大一高等数学函数
大一高等数学教材讲解

大一高等数学教材讲解第一章函数与数集函数是数学中一个重要的概念,在大一的高等数学课程中也是一个基础而关键的内容。
本章将介绍函数的基本概念、性质和图像,以及数集和映射的相关知识。
1.1 函数的定义与性质函数的概念是数学中最基础的,它描述了一个变量与另一个变量之间的关系。
函数的定义包括定义域、值域、对应关系等要素。
函数可以表示为f(x),其中x为自变量,f(x)为函数的值。
函数的性质主要包括奇偶性、单调性、周期性等。
1.2 基本初等函数的图像与性质基本初等函数是大一课程中经常涉及的函数类型,包括常数函数、幂函数、指数函数、对数函数、三角函数等。
本节将介绍这些函数的图像特征和基本性质,帮助学生更好地理解和应用这些函数。
1.3 数集与映射数集是集合论中的一个重要概念,表示一组具有某种特性的数的集合。
常见的数集有整数集、有理数集、实数集、复数集等。
映射是函数的一种特殊形式,它描述了两个数集之间的对应关系。
本节将介绍数集的基本运算和性质,以及映射的定义和分类。
第二章极限与连续极限和连续是微积分的两个重要概念,它们是理解和应用微积分的基础。
本章将介绍极限的定义、性质和计算方法,以及连续函数的定义和判定方法。
2.1 数列的极限数列是由一列数按一定顺序排列而成的集合。
极限是研究数列变化趋势的一个概念,它描述了数列中数值无限逼近某个确定值的特性。
本节将介绍数列极限的定义和性质,以及常见数列的极限求解方法。
2.2 函数的极限函数的极限是研究函数在某一点附近的变化趋势的一个概念。
函数的极限与数列的极限有一定的联系,但又有一些不同之处。
本节将介绍函数极限的定义和性质,以及常见函数极限的计算方法。
2.3 连续与间断连续是函数的一个重要性质,它刻画了函数图像在一段区间上的连续性。
连续函数在该区间上具有无间断点的特性。
本节将介绍连续函数的定义和性质,以及间断点的分类和判定方法。
第三章导数与微分导数和微分是微积分的核心概念,它们是描述函数变化率的重要工具。
大一高等数学第三章第四节函数单调性的判定法全文

s(t)
5t 7.5 .
(0.5 t)2 (4 2t)2
令s(t) 0,
得唯一驻点 t 1.5. 故得我军从B处发起追击后 1.5 分钟射击最好.
实际问题求最值应注意:
(1)建立目标函数;
(2)求最值; 若目标函数只有唯一驻点,则该点的 函数值即为所求的最(或最小)值.
例10某房地产公司有50套公寓要出租,当租金定 为每月180元时,公寓会全部租出去.当租 金每月增加10元时,就有一套公寓租不出去, 而租出去的房子每月需花费20元的整修维护 费.试问房租定为多少可获得最大收入?
但函数的驻点却不一定是极值点.
例如, y x3, y x0 0, 但x 0不是极值点.
定理2(第一充分条件)
(1)如果 x ( x0 , x0 ),有 f '( x) 0;而 x ( x0 , x0 ),
有 f '( x) 0,则 f ( x)在x0 处取得极大值.
(2)如果 x ( x0 , x0 ),有 f '( x) 0;而 x ( x0 , x0 )
有 f '( x) 0,则 f ( x)在x0 处取得极小值.
(3)如果当 x ( x0 , x0 )及 x ( x0 , x0 )时, f '( x)
符号相同,则 f ( x) 在x0 处无极值.
y
y
o
x0
xo
x0
x (是极值点情形)
y
y
o
x0
xo
求极值的步骤:
x0
x
(不是极值点情形)
y
y
y
oa
bx o a
bx o a
bx
步骤:
1.求驻点和不可导点;
大一高数函数详细知识点

大一高数函数详细知识点函数是数学中的重要概念,是现实世界中各种关系的抽象表达。
在大一的高数课程中,函数是一个核心内容,掌握了函数的基本概念和性质,对于后续学习以及应用数学都具有重要的意义。
本文将详细介绍大一高数中函数的知识点,以帮助读者更好地理解和掌握这一内容。
一、函数的定义和性质1. 定义:函数是一个将自变量和因变量之间的对应关系表示出来的规则。
通常用符号y=f(x)表示,其中x是自变量,y是因变量,f表示函数的关系。
2. 定义域和值域:函数的定义域是自变量所有可能取值组成的集合,值域是因变量的所有可能取值组成的集合。
3. 一一对应:如果函数中的每一个x值对应唯一的y值,且每一个y值也对应唯一的x值,则称这个函数是一一对应的。
4. 奇偶性:如果函数满足f(-x)=-f(x)(对于定义域内的所有x),则称这个函数是奇函数;如果函数满足f(-x)=f(x)(对于定义域内的所有x),则称这个函数是偶函数。
5. 函数的增减性:如果对于定义域内的任意两个实数x1和x2,当x1<x2时有f(x1)<f(x2),则称函数是增函数;如果对于定义域内的任意两个实数x1和x2,当x1<x2时有f(x1)>f(x2),则称函数是减函数。
二、常见的基本函数类型1. 线性函数:线性函数的表达式为y=kx+b,其中k和b为常数。
线性函数的图像为一条直线,斜率k决定了直线的倾斜程度,常数b决定了直线与y轴的交点。
2. 幂函数:幂函数的表达式为y=x^a,其中a为常数。
幂函数的图像关于y轴对称,当a为正数时,函数是递增的;当a为负数时,函数是递减的。
3. 指数函数:指数函数的表达式为y=a^x,其中a为常数且大于0且不等于1。
指数函数的图像为一条曲线,当a大于1时,函数是递增的;当0<a<1时,函数是递减的。
4. 对数函数:对数函数的表达式为y=logₐx,其中a为常数且大于0且不等于1。
大一高数全部知识点汇总

大一高数全部知识点汇总高等数学作为大一学生必修的一门课程,是建立在中学数学基础之上的一门学科,主要涉及微积分、数列、级数、概率论等内容。
下面是大一高数的全部知识点汇总。
1. 函数与极限1.1 函数函数的概念、性质及表示法常见函数及其性质(线性函数、幂函数、指数函数、对数函数、三角函数等)复合函数与反函数1.2 极限数列收敛的概念与性质函数极限的定义与性质极限的四则运算法则与基本极限公式无穷小量与无穷大量常见极限计算方法2. 导数与微分2.1 导数导数的定义与性质常见函数的导数(幂函数、指数函数、对数函数、三角函数等)导数的四则运算法则及高阶导数2.2 微分微分的定义与性质微分中值定理函数的单调性与极值曲线的凹凸性与拐点导数在几何应用中的意义(切线、法线、极值、拐点等)3. 积分与不定积分3.1 积分定积分的定义与性质牛顿-莱布尼茨公式与积分区间可加性常见函数的积分(幂函数、指数函数、对数函数、三角函数等)定积分的计算方法(换元法、分部积分法、分段函数等)3.2 不定积分不定积分的定义与性质常见函数的不定积分基本初等函数与初等函数的积分表达式4. 微分方程4.1 微分方程的基本概念微分方程的定义、分类及基本术语4.2 一阶常微分方程可分离变量的一阶方程一阶线性方程齐次方程与非齐次方程4.3 二阶常系数齐次线性微分方程特征根与特征方程解的结构与通解形式已知边值问题与未知边值问题4.4 变量分离的方程4.5 有关高阶微分方程的基本概念5. 数列与级数5.1 数列的定义与常见性质等差数列与等比数列数列的极限与单调性5.2 级数的定义与常见性质等比级数与调和级数级数的收敛与发散判定绝对收敛与条件收敛级数收敛的收敛准则6. 概率统计6.1 随机事件与概率概率的定义与性质事件关系与运算条件概率与独立性6.2 随机变量与概率分布随机变量的概念与性质离散型随机变量与连续型随机变量常见概率分布(均匀分布、二项分布、正态分布等)6.3 统计与抽样总体与样本的概念随机抽样与抽样分布参数估计与假设检验以上就是大一高数的全部知识点汇总,希望对你的学习有所帮助!。
高数大一最全知识点

高数大一最全知识点高等数学作为大一学生的必修课程,是一门基础而又重要的学科。
掌握好高数知识点,不仅对后续的学习有着重要的影响,也对提高数理思维和解决实际问题具有重要的帮助。
下面将为大家整理总结大一高数中最全的知识点。
第一章:函数与极限1. 函数的概念和性质函数定义、定义域和值域、函数的图像和性质等。
2. 极限的概念和性质数列极限、函数极限、几何意义以及重要的极限性质。
3. 连续与间断连续函数的概念、连续函数的性质、间断点和间断函数等。
第二章:导数与微分1. 导数的概念和计算导数的定义、导数的计算方法、各种函数导数的计算公式等。
2. 高阶导数与导数的应用高阶导数的定义、高阶导数的计算、导数在几何和物理问题中的应用等。
3. 微分学基本定理微分中值定理、极值与最值、凹凸性等重要的微分学定理。
第三章:积分与不定积分1. 定积分和不定积分的概念和性质定积分的定义、定积分的计算、不定积分的定义和基本积分表等。
2. 定积分的应用定积分的几何应用、定积分的物理应用、定积分的概率统计应用等。
3. 反常积分反常积分的概念和性质、反常积分判敛方法、特殊函数的反常积分等。
第四章:常微分方程1. 常微分方程的基本概念常微分方程的定义、初值问题、解的存在唯一性定理等。
2. 一阶常微分方程解法可分离变量方程、齐次方程、一阶线性方程、伯努利方程等解法。
3. 高阶线性微分方程高阶线性齐次和非齐次微分方程的解法、常系数线性微分方程等。
第五章:多元函数与偏导数1. 多元函数的概念和性质多元函数的定义、定义域、值域、图像等基本概念。
2. 偏导数与全微分偏导数的定义和计算、全微分的定义以及全微分近似等。
3. 隐函数与参数方程隐函数的存在定理、隐函数的求导、参数方程的定义和性质等。
第六章:多元函数的积分学1. 二重积分的概念和性质二重积分的定义、二重积分的计算、二重积分的性质等。
2. 三重积分和曲线、曲面积分三重积分的定义、三重积分的计算、曲线积分、曲面积分的概念与计算等。
大学高数第一章函数和极限

x1
x1
x1
x1
3lim x2 2 lim x 1
x1
x1
312 2 11 2
可见,上例求极限,可以直接用定理 1.1 中的(1).
只须将 x x0 之 x0 代入函数中的 x 处运算即可。
例 求 limx(x 2) x2 x2 1
解:lx im 2 x(xx2 12)
limx(x2) xl i2m (x2 1)
必经过点(0,1)
f(x)log2 x
f (x)log0.5 x
正弦、余弦函数基本性质
解析式: ysinx/cosx
基本特征:定义域为实数集R,值域为[-1,1],最小正
周期T为 2
正切、余切函数基本性质
解析式: ytanx/cotx
基本性质:正切函数定义域为 {x|x2k,,余kZ}
医用高等数学
第1章 函数和极限
1.1 函数 1.1.1函数的概念
定义 1.1 设 X ,Y 是非空数集,对于集合 X 中的任意一个数 x , 在集合 Y 中均有确定值 y 与其对应,则称 y 是 x 的函数,记为:
y f (x) ,其中 x 称为自变量, y 称为因变量,
其中,集合 X 称为定义域,集合 Y 称为值域。
无界的。
如:函数 y sin x ,在 ,内有界,且:| y | 1
1.1.3复合函数
定义 1.2 如变量 y 是变量 u 的函数,变量 u 又是 变量 x 的函数,即: y f (u), u (x) , 且 u (x) 的值域与 y f (u) 的定义域有公共部分, 则称 y 是 x 的复合函数,记作: y f [(x)]
例 讨论函数 f (x) | x | 当 x 0 时的极限. x
大一高等数学教材第一章

大一高等数学教材第一章高等数学是大一学生必修的数学课程,其内容涵盖了微积分、数学分析、线性代数等多个领域。
本篇文章将着重介绍大一高等数学教材的第一章内容,主要包括函数及其基本性质、极限及其运算法则以及导数和微分。
一、函数及其基本性质函数是一种数学工具,用于描述变量之间的依赖关系。
在高等数学中,函数被用来研究数学模型,解决实际问题。
函数的基本性质包括定义域、值域、奇偶性、单调性、周期性等。
其中,定义域是指函数的输入集合,值域是指函数的输出集合。
奇偶性是指函数关于原点的对称性质,单调性是指函数在定义域内的增减性质,周期性是指函数具有重复性质。
二、极限及其运算法则极限是一种数学概念,用于描述函数在某一点附近的变化趋势。
在大一高等数学中,极限的计算是重要的基础知识。
极限的运算法则包括四则运算法则、复合函数的极限法则、三角函数的极限法则等。
四则运算法则指的是对于加减乘除四种基本运算,函数极限的性质。
复合函数的极限法则用于求解复合函数在某一点的极限,三角函数的极限法则用于求解三角函数在特定角度下的极限。
三、导数和微分导数是函数在某一点的变化率,用于描述函数在给定点的瞬时变化情况。
微分是导数的一种特殊形式,可以看作是函数在给定点的线性近似。
导数和微分在大一高等数学中占据重要地位,广泛应用于物理、经济、工程等实际问题的求解。
导数的计算包括基本导数公式、求导法则和高阶导数。
微分的计算包括微分法则和微分方程等内容。
总结:大一高等数学教材的第一章主要介绍了函数及其基本性质、极限及其运算法则以及导数和微分。
函数是数学中重要的工具,用于研究数学模型和解决实际问题。
极限的计算是数学分析的基础,对于化学、物理等学科也有重要应用。
导数和微分是函数变化率的描述方法,可以应用于求解实际问题。
通过学习第一章内容,学生将建立起基本的数学思维模式和分析问题的能力,为后续学习铺垫了坚实的基础。
以上就是大一高等数学教材第一章的主要内容介绍。
大一高数知识点笔记

大一高数知识点笔记高等数学是大学理工科专业的重要基础课程,对于大一新生来说,掌握好这门课程的知识点至关重要。
以下是我整理的大一高数的一些重要知识点,希望能对大家的学习有所帮助。
一、函数与极限1、函数的概念函数是一种从一个集合(定义域)到另一个集合(值域)的对应关系。
简单来说,对于定义域内的每一个输入值,都有唯一的输出值与之对应。
函数的表示方法有解析式法、图像法和列表法。
2、函数的性质(1)奇偶性:若对于定义域内的任意 x ,都有 f(x) = f(x) ,则函数为偶函数;若 f(x) = f(x) ,则函数为奇函数。
(2)单调性:若对于定义域内的任意 x₁< x₂,都有 f(x₁) <f(x₂) ,则函数在该区间上单调递增;若 f(x₁) > f(x₂) ,则函数在该区间上单调递减。
3、极限的概念极限是指当自变量趋近于某个值或无穷大时,函数值趋近于的一个确定的值。
4、极限的计算(1)直接代入法:若函数在极限点处连续,则可直接将极限点代入函数计算。
(2)有理化法:对于含有根式的分式,可通过有理化来消除根式,从而计算极限。
(3)等价无穷小替换:当x → 0 时,sin x ~ x ,tan x ~ x ,e^x1 ~ x 等,利用等价无穷小可以简化极限的计算。
5、两个重要极限(1)lim(x→0) (sin x / x) = 1(2)lim(x→∞)(1 + 1/x)^x = e二、导数与微分1、导数的定义函数在某一点的导数是函数在该点的瞬时变化率,即 f'(x₀) =lim(Δx→0) f(x₀+Δx) f(x₀) /Δx2、导数的几何意义函数在某一点的导数就是该点处切线的斜率。
3、基本初等函数的导数公式(1)(C)'= 0 (C 为常数)(2)(x^n)'= nx^(n 1)(3)(sin x)'= cos x(4)(cos x)'= sin x(5)(e^x)'= e^x(6)(ln x)'= 1 / x4、导数的四则运算(1)(u ± v)'= u' ± v'(2)(uv)'= u'v + uv'(3)(u / v)'=(u'v uv')/ v²(v ≠ 0)5、复合函数的求导法则设 y = f(u) ,u = g(x) ,则复合函数 y = fg(x) 的导数为 y' = f'(u) g'(x)6、微分的定义函数的微分是函数增量的线性主部,即 dy = f'(x)dx三、中值定理与导数的应用1、罗尔定理如果函数 f(x) 满足:(1)在闭区间 a, b 上连续;(2)在开区间(a, b) 内可导;(3)f(a) = f(b) ,那么在区间(a, b) 内至少存在一点ξ ,使得 f'(ξ) = 0 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无限区间
(,) {x| x}R, (,b]{x| xb}. (,b) {x| xb}. [a,) {x| ax}. (a,) {x| ax}. 记号""与""分别表"示 负无穷"大 与"正无穷"大 .
返回 上页 下页
设x0是一个给定的 ,是实某数一正 ,称数 数:集
{x| x0 xx0 }
返回 上页 下页
二.区间与邻域
设a和b都是实数,将满足不等式a<x<b的所有实数组 成的数集称为开区间,记作(a,b)即
(a,b) ={x|a<x<b}, a和b称为开区间(a,b)的端点,这里a (a,b)且b (a,b). 数集 [a,b]={x|a≤x≤b}为闭区间,a和b也称为闭区间[a,b] 的端点 , a∈[a,b]且b∈[a,b]. 数集[a,b)={x|a≤x<b}和(a,b]={x|a<x≤b}为半开半闭间. 以上这些区间都称为有限区间,数b-a称为区间长度.
对于函 yf数 (x),xD,其反函数x表 f1(示 y),为 yf(D)由 . 于习惯上x表 常示 用自 字变 y母 表量 示, 因变量,故 yf约 ( 1 x)定 ,x用 f(D)表示 f的反.函数
由于 y f(x)和x f( -1 y)表示 x与y之间的相互对应 关系,故在同一内坐它标们系是同一图若形将,但 x f 1(y)的变x量 和y对换y成 f 1(x),则在同一坐标系 内y f(x)的图形y与 f 1(x)图形关于y直 x线 对称 .
第四,理清脉络。对所学的知识要有一个整体的把 握,及时总结知识体系,这样不仅可以加深对知识的 理解,还会对进一步的学习有所帮助。
返回 上页 下页
微积分是近代数学发展的里程碑
微积分的建立是人类头脑最伟大的创造之一, 一部微积分发展史,是人类一步一步顽强地认 识客观事物的历史,是人类理性思维的结晶。 它给出的一整套科学方法,开创了科学的新纪 元,并因此加强与加深了数学的作用。 恩格斯说:“在一切理论成就中,未必再有什么像 17世纪下半叶微积分的发现那样被看作人类精神的 最高胜利了。如果在某个地方我们看到人类精 神的纯粹的和惟一的功绩,那就正是在这里。”
i 1
n A iA 1 A 2 A n
i 1
A iA 1 A 2 A n
i 1
A iA 1 A 2 A n
i 1
返回 上页 下页
集合运算的基本规律:
(1) A∪B =B∪ A , A∩B = B∩A ; (交换律)
(2) (A∪B)∪C= A∪(B∪C),
(A∩B)∩C= A∩(B∩C);
为点 x0的邻域 ,记作 U(x0,),称点 x0为这邻域
的中,心 为这邻域的半径。
0
(
)
x0
x0
x0
x
0
称 U(x0,){x0}为 x0的去 邻 心 ,记 域U 作 (x0,)即 ,
0
U(x0,){x|0|xx0|} 0
当不需要指出径 邻时 ,域 用U的 (x0)半 ,U(x0)
返回分上别 页 下表 页x0的 示某邻x域 0的和 某去心 . 邻域
返回 上页 下页
第三,在弄懂例题的基础上做适量的习题。要特别提醒 的是,课本上的例题都是很典型的,有助于理解概念和掌 握定理,要注意不同例题的特点和解法,在理解例题的基 础上做适量的习题。做题时要善于总结 ---- 不仅总结方法,也要总结错误。这样,做完之后才会 有所收获,才能举一反三。
返回 上页 下页
于是,有
x
1 y,2 , 0 y 1
y 1,1 y 5
.
交换x,y的位置,得反函数
y
1 x2 ,0 x 1
x 1,1 定义: 设函数 y f (u)的定义域 D f , 而函数 u ( x) 的值域为 Z , 若 Df Z , 则称函
大一高等数学函数
初等数学与高等数学(广义)的区别
初等数学研究的是常量,高等数学研究的是变量。 高等数学有其固有的特点:高度的抽象性、严密的逻辑 性和广泛的应用性。 抽象性是数学最基本、最显著的特点—有了高度抽象和 统一,我们才能深入地揭示其本质规律,才能使之得到更 广泛的应用。 严密的逻辑性是指在数学理论的归纳和整理中,无论是 概念和表述,还是判断和推理,都要运用逻辑的规则, 遵循思维的规律。
所 以yf1(u) 1 , 1u
因 此f1(x1) 1 1,x0 1(x1) x
返回 上页 下页
1 x2 ,1 x<0
例2
求下列函数的反函 数 f(x)=
x2 1,0 x 2
解 当1≤x<0时,由y= 1 x 2 得 x = 1 y 2,0≤y<1.
当 0x2时,由y=x2+1得x= y 1 ,1y5
返回 上页 下页
要想学好高等数学,至少要做到以下四点:
首先,理解概念。数学中有很多概念。概念反映的 是事物的本质,弄清楚了它是如何定义的、有什么性 质,才能真正地理解一个概念。
其次,掌握定理。定理是一个正确的命题,分为条 件和结论两部分。对于定理除了要掌握它的条件和结 论以外,还要搞清它的适用范围,做到有的放矢。
返回 上页 下页
反函数 yf1x
y
Q(b,a)
直接函 yf数 (x)
P(a,b)
o
x
返回 上页 下页
例1 设函数 f(x1) x (x1) ,求f -1(x+1).
x1
解 令 u=x+l 则 f (u ) u 1 ,u 0, u
即 y u 1 ,u 0, u
从而 u(y-1)-1,u 1 . 1-y
{y y B, y f (x), x A}
称为映射f的值域,记作Rf (或f (A)).
返回 上页 下页
对 A 到 B 于 的f,映 若 f(A ) 射 B ,则 f为 A 称 到 B 的满射
若 x 1 ,x 2 A ( x 1 x 2 ) 都 f(x 1 )有 f(x 2 )则 , f为 A 到 称 B 的单射 若 f既是满射又是 称 f单 为射 双, 射则 ,双射 映也 射 . 叫一一 例 1设 A ( { x ,y ) y x 2 ,x R } ,B { 0 ,y ) ( y R ,且 y 0 }
返回 上页 下页
五. 函数 定义设D为非空实 ,数 则 D到 集 R的一个映射
f :DR 称为定D义 上在 的函 数集数D叫,做这个函数的定义域 当 x 0 D 时 ,称 f(x 0)为函 x 0 处 数的 在 . 函 点 函数值全体组成的数集
W{yyf(x),xD}称为函数的 . 值域
为演算方便起函 见数 ,记 y常 为 f将 (x),xD. 称x为自变量 y为,因变. 量
将平面上y抛 x2物 上线 的每一点 y轴 投上 影就 到建立了 A到B的一个.这 映个 射映射是满 是射 单., 射但不
返回 上页 下页
四 逆映射
定义 设f:x|y是A到B的一个双射,称映射 g: y|x(f (x)y)
为f 的逆映射,f 记 1. 为 这D 时 f 1Rf,Rf 1D f.
例2设f :x|yx2是A{x|x0,xR}到 B{y| y0,yR}的一个双f的 射逆 ,映 则f射 1:y|为 x y
返回 上页 下页
返回 上页 下页
微积分是建立在实数、函数和极限的基础上的。
函数是微积分研究的 对象,所以我们的讨论将从函数开 始。
极限的思想是微积分的基础,学习微积分学,首要的
一步就是要理解到“极限”引入的必要性: 极限思想贯穿整个微积分的始终,极限思想的把握关系
到对微积分思想的确立,微积分理论的掌握和运用,以及 数学思维的建立 。
若AB ,且B A,则称A与B相等,记作A=B.
返回 上页 下页
并集
由属于A或属于B的所有元素组成的集合 A B 称为A与B的并集记作A∪ B ,即
交集 A∪B ={x|x∈A或x∈B}
由同时属于A与B的元素组成的集称为A与B的交集,记
作A∩B ,即A∩B ={x|x∈A且x∈B} 差集
AB
由属于A但不属于B的元素组成的集称 为A与B的差集,记作A–B 或A\ B 即
返回 上页 下页
第一节 函数的概念及其基本性质 第二节 初等函数 第三节 经济学中常见的函数
第一节 函数的概念及其基本性质
一.集合及其运算
集合:具有某种确定性质的对象的全体,简称集。 集合的元素:组成集合的各个对象。
用大写的英文字母A、B、C……表示集合,用小写的 英文字母a、b、c……表示集合的元素。
若a属于集合A的元素,则称a属于A,记作 aA ;否则 称a不属于A ,记作 aA(或aA )。
含有限元素的集合称为有限集,不含任何元素的集合称 为空集;用表示空集。 不是有限集也不是空集的集合 称为无限集。
返回 上页 下页
表示集合的方法: (1)列举法 将集合的元素一一列举出来,写在一个花括号内; (2)描述法 在花括号内指明集合元素所具有的性质。
A B {x |x A 但 x B }
AB
返回 上页 下页
全集 :又所研究的全 成部 的事 集物 合构 称 . 为
积为 I或U. 若研究某一问题 考时 虑将 对所 象的全体 集看 ,作全
记为 I,则对于任意 A集I,I合 A(即I \ A)称为 A的补集,
_
记为 A或Ac.
n
定A 义 i A 1 A 2 A n
一般,用N表示自然数集,用Z表示整数集,用Q表示 有理数集,用R表示实数集.
返回 上页 下页
子集
设A,B是两个集合,若A的每个元素都是B的元素,
则称A是B的子集,记作A B(或B A ),读作A包
含于B包含(或B包含A ).