于点O,曲线 c 关于点 О 成中心对称,点 A 的对称点是 A',AB⊥a 于点B,A'D⊥b 于点 D. 若 OB=3,OD=2,则 阴影部分的面积为___6___.
4. 图①②都是由边长为 1 的小等边三角形构成 的网格,每个网格图中有3个小等边三角形已涂上阴 影. 请在余下的空白小等边三角形中,分别按下列要 求选取一个涂上阴影: (1)使得4个阴影小等边三角形组成一个轴对称图形. (2)使得4个阴影小等边三角形组成一个中心对称图形.
课后作业
1.从课后习题中选取; 2.完成练习册本课时的习题.
【画一画】
1. 下图是中心对称图形的一部分及对称中心,请你
补如全何它寻的找另中一心部对分称. A
B
图形的对称中心?
H G
C
D
F
E
2. 如图,请你用无刻度的直尺画一条直线,把下 面的平行四边形分成完全相等的两部分.
几何画板演示
【归纳】过对称中心的直线将中心对称图 形分成全等的两部分.
练习
如图,直线 EF 经过▱ABCD 的对角线的交 点O,若 AE=3,四边形 AEFB 的面积为15, 则 CF=__3___,四边形 EDCF 的面积为__1_5___.
后的图形能够与原来的图形重合,那么这个图形叫

23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册

23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册
2. 数学抽象:学生能够从具体的图形中抽象出中心对称图形的概念,理解中心对称图形的性质,并能够将这些性质抽象成数学语言进行表达。
3. 数学建模:学生能够将中心对称图形的性质应用到实际问题中,通过建立数学模型来解决问题,培养学生的数学应用能力和解决问题的能力。
教学难点与重点
1. 教学重点:
(1)中心对称图形的概念:本节课的核心是让学生理解并掌握中心对称图形的定义,即图形中心有一个点,称为对称中心,使得图形上的任意一点关于对称中心都有对应的一点,这两点距离对称中心相等,且连线垂直平分。
- 针对学生在自主学习和合作学习中的困难,提供更多的学习资源和指导,帮助学生提高自主学习能力和团队合作能力。
- 定期进行教学反思和评估,及时调整教学策略和方法,以提高教学效果。
教学评价与反馈
2. 小组讨论成果展示:通过小组讨论成果展示,评估学生在合作学习中的参与度和对中心对称图形概念、性质的理解程度。
6. 学生自我评价与反馈:鼓励学生进行自我评价和反馈,让他们认识到自己的优点和不足,并提出改进建议。
7. 家长反馈:通过与家长的沟通,了解学生在家庭中的学习情况,并根据家长反馈给予学生适当的指导和建议。
8. 定期进行教学评价与反馈,及时调整教学策略和方法,以提高教学效果。
课后作业
1. 请学生运用中心对称图形的性质,设计一个简单的几何作图,并说明作图步骤和原理。
4. 已知一个矩形ABCD,点E是CD边上的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。
5. 已知一个正方形ABCD,点E是对角线AC的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。

九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

九年级数学上册 23.2.2 中心对称图形 课件(共24张PPT)

(2)中心对称图形的对称点
O
连线被_对__称__中__心__平__分__
C
B
性质:中心对称图形上的每一对对称点的连线都经过对称
中心且被对称中心平分.
知识归纳
中心对称图形的性质
知识点二
中心对称与中心对称图形的区别与联系:
中心对称
中心对称图形
1.针对两个图形而言的
1.针对一个图形而言的
区 2.是指两个图形的(位置)关系2.是指具有某种性质的一个图形
探究新知
中心对称图形的概念
【问题】将下面的图形绕O点旋转,你有什么发现?
知识点一
AO B
O
O
O
共同点:(1)都绕一点旋转了180度; (2)都与原图形完全重合.
中心对称图形的定义 注意 中心对称图形是指一个图形.
把一个图形绕某个点旋转180º,如果旋转后的图形能与原来的图 形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中
ABCDEFGH I J KLM
NOPQRSTUVWXYZ
2.在线段、角、等腰三角形、等边三角形、等腰梯形、平行四 边形、矩形、菱形、正方形、正六边形、圆中,既是轴对称图形, 又是中心对称图形的图形有( D ) A.3个 B.4个 C.5个 D.6个
针对训练
中心对称图形的概念
知识点一
3.下列图形中,既是轴对称图形,又是中心对称图形的是( B )
分别交AD和BC于点E,F,AB=2,BC=3,则图中阴影部分的面积为_3__.
A
ED
O
BF
C
针对训练
中心对称图形的性质
知识点二
1.如图,有一个平行四边形请你用无刻度的直尺画一条直线把他

人教版九年级数学上册《23.2.2 中心对称图形》课件(共18张PPT)

人教版九年级数学上册《23.2.2 中心对称图形》课件(共18张PPT)

D.轴对称图形都是中心对称图形
人教版九年级数学上册《23.2.2 中心对称图形》课件(共18张PPT)
练习巩固,深化提高
7.如图,在平行四边形ABCD中,AC与BD交于点O,过点 O的两条直线分别交各边于点E,H,F,G,则点A,E,D,G 关于点O的对称点分别是点__C__,__F__,___B__,___H__.
自主评价,反馈调控
问题2 在生活中你还见过哪些中心对称图形?
人教版九年级数学上册《23.2.2 中心对称图形》课件(共18张PPT)
人教版九年级数学上册《23.2.2 中心对称图形》课件(共18张PPT)
自主评价,反馈调控
中心对称与中心对称图形是两个既有联系又有区别的 概念.
区别:中心对称指两个全等图形的相互位置关系;而 中心对称图形指一个图形本身具有的特性.
动手实践,感受新知
问题1 观察前面图1得到的线段AB,若将它绕点O旋转 180°,你有什么发现?
由于OA = OB ,所以线段AB绕它的中点O旋转180°后 与自身重合.
动手实践,感受新知
问题2 观察前面图2得到的图形,连接AD,BC ,得到的 是什么四边形?若将它绕对角线的交点O旋转180°,你又发现 了什么?
练习巩固,深化提高
3.下列命题中真命题的个数是( B ).
①关于中心对称的两个图形一定不全等;
②关于中心对称的两个图形是全等形;
③两个全等的图形一定关于中心对称.
A.0
B.1
C.2
D.3
4.下图中,是中心对称图形的是( A ).
人教版九年级数学上册《23.2.2 中心对称图形》课件(共18张PPT)
人教版九年级数学上册《23.2.2 中心对称图形》课件(共18张PPT)

九年级数学人教版(上册)课件23.2.2中心对称图形

九年级数学人教版(上册)课件23.2.2中心对称图形
分析:∵P(a,3)和P’(-4,b)关于原点对称, ∴a=4,b=-3, ∴(a+b) =2(0048-3) =1 2008
2、学练第62页课时达标演练2、3、6题
1.若设点M(a,b),
M点关于X轴的对称点M1( a,-b ) M点关于Y轴的对称点M2( - a, b ), M点关于原点O的对称点M3(-a,-b )
作业:课本P69 第3、4两题。
谢谢
F(-2,1) G(-2,-1)
05:45:46
(2,-1) (2,1)
填空:
1.已知点M的坐标为(3,-5),则关于x轴对称的点的坐
标点M’的坐标为 (3,5),关于y轴对称的点M’的坐标

,关(于-3原,-5点) 对称的点的坐标为
.
(-3,5)
2.点M(-2,3)与点N(2,3)关于__y_轴___对称;

点 P 到 y 轴的距离为 1 ;
6、点 P(-3,-4)关于 y 轴对称的点的坐标为
(3,-4),点 P 到 x 轴的距离为 4

点 P 到 y 轴的距离为 3 .
y
O
x
课堂小结
本节课你学会了什么?
两个点关于原点对称时,它 们的坐标符号相反,即点P (x,y)关于原点的对称点P′ 的坐标是(-x,-y),及利用 这个特点解决一些实际问题.
中心对称图形
• 学习目标: 1、理解点 P 与点 P′关于原点对称时,它们的横纵 坐标的关系。 2、会用关于原点对称的点的坐标的关系解决有关问 题。
• 学习重难点: 点 P(x,y)关于原点的对称点 P′(-x,-y)及其应 用。
回顾旧知
1. 什么叫中心对称和中心对称图形?
把一个图形绕着某一点旋转180,如 果他能与另一个图形重合,那么就说这两 个图形关于这点成中心对称。

九年级数学人教版上册课件:23.2.2中心对称图形

九年级数学人教版上册课件:23.2.2中心对称图形

③哪些既是轴对称图形,又是中心对称图形?
(1)
(2)
(3)
(4)
(5)
(6)
21
5.世界上因为有了圆的图案,万物才显得富有生机,以 下来自现实生活的图形中都有圆,它们看上去是那么美 丽与和谐,这正是因为圆具有 轴对称和中心对称性.
请问以下三个图形中是轴对称图形的有 ①②③ ,是 中心对称图形的有 ①③ .
8
练一练
1.下列图形中,既是轴对称图形又是中心对称图形的 是(D )
A.
B. C. D.
2.下列图形中,是中心对称图形,但不是轴对称图
形的是( D )
A.正方形 B.矩形 C.菱形 D.平行四边形
9
3.下列图形中,是轴对称图形但不是中心对称图 形的是(A )
4. 在线段、等腰梯形、平行四边形、矩形、正六 边形、圆、正方形、等边三角形中,既是轴对称 图形,又是中心对称图形的图形有( C)
A. 3个 B.4个 C.5个 D.6个
10
例2 如图,矩形ABCD的对角线AC和BD相交于点O, 过点O的直线分别交AD和BC于点E、F,AB=2,BC =3,则图中阴影部分的面积为___3____.
解析:由于矩形是中心对称图形,所 以依题意可知△BOF与△DOE关于点 O成中心对称,由此图中阴影部分的 三个三角形就可以转化到直角△ADC 中,易得阴影部分的面积为3.
A . 角 B. 等边三角形 C . 线段 D . 平行四边形
19
3.从一副扑克牌中抽出如下四张牌,其中是中 心对称图形的有( A )
A.1 张 B.2 张 C.3 张 D.4 张
20
4.观察图形,并回答下面的问题:
①哪些只是轴对称图形? (3)(4)(6)

23.2.2 中心对称图形

23.2.2 中心对称图形
经过对称中心的直线把原图形分成面积相等的两部分
美丽的中心对称图形在建筑物和工艺品等领域非常常见
THANKS
D
D
3.下列图形中,是轴对称图形但不是中心对称图形的是( )4. 在线段、等腰梯形、平行四边形、矩形、正六边形、圆、正方形、等边三角形中,既是轴对称图形,又是中心对称图形的图形有( ) A. 3个 B.4个 C.5个 D.6个
3
有一块如图(1)所示的钢板,工人师傅想把它分成面积相等 的两部分,请你在图中画出分割方法.导引:过中心对称图形对称中心的直线将图形分成全等的两部分.可以 将不规则图形分割成若干规则的中心对称图形,然后再去解题. 解:钢板可看成由上、下两个矩形构成(如图(2)所示),矩形是中 心对称图形,过对称中心的任一直线把矩形分成全等的两部分, 自然平分其面积,而矩形的对称中心是两条对角线的交点,因 此,先作出两矩形的对称中心,过这两个对称中心作直线即 可.(画法不唯一)
判断下列图形是否为中心对称图形. 解:(1)(3)(5)(6)(9)是中心对称图形, (2)(4)(7)(8)不是中心对称图形.
(1)
(9)
(8)
(7)
(6)
(5)
(4)
(3)
(2)
指出如图所示的汽车标志中的中心对称图形.


×
×
×
(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形, 但不是中心对称图形.(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(3)选取1个涂上阴影,使4个阴影小正方形组成一个既是轴对称图形,又是中心对称图形.
如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为_______.

23.2.2中心对称图形课件(共27张PPT)

23.2.2中心对称图形课件(共27张PPT)

A
B
(2)如图,将 ABCD 绕它的两条对角线的交点 O 旋转 180°,你有什么发现?
A O B D
C
问题1:
与它本身重合; (1)线段 AB 绕它的中点旋转 180°后__________ 180 度 (2)□ABCD 绕它的两条对角线的交点O旋转____ 后与原来的图形重合。
追问1:旋转的对象都是几个图形? 追问2:图形都是绕着什么旋转? 追问3:旋转的角度是多少?
问题5
现实生活中你还见过哪些中心对称图形?
中心对称图形
汉代铜镜——中心对称图形
问题6 下列图形是中心对称图形吗?
(1)
(2)
(3)
旋转图形(2) 旋转图形(4)
(4)
旋转图形(1) 旋转图形(3)
点击跳转
返回
旋转
返回
旋转
返回
旋转
返回
旋转
探究5: 问题7 点O是平行四边形ABCD的对称中心,点A、 D F C
A D
B
C
变式二:近期孟州市在大力整治环境,争创全国 卫生城市。现在园林部门想在一块如图所示的由 两块平行四边形构成的花圃上种植面积相等的牡 丹和郁金香,请同学们帮忙设计一条直线,将这 个图形分成面积相等的两部分;(要求:对分法 的合理性进行说明,并在图中作出分法的示意图)
A D E B C F
在26个英文大写正体字母中,哪些字母 是中心对称图形?
探究4 中心对称图形的形状通常匀称美观,我们在 自然界中可以看到许多美丽的中心对称图形,如 雪花.在很多建筑物和工艺品中也常采用中心对 称图形作装饰图案,如地毯.另外,由于具有中 心对称图形形状的物体,能够在所在的平面内绕 对称中心平稳地旋转,所以在各种机器中要旋转 的零部件的形状常设计成中心对称图形,如水泵 叶轮等.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档