大学高等数学函数
大学高等数学课件 1.2 函数概念

记作 y f (x) , x D .
因变量 自变量 定义域 , 记为 D( f )
值域 R( f ) {y y f (x), xD( f )}
全体函数值的集合 f 在点 x 处的函数值
注意:在函数的定义中 , 对于 x D( f ) , 对应的函数值
y f (x)是唯一的 ; 但对于 y R( f ) , 其自变量不一定唯
g(
x)
2x2
1,
x 2
的定义域,并作其图形.
解
x 2 或 x 2
2 x 4
4 x 4
x [4, 2) (2, 4];
x 2 x [2, 2];
由于分段函数定义域是各段定义域的并集,
故 g 的定义域为
D(g) [4,2) (2,4] [2,2] [4,4]
y
4 2 O 2 4 x
一.
例如: y x2
x R , R( f ) y y 0.
对于每一个函数值 y R( f ) , 对应的自变量有两个: x y 和 x y.
函数的两个要素:定义域 D( f ) 和对应法则f .
约定:如无特别指出,定义域是自变量所能取的使表达式 有意义的一切实数.
例如: y 1 x2 , D : 1,1 .
实际的含义,此时定义域的确定需根据实际情况来确定 .
比如在圆面积公式S πr2中, r 表示圆半径 , 它必是正数, 故此函数的定义域为(0,) .
若不考虑实际意义,则上述函数的自然定义域 为 (,).
P.8 练习1.2 2(1);4(1);3(1)
2. 分段函数
有些函数在它的定义域的不同部分,其表达式不同,亦即 用多个解析式表示函数,这类函数称为分段函数.
大学高等数学公式大全

大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
大学高数第一章函数和极限

x1
x1
x1
x1
3lim x2 2 lim x 1
x1
x1
312 2 11 2
可见,上例求极限,可以直接用定理 1.1 中的(1).
只须将 x x0 之 x0 代入函数中的 x 处运算即可。
例 求 limx(x 2) x2 x2 1
解:lx im 2 x(xx2 12)
limx(x2) xl i2m (x2 1)
必经过点(0,1)
f(x)log2 x
f (x)log0.5 x
正弦、余弦函数基本性质
解析式: ysinx/cosx
基本特征:定义域为实数集R,值域为[-1,1],最小正
周期T为 2
正切、余切函数基本性质
解析式: ytanx/cotx
基本性质:正切函数定义域为 {x|x2k,,余kZ}
医用高等数学
第1章 函数和极限
1.1 函数 1.1.1函数的概念
定义 1.1 设 X ,Y 是非空数集,对于集合 X 中的任意一个数 x , 在集合 Y 中均有确定值 y 与其对应,则称 y 是 x 的函数,记为:
y f (x) ,其中 x 称为自变量, y 称为因变量,
其中,集合 X 称为定义域,集合 Y 称为值域。
无界的。
如:函数 y sin x ,在 ,内有界,且:| y | 1
1.1.3复合函数
定义 1.2 如变量 y 是变量 u 的函数,变量 u 又是 变量 x 的函数,即: y f (u), u (x) , 且 u (x) 的值域与 y f (u) 的定义域有公共部分, 则称 y 是 x 的复合函数,记作: y f [(x)]
例 讨论函数 f (x) | x | 当 x 0 时的极限. x
高数基本概念

高数基本概念
高等数学是大学数学的一门重要基础课程,主要涉及微积分、线性代数和概率统计等内容。
以下是高等数学中的一些基本概念:
1. 函数:函数是一种特殊关系,它将一个输入值映射到一个唯一的输出值。
函数通常记作f(x),其中x为自变量,f(x)为因变量。
2. 极限:极限是函数在某一点无穷接近于某个值的情况。
如果函数f(x)在x=a处的极限存在,就称函数在x=a处极限为L。
3. 导数:导数描述了函数在某一点的瞬时变化率。
一个函数f(x)在某一点x=a处的导数可以通过极限求得,表示为f'(a)或者dy/dx。
4. 积分:积分是导数的逆运算,用于求函数在某个区间内的累积量。
定积分表示函数f(x)在区间[a, b]上的面积,通常表示为∫f(x)dx。
5. 微分方程:微分方程是涉及未知函数及其导数的方程。
它描述了函数及其导数之间的关系,可以用于描述很多自然和物理现象。
6. 线性代数:线性代数研究向量空间、线性变换、矩阵等。
矩阵是一个二维数组,表示了一系列数的排列。
7. 概率统计:概率统计研究随机事件的概率及其分布的性质。
概率是描述事件发生可能性的数值,统计则是通过对观测数据的收集和分析,推断出总体的特征。
高等数学的基本概念是学习其他数学学科的基础,对于理解数学知识的运算规律和解决实际问题非常重要。
高等数学 第一章 函数

集合的表示法:
列举法 A {1, 2,3, 4,5, 6, 7,8}
描述法 M {x x具有性质P}
常见的数集 N----自然数集 Q----有理数集
Z----整数集 R----实数集
பைடு நூலகம்
它们间关系: N Z, Z Q, Q R.
不含任何元素的集合称为空集. (记作 )
A B=B,A B=A,其中A B A (A B)=A,A (A B)=A
(6) ( A B)c AC BC , ( A B)c Ac Bc
注意
A与B的直积AB {(x,y)xA且yB}
例如:R R= {(x,y)xR,yR} 表示整个坐标平面,记作 R2
2)区间
设实数 a b,开区间 (a,b)={x | a x b},记作 (a,b). 数轴上表示点 a 与点 b 之间的线段,但不包括端点 a 及端 点b. 闭区间[a,b] ={x | a x b},记作[a,b] . 在数轴上表示点 a 与点b 之间的线段,包括两个端点.. 集合{x | a x b}记作 (a,b],称为左开右闭区间. 集合{x | a x b}记作[a,b) ,称为左闭右开区间. 以上区间都称为有限区间,数b a 称为这些区间的长度.
为因变量,实数集 D 称为这个函数 f 的定义域.
对于每个 x D ,按照某种对应法则 f ,总存在唯
一确定的实数值 y 与之对应,这个实数值 y 称为函数
f 在 x 处的函数值,记作 f (x) ,即 y f (x) .当 x 遍取
实数集 D 的每个数值,对应的函数值的全体组成的数
集W {y | y f (x), x D}称为函数 f 的值域.
二、复合函数
大学高等数学第一章函数习题精讲

大学高等数学第一章函数习题精讲数学作为一门基础学科,在大学的学习中扮演着重要的角色。
其中,高等数学作为数学学科中的重要组成部分,对于提高学生的数学素养和培养逻辑思维能力具有至关重要的作用。
大学高等数学第一章函数是学习高等数学的第一步,是打好数学基础的关键。
本文将对大学高等数学第一章函数习题进行精讲,帮助学生更好地理解和掌握相关知识。
第一节求函数的定义域和值域在函数的相关概念中,定义域和值域是非常重要的内容。
定义域指的是函数在哪些实数上有定义,而值域则是函数所能取到的所有值的集合。
在求函数的定义域和值域时,需要根据函数的具体特点来进行分析。
例题1:对于函数f(x) = √(x + 1),求函数的定义域和值域。
解析:首先,要使函数有意义,要求x + 1 ≥ 0,即x ≥ -1。
所以函数的定义域为 [-1, +∞)。
然后,考虑函数的值域,由于x + 1 ≥ 0,所以函数的平方根√(x + 1) ≥ 0,即函数的值域为[0, +∞)。
例题2:对于函数 g(x) = 1 / (x - 3),求函数的定义域和值域。
解析:首先,要使函数有意义,要求 x - 3 ≠ 0,即x ≠ 3。
所以函数的定义域为 (-∞, 3) ∪ (3, +∞)。
然后,考虑函数的值域,由于 x - 3 ≠ 0,因此函数 g(x) 可以取到任意实数值,所以函数的值域为 (-∞, +∞)。
第二节求函数的奇偶性在函数的研究中,了解函数的奇偶性是十分重要的。
奇函数是指满足 f(-x) = -f(x) 的函数,而偶函数是指满足 f(-x) = f(x) 的函数。
通过判断函数的奇偶性,可以简化计算和图像的分析。
例题3:判断函数 f(x) = x^3 是否为奇函数。
解析:对于任意实数 x,有 f(-x) = (-x)^3 = -x^3。
而 f(x) = x^3。
由于 f(-x) = -f(x),所以函数 f(x) = x^3 是一个奇函数。
例题4:判断函数 g(x) = x^2 + 3 是否为偶函数。
高等数学 函数课件

性质
幂级数具有收敛半径、收敛区间和收敛域等性质, 这些性质决定了幂级数的展开式和函数关系。
分类
根据项的幂次性质,幂级数可以分为多项式 级数、幂函数级数和三角函数级数等类型。
幂级数的应用
函数展开
幂级数可以用于函数的展开,将复杂的函数表示为简单的 幂级数形式,便于分析函数的性质和计算。
01
无穷小分析
幂级数在无穷小分析中具有重要应用, 通过幂级数可以研究函数的极限和连续 性等性质。
在至少一个d∈(a, b),使得f(d)=c。
函数的间断点
第一类间断点
函数在该点的左右极限都存在,但至少有一 个极限不等于该点的函数值。
第二类间断点
函数在该点的左右极限至少有一个不存在。
可去间断点
函数在该点的极限存在,但等于该点的函数 值,该点可以视为连续的。
跳跃间断点
函数在该点的左右极限都存在,但不相等, 该点是间断的。
导数的四则运算
通过导数的四则运算,我们可以求出一些复合函数的 导数。
隐函数的导数
对于一些由方程定义的函数,我们可以通过对方程两 边求导来求得函数的导数。
微分的概念与计算
01
微分的定义
微分是函数在某一点处的线性逼 近,它描述了函数在该点附近的 小变化。
02
03
微分的几何意义
微分的计算
微分的几何意义是切线的斜率, 即函数图像在该点处的切线的斜 率。
连续性的性质
01
零点定理
如果函数在区间[a, b]上连续,且f(a)和f(b)异号,则存在至少一个
c∈(a, b),使得f(c)=0。
02
中值定理
如果函数在区间[a, b]上连续,且a≠b,则存在至少一个c∈(a, b),使
大学高等数学知识点 (3)

(1) an
f
(n)
lim
x
f
(x)
(2)双边夹: * bn an cn ? , * bn , cn a ?
(3)单边挤: an1 f (an ) * a2 a1 ? * an M ? * f '(x) 0 ?
2.
Vf 导数定义(洛必达?): lim
Vx0 Vx
u(x)v(x)
ev( x)ln u( x)
(如:
1
e x1
1
ex
1
1 1
e x (e x1 x
1)
)
(3)含变限积分; (4)不能用与不便用 7. 泰勒公式(皮亚诺余项): 处理和式中的无穷小
8. 极限函数: f (x) lim F (x, n) ( 分段函数) n
六. 非常手段 1. 收敛准则:
nn 1,
1
1
a n (a 0) 1 , (an bn cn )n max(a, b, c) ,
an a 0 0
n!
1 / 23
1 (x 0) , x
lim xx 1 ,
x0
lim
x
xn ex
0,
lnn x lim x x
0,
n1
an
收敛
lim
n
an
0,
(如 lim n
2n n! nn )(2) lnim(a1
a2
L
an ) an ,
n1
(3){an}与 (an an1) 同敛散 n1
七.常见应用:
1. 无穷小比较(等价,阶): * f (x) : kxn , (x 0) ?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二.函数的基本特性
1、函数的奇偶性
设D关于原点对称,若对于 x D, 且
f (x) f (x)
则称 f (x)为偶函数 ;
y y f (x)
f (x)
f (x)于原点对称, 若对于x D, 有
f (x) f (x)
则称 f ( x)为奇函数.
-x f (x)
实数与数轴上的点之间具有一一对应的关系。
3、区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a,b R,且a b. ◆开区间: {x a x b} 记作 (a,b)
oa
b
x
◆闭区间: {x a x b} 记作[a,b]
oa
b
x
◆半开区间:
{x a x b} 记作 [a,b)
课程特点与学习方法
特点:1. 课堂大 2. 时间长 3. 进度快
方法: 1. 课前预习 2.重点听讲 3. 简记笔记 4. 整理咀嚼 5. 后作练习 6. 答疑
第一章 函 数
函数的概念及基本特性 预备知识
1、数的扩张:
自负然整数数整 分
数有 数
理
数实数复
数
无 理数
虚 数
2、数的几何表示:数轴
ln
1
ln(x 1 x2 )
x 1 x2
= -f (x)
∴f (x)是奇函数.
2、函数的周期性
设函数f (x)的定义域为 D,如果存在一个不为零 的 数 T,使得对于 x D, (x T ) D且 f (x T ) f (x)恒 成立. 则称f (x)为周期函数,T 称为f (x)的周期.
y
y f (x)
f (x)
o
xx
奇函数
例 判断下列函数的奇偶性:
f (x) ln(x 1 x2 );
解:(1) ∵函数的定义域为(-∞, +∞), 且
f ( x) ln[ x 1 ( x)2 ] ln( x 1 x2 )
( x 1 x2 )(x 1 x2 ) ln
x 1 x2
2.实际应用 时间,高度,热度等等
几个特殊的函数举例
(1)绝对值函数
y
x
x x
x0 x0
其定义域为D( f )=(-∞,+∞), 值域为Z( f )=[0, +∞).
y
y x
o
x
(2) 符号函数
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
y
1
o
x
-1
其定义域为D( f )=(-∞,+∞), 值域为Z( f )={-1, 0, 1}. 可以证明:对于任何实数 x, 下列关系成立:
( x0 , x0 )称为 x0 的右邻域。
函数概念
若x与y是两个变量,D是一个非空的实数集合。设有一个 对应规则 f,使每一个 x D,都有一个确定的实数 y与之对 应,则称这个对应法则 f 为定义在 D上的一个函数关系, 或称y是x的函数,记作
y f (x)
因变量
自变量
定义域:数集D叫做这个函数的定义域, 记作 D( f )
(通常说周期函数的周期是指其最小正周期或基本周期).
3l
l
2
2
l 2
3l 2
说明: (1)周期函数的图形在每一个周期长度的区间上 有相同的形状; (2)并非每个周期函数都有基本周期.
例如,函数 f(x) = C是周期函数,但它没有基本周期;
例:设函数 f (x) 是周期为T 的周期函数,试求函 数 f (ax+b) 的周期,其中a,b为常数,且 a > 0.
值 域:函数值全体组成的数集, 即 {y | y f (x), x D( f )},记作Z或者Z( f ).
(1)、函数的定义域
1.数学角度:定义域是自变量所能取的使算式 有意义的一切实数值, 这种定义域称为函 数的自然定义域.
大体分为以下几种: a)偶次方根号 b)分式的分母 c)对数的真数 d)三角函数(正切余切)和反三角函数, e)以上情况的复合等
值域为Z( f )=Z.
阶梯曲线
可以证明:对于任何实数x, 有不等式 [x] ≤x < [x] + 1.
(4)分段函数:在自变量的不同变化范围中,对 应法则用不同的式子来表示的函数,称为分段函 数. 注意:
(1) 分段函数的定义域是其各段定义域的并集;
(2) 分段函数在其整个定义域上是一个函数, 而不 是几个函数.
x sgn x x
(3) 取整函数
设 x 为任一实数, 不超过x 的最大整数称为 x 的整数部分, 记作 [x]. 即
y 14
3
y = [x] = n, n ≤ x < n + 1, n = 0, ±1,± 2, … 其定义域为D( f )=(-∞,+∞),
2
-4 -3 -2 -1 o-11 2 3 4 5 x -2 -3 -4
记作 U( x0 , ) { x || x x0 | } { x x0 x x0 }.
x0
x0
x0
x
去心邻域:
0
点x0的去心的 邻域, 记作U (x0 , ).
0
U (x0, ) {x 0 x x0 } (x0 , x0 ) (x0 , x0 ).
其中( x0 , x0 )称为 x0 的左邻域,
高等数学Ⅲ
微积分
自我介绍
姓 名:张智勇 地 点:四教西305室 E-mail : zzy@
课程介绍
课程名称:微积分 学 分:4 学分 学 时:64 学时(1周-16周) 课程内容:1. 函数、极限与连续
2. 导数与微分 3. 中值定理与导数应用 4. 不定积分 5. 定积分及其应用
3、函数的单调性
单调 性 :设函数 f (x)的定义域为 D, 区间I D, 如果对于x1, x2 I ,当x1 x2时, 恒有
考核及要求
1. 期末总评成绩的计算
期末考试成绩占70%,平时成绩占30%。
平时成绩:期中测验成绩,作业成绩,考勤。
2. 考勤
不许旷课、迟到、早退,自觉维护课堂纪律。
3. 作业
要求认真完成作业,按时交作业。严禁抄作业。字迹
潦草、表达混乱、乱划乱改的作业返回重做,甚至取
消该次成绩。
4. 答疑
时间:
地点:四教西305
oa
b
x
{x a x b} 记作 (a,b]
oa
b
x
◆区间长度
两端点间的距离(线段的长度)称为区间的长度. 区间的划分:1.有限区间 2.无限区间
{x x b} 记作(,b)
ob
x
4、邻域 设x0与是两个实数 , 且 0. 数集{ x x x0 }称为点x0的 邻域 , 点x0叫做这邻域的中心, 叫做这邻域的半径 .