大一高等数学函数PPT课件

合集下载

函数完整版PPT课件

函数完整版PPT课件
16
三角函数图像变换规律
振幅变换
通过改变函数前的系数,实现对函数图 像的纵向拉伸或压缩。
周期变换
通过改变函数内的系数,实现对函数图 像的横向拉伸或压缩。
2024/1/28
相位变换
通过改变函数内的常数项,实现对函数 图像的左右平移。
上下平移
通过在函数后加减常数,实现对函数图 像的上下平移。
17
三角函数周期性、奇偶性和单调性
了直线在 $y$ 轴上的位置。
03
性质
当 $k > 0$ 时,函数单调递增 ;当 $k < 0$ 时,函数单调递
减。
8
二次函数表达式与图像
2024/1/28
二次函数表达式
$y = ax^2 + bx + c$($a neq 0$)
图像特点
一条抛物线,开口方向由 $a$ 决定($a > 0$ 时向上开口 ,$a < 0$ 时向下开口),对称轴为 $x = -frac{b}{2a}$ ,顶点坐标为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
对数函数性质
单调性、定义域、值域等 。
13
指数对数方程求解
指数方程求解
通过换元法、配方法等方法将指数方 程转化为代数方程求解。
指数对数混合方程求解
综合运用指数和对数的性质及运算法 则进行求解。
对数方程求解
通过换底公式、消去对数等方法将对 数方程转化为代数方程求解。
2024/1/28
14
04
三角函数及其性质
函数完整版PPT课件
2024/1/28
1
目录
2024/1/28
• 函数基本概念与性质 • 一次函数与二次函数 • 指数函数与对数函数 • 三角函数及其性质 • 反三角函数及其性质 • 复合函数与分段函数 • 参数方程与极坐标方程

第一章函数 《高等数学》课件

第一章函数 《高等数学》课件
基础平台
第一部分 极限初论
机动 目录 上页 下页 返回 结束
极限初论三个内容的关系 函数 — 研究对象 极限 — 研究方法 连续 — 研究桥梁
机动 目录 上页 下页 返回 结束
第一章 函 数
机动 目录 上页 下页 返回 结束
第一章 函 数
§1.1 函数的概念 §1.2 函数的基本性质 §1.3 复合函数与反函数 §1.4 初等函数及其应用 §1.5 常用经济函数
t s
s/km 200
100
0
0
1
2
0
100
200
1
2
t/h
思考:
(1) 在描点时,是怎样确定一个点的位 置的? 哪个变量作为点的横坐标?哪 个变量作为点的纵坐标? (2) 函数的定义域是什么? (3) s 的值能大于 200 吗?能是负值吗? 为什么?函数的值域是什么? (4) 随行驶时间 t 的增大,距离 s有怎样 的变化?
函数的定义
设x和y是两个变量,D 是一个给定的非空数集. 如果对于每个数x∈D,按照一定对应法则总有唯一 确定的数值y和它对应,则称y是x的函数。
D
B
f:对应法则
x.
y.
机动 目录 上页 下页 返回 结束
记作
因变量
自变量
定义域
其中, x 称为自变量,y 称为因变量,数集 D 称
为这个函数的定义域。
在某一自然现象或社会现象中,往往 同时存在多个不断变化的量(变量),这 些变量并不是孤立变化的,而是相互联系 并遵循一定的规律。函数就是描述这种联 系的一个法则。
机动 目录 上页 下页 返回 结束
例如,在自由落体运动中,设物体下落的 时间为t,落下的距离为s。假定开始下落 的时刻为t=0,则变量s与t之间的相依关系 由数学模型

高等数学第一章1.1 函数ppt课件

高等数学第一章1.1 函数ppt课件
22 22 2222 a b 2 a b c d c d
2 2 22 22 (| x | | y |) | x y | 2 a b c d 2 ac 2 b
为证三角不等式只须证明
2 22 2 ac bd a b c d
为证上式,又只须证明


点a叫做这邻域的中心 , 叫做这邻域的半径 .
U ( a ) { x a x a } .

a
a
0
a
x
U a ). 点 a 的去心的 邻域 , 记作 (
U ( a ) { x 0 x a } .

a a ; ab a b ; 运算性质: b b a x a ; x a ( a 0 ) x a 或 x a ; x a ( a 0 )
a , b R , 且 a b .
{ x a x b } 称为开区间,
o a b { x a x b } 称为闭区间, o
记作 ( a ,b )
x 记作 [ a ,b ] x
a
b
{ x a x b } 称为半开区间, { x a x b } 称为半开区间,
(3) 狄利克雷函数
1 当 x 是有理数时 yD (x ) 0 当 x 是无理数时
y
1
• o 无理数点 有理数点
x
(4) 取最值函数 y max{ f ( x ), g ( x )} y min{ f ( x ), g ( x )}
y
f (x)
y
f (x)
g(x)
o
x
g(x)
x y x y . 绝对值不等式: 绝对值不等式的两个变形公式:

高等数学初等函数ppt课件

高等数学初等函数ppt课件
无限地接近,向右与x轴无限地接近.
•当 为奇数时, 幂函数为奇函数;当 为偶数时,
幂函数为偶函数.
•当 0 时, 函数为常数函数 y 1
5
指数函数
定义:函数 y a x 叫做指数函数, a 其中 是一个大于0,且不等于1的常量,函
数的定义域是R.
y a x (a 0,a 1) x R
2
ymin= 1
f(x)= 0 x k (k Z )
R [1,1]
x 2k (k Z ) 时 ymax=1 x 2k (k Z ) 时 ymin= 1
x k (k Z ) 11
2
f(x)=sinx
f(x)= cosx
图象
x
x
周期性 奇偶性
在 (0,) 上是减函数 在 (0,) 上是增函数 9
三角函数
三角函数常用公式
10
f(x)=sinx
f(x)= cosx
y
y
图1
1

0
-1 -

2

3
2 x 0
2
-1

2

3
2 x
2
定义域 值域
最值
R
[1,1]
x 2k (k Z ) 时
2
ymax=1 x 2k (k Z ) 时
商 f: g
( f )(x) f (x) , x D \{x | g(x) 0, x D}Biblioteka gg(x)29
三. 初等函数
由常数及基本初等函数 经过有限次四则运算和复合步
骤所构成 , 并可用一个式子表示的函数 , 称为初等函数 .

函数的概念ppt课件

函数的概念ppt课件

→s=x 十y;
⑥A={x|—1≤x≤1,x∈R},B={0}, 对应关系f:x→
y=0.
A.①⑤⑥
B.②④⑤⑥
C.②③④
D.①②③⑤
【思维·引】
1.在x 轴上区间[0,2]内作与x 轴垂直的直线,此直线 与函数的图象恰有一个公共点.
2.先看集合A,B 是否为非空数集,再判断非空数集A 中任取一个数,在非空数集 B 中是否有唯一的数与之 对应.
②求f(g(a)): 已 知f(x) 与 g(x), 求 f(g(a)) 的值应遵 循由里往外的原则.
(2)关注点:用来替换解析式中x 的 数a 必须是函数定 义域内的值,否则函数无意义.
习练 ·破
1.若f(x)=ax²—√2,a 为正实数,且f(f(√2))=—√2, 则 a=
2.设f(x)=2x²+2,
函数的定义,所以A 不是函数.B.由 |x—1|+√y²-1=
0得, |x—1|=0,√y²-1=0, 所以x=1,y=±1, 所以

( 1 ) 求 f(2),f(a+3),g
—2),g(f(2)). (2)求g(f(x)).
(a)+g(0)(a≠
≠—2),
【加练·固】

(x≠—1), 求 f(0),f(1),
f(1—a)(a≠2),f(f(2)) 的值.
课堂达标检测
1.下列图形中,不能确定y 是x 的函数的是
y
3
(
)
3
x
⑥对于由实际问题的背景确定的函数,其定义域还要受 实际问题的制约.
★习练·破
求下列函数的定义域:
(1
;(2)y=√x- 1·√1—x;

大学高数第一章函数和极限ppt课件

大学高数第一章函数和极限ppt课件

lim 3x
x
28
2、当 x x0 时函数极限
定义 1.6 设函数在点 x0 附近有定义(但在这一点可以没有
定义),若 x ( x x0 )无论以怎样的方式趋近于 x0 ,函
数 f (x) 都无限趋近于一个常数 A ,就称当 x 趋近于 x0 时,
函数以 A 为极限,记为:
lim f (x) A 或
解:由于函数表达式中带有| x | ,
y
所以要分别求函数的左右极限。
因为: lim | x | lim x 1,
x x0
x x0
lim | x | lim x 1,
x
x x0
x x0
左右极限不相等,所以, lim | x | 不存在. x0 x
也可以从函数的图像上明确地看出该函数的极限不存在
变量 u 称为中间变量。
如:y sin3 x 可视为 y u3,u sin x 复合而成的 复合函数。 类似地,可以定义多于两重复合关系的复合函数。
11
例 已知 y arcsin[ln(x 1)]
(1)分析 y 的复合结构;(2)求 y 的定义域.
解:(1) y arcsinu , u ln v , v x 1
常见的周期函数有:sin x 、cos x 、tan x ,cot x
前两者周期为 2 ,后两者周期为 。
9
5.函数的有界性
若存在某个正数 M ,使得不等式 f (x) M
对于函数 f (x) 的定义域 D 内的一切 x 值都成立,则称函数 f (x) 在定义域内是有界函数; 如果这样的正数 M 不存在,则称函数 f (x) 在定义域 D 内是

函数的概念及其表示法ppt课件

函数的概念及其表示法ppt课件

∴2aa+=b1=,-1,
即ab= =12-,32.
∴f(x)=12x2-32x+2.
(3)在 f(x)=2f1x· x-1 中, 将 x 换成1x,则1x换成 x,
得 f1x=2f(x)· 1x-1,
由fx=2f1x· x-1, f1x=2fx· 1x-1,
解得 f(x)=23 x+13.
答案
2 (1)lgx-1(x>1)
解析 (1)f56=3×56-b=52-b, 若52-b<1,即 b>32时, 则 ff56=f52-b=352-b-b=4, 解之得 b=78,不合题意舍去. 若52-b≥1,即 b≤32,则 =4,解得 b=12.
(2)当 x<1 时,ex-1≤2,解得 x≤1+ln 2, 所以 x<1.
当 x≥1 时, ≤2,解得 x≤8,所以 1≤x≤8.
解析 (1)令 t=2x+1(t>1),则 x=t-2 1, ∴f(t)=lgt-2 1,即 f(x)=lgx-2 1(x>1). (2)设 f(x)=ax2+bx+c(a≠0), 由 f(0)=2,得 c=2, f(x+1)-f(x)=a(x+1)2+b(x+1)+2-ax2-bx-2=x-1, 则 2ax+a+b=x-1,
2.下列给出的四个对应中: ①A=B=N*,对任意的 x∈A,f:x→|x-2|; ②A=R,B={y|y>0},对任意的 x∈A,f:x→x12; ③A=B=R,对任意的 x∈A,f:x→3x+2; ④A={(x,y)|x,y∈R},B=R,对任意的(x,y)∈A,f:(x,y)→x +y. 其中对应为函数的有________(填序号).
第1讲 函数的概念及其表示法
考试要求 1.函数的概念,求简单函数的定义域和值域,B 级要求;2.选择恰当的方法(如图象法、列表法、解析法)表 示函数,B级要求;3.简单的分段函数及应用,A级要求.

高等数学 第一部分 函数、极限与连续 课件ppt

高等数学  第一部分  函数、极限与连续 课件ppt

a 1 时,y log a x 单调递增, y
y logax (a 1)
0 a 1时y, log a x 单调递减。 o
x
y logax (0 x 1)
1-1 函数
4. 三角函数
正弦函数:y sin x
定义域:(,).
值 域:[1,1] .
单调性:

2
2k , 2
2k
单调增加;2
1-1 函数
函数的表示法
1)以数学式子表示函数的方法叫公式法如: y x2, y cos x 公式法的优点是便于理论推导和计算.
2)以表格形式表示函数的方法叫表格法,它是 将自变量的值与对应的函数值列为表格,如三角函 数表、对数表等,表格法的优点是所求的函数值容 易查得.
3)以图形表示函数的方法叫图形法或图象法, 这种方法在工程技术上应用很普遍,其优点是直观 形象,可看到函数的变化趋势.
4
2
3
(2) y sin x cosx 的周期T 2
(3) y cos 2x tan x 的周期T 3 .
3 3 6
1-1 函数
4.有界性
定义 1.6 设函数 y f (x) 的定义域为 D,如果存在 一个正常数 M,使得对于任意的 x D ,都有| f (x) | M , 则称函数 y f (x) 在 D 上有界.如果不存在这样的正常 数 M,即对任意的正常数 M,都存在某个点 x0 D ,使 得| f (x0 ) | M , 则称函数 y f (x) 在 D 上无界.
2k ,
3
2
2k
单调减少.
奇偶性:奇函数.
周期性:周期函数.
有界性:有界函数.
余弦函数:y cosx
1-1 函数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

返回 上页 下页
.
17
二.区间与邻域
设a和b都是实数,将满足不等式a<x<b的所有实数组 成的数集称为开区间,记作(a,b)即
(a,b) ={x|a<x<b}, a和b称为开区间(a,b)的端点,这里a (a,b)且b (a,b). 数集 [a,b]={x|a≤x≤b}为闭区间,a和b也称为闭区间[a,b]的 端点 , a∈[a,b]且b∈[a,b].
(A∩B)∩C= A∩(B∩C);
(结合律)
(3) (A∪B)∩C=(A∩C)∪(B∩C),
(A∩B)∪C=(A∪C)∩(B∪C),
(A - B)∩C=(A∩C)-(B∩C); (分配律)
(4) ________ __
ABAB(或A ( B)cACBc).
______ __ __ __ ___
ABAB(或A ( B)cAcBc)德 . 摩根 . 律
返回 上页 下页
.
2
所以说,数学也是一种思想方法,学习数学的过程就是思 维训练的过程。
另外,人类社会的进步,与数学这门科学的广泛应用 是分不开的。尤其是到了现代,电子计算机的出现和普 及使得数学的应用领域更加拓宽,现代数学正成为科技 发展的强大动力,同时也广泛和深入地渗透到了社会科 学领域。因此,学好高等数学对我们来说相当重要。
返回 上页 下页
.
9
第一节 函数的概念及其基本性质 第二节 初等函数 第三节 经济学中常见的函数
第一节 函数的概念及其基本性质
一.集合及其运算
集合:具有某种确定性质的对象的全体,简称集。 集合的元素:组成集合的各个对象。
用大写的英文字母A、B、C……表示集合,用小写的 英文字母a、b、c……表示集合的元素。
若a属于集合A的元素,则称a属于A,记作 aA ;否则 称a不属于A ,记作 aA(或aA )。
含有限元素的集合称为有限集,不含任何元素的集合称 为空集;用表示空集。 不是有限集也不是空集的集合称 为无限集。
返回 上页 下页
.
12
表示集合的方法: (1)列举法 将集合的元素一一列举出来,写在一个花括号内; (2)描述法 在花括号内指明集合元素所具有的性质。
AB
由属于A但不属于B的元素组成的集称
为A与B的差集,记作A–B 或A\ B 即 A B {x |x A 但 x B }
AB
返回 上页 下页
.
15
全集 :又所研究的全 成部 的事 集物 合构 称 . 为
积为 I或U. 若研究某一问题 考时 虑将 对所 象的全体 集看 ,作全
记为 I,则对于任意 A集I,I合 A(即I \ A)称为 A的补集,
返回 上页 下页
.
3
要想学好高等数学,至少要做到以下四点:
首先,理解概念。数学中有很多概念。概念反映的 是事物的本质,弄清楚了它是如何定义的、有什么性质, 才能真正地理解一个概念。
其次,掌握定理。定理是一个正确的命题,分为条 件和结论两部分。对于定理除了要掌握它的条件和结 论以外,还要搞清它的适用范围,做到有的放矢。
相等
若AB ,且B A,则称A与B相等,记作A=B.
返回 上页 下页
.
14
并集
由属于A或属于B的所有元素组成的集合 A B 称为A与B的并集记作A∪ B ,即
交集 A∪B ={x|x∈A或x∈B}
由同时属于A与B的元素组成的集称为A与B的交集,记作
A∩B ,即A∩B ={x|x∈A且x∈B} 差集
初等数学研究的是常量,高等数学研究的是变量。 高等数学有其固有的特点:高度的抽象性、严密的逻辑 性和广泛的应用性。 抽象性是数学最基本、最显著的特点—有了高度抽象和 统一,我们才能深入地揭示其本质规律,才能使之得到更 广泛的应用。 严密的逻辑性是指在数学理论的归纳和整理中,无论是 概念和表述,还是判断和推理,都要运用逻辑的规则, 遵循思维的规律。
.
5
第四,理清脉络。对所学的知识要有一个整体的把 握,及时总结知识体系,这样不仅可以加深对知识的 理解,还会对进一步的学习有所帮数学发展的里程碑
微积分的建立是人类头脑最伟大的创造之一, 一部微积分发展史,是人类一步一步顽强地认 识客观事物的历史,是人类理性思维的结晶。 它给出的一整套科学方法,开创了科学的新纪 元,并因此加强与加深了数学的作用。 恩格斯说:“在一切理论成就中,未必再有什么像 17世纪下半叶微积分的发现那样被看作人类精神的 最高胜利了。如果在某个地方我们看到人类精 神的纯粹的和惟一的功绩,那就正是在这里。”
_
记为 A或Ac.
n
定 A 义 i A 1 A 2 A n
i 1
n
A iA 1 A 2 A n
i 1
A iA 1 A 2 A n
i 1
A iA 1 A 2 A n
i 1
返回 上页 下页
.
16
集合运算的基本规律:
(1) A∪B =B∪ A , A∩B = B∩A ; (交换律)
(2) (A∪B)∪C= A∪(B∪C),
返回 上页 下页
.
7
返回 上页 下页
.
8
微积分是建立在实数、函数和极限的基础上的。
函数是微积分研究的 对象,所以我们的讨论将从函数开 始。
极限的思想是微积分的基础,学习微积分学,首要的
一步就是要理解到“极限”引入的必要性:
极限思想贯穿整个微积分的始终,极限思想的把握关系 到对微积分思想的确立,微积分理论的掌握和运用,以及 数学思维的建立 。
什么是高等数学?
广义地说,初等数学之外的数学都是高等数学. 通常大学里非数学专业开设的高等数学课程包括微 积分学,概率论与数理统计,线性代数等。 另外,我们这里也把微积分称为高等数学(B).
微积分是近代数学中最伟大的成就,对它的重 要性无论做怎样的估计都不会过分.
返回 上页 下页
.
1
初等数学与高等数学(广义)的区别
一般,用N表示自然数集,用Z表示整数集,用Q表示 有理数集,用R表示实数集.
返回 上页 下页
.
13
子集
设A,B是两个集合,若A的每个元素都是B的元素,
则称A是B的子集,记作A B(或B A ),读作A包含
于B包含(或B包含A ).
若AB,且有元素a∈B ,但a A,则说A是B的真
子集.
规定: A.
返回 上页 下页
.
4
第三,在弄懂例题的基础上做适量的习题。要特别提醒的 是,课本上的例题都是很典型的,有助于理解概念和掌握 定理,要注意不同例题的特点和解法,在理解例题的基础 上做适量的习题。做题时要善于总结 ---- 不仅总结方法,也要总结错误。这样,做完之后才会 有所收获,才能举一反三。
返回 上页 下页
相关文档
最新文档