人教版八年级数学下册第十六章_二次根式全章复习ppt课件
合集下载
人教版八年级数学下册《二次根式的乘除》二次根式PPT精品课件

6
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
观察两者有什么关系?
4×9
36 6 ;
=_________
400 20 ;
16 × 25 =_________
900 30 .
25 × 36 = _________
知识讲解
观察三组式子的结果,我们得到下面三个等式:
(1)
4
(2)
16
(3)
25
9 = 4 9;
25= 16 25;
16a 4a 2 a 2 .
4
4
知识讲解
2. 若长为 24 ,宽为 8 ,求出它的面积.
解:它的面积为 24 × 8 = 24 × 8 =
82 × 3 = 8 3.
随堂训练
−6 = ⋅ −6
1.若
,则 ( A )
A.x≥6
B.x≥0
C.0≤x≤6
D.x为一切实数
( D )
6 2
(2) 6 × 12 = _______;
2 6
(3) 3 × 2 2 = _____.
4. 比较下列两组数的大小(在横线上填“>”“<”或“=”):
(1)
5 4
>
4 5;
(2) 4 2
<
2 7.
随堂训练
5.计算:(1)2 3 × 5 21;
18
(2)3 3 × (−
);
4
(3)3 2 × 2 10 × 5;
(3) 3 ×
1
=
3
1
3
3 × = .
1
.
3
知识讲解
归纳: 化简二次根式的步骤:
1.把被开方数分解因式(或因数) ;
2.把各因式(或因数)积的算术平方根化为每个因
人教版八年级下册数学《二次根式的乘除》说课教学复习课件巩固

,
3 6= 32 6= 54 ,
又∵52<54,
∴ 52< 54 ,
∴
52> 54
两个负数比较大小,
绝对值大的反而小
,即 2 13>-3 6.
探究新知
方法点拨
比较两个二次根式大小的方法:
(1)被开方数比较法,即先将根号外的非负因数移到根号内,
当两个二次根式都是正数时,被开方数大的二次根式大.
在本章中,
如果没有特
别说明,所
有的字母都
表示正数.
被开方数
根指数
二次根式相乘,________不变,________相乘.
语言表述:
算术平方根的积等于各个被开方数积的算术平方根.
注意:a,b都必须是非负数.
探究新知
考 点 1 简单的二次根式的乘法运算
计算:
(1) 3 5 ;
解: (1)
(2)
(2)
PA R T
01
学习目标
01
二次根式乘法法则知识点回顾
二次根式乘法法则
• = ≥ 0,b ≥ 0
注意公式成立条件
二次根式乘法法则变形
= • ≥ 0,b ≥ 0
01
探究与思考
计算下列各式,观察计算结果,你能发现什么规律?
4
9
4
22
9
32
=
=
4
16
16
(2)平方法,即把两个二次根式分别平方,当两个二次根式
都是正数时,平方大的二次根式大.
(3)计算器求近似值法,即先利用计算器求出两个二次根式的
近似值,再进行比较.
巩固练习
人教版八年级数学下册课件 16-3 第1课时 二次根式的加减

b
2a+3b
如果把a,b用二次根式来替代,能得到什么呢?
当a= 2 ,b= 8 时,得2a+3b= 2 2 3 8 .
因为 3 8 3 22 2 6 2,由前面知两者可以合并.
你又发现
了什么?
2a+3b=2 2+6 2=8 2
我们发现:要将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
归纳总结
将二次根式化成最简式,如果被开方数相同,
则这样的二次根式可以合并.
注意:判断几个二次根式是否可以合并,一定都要
化为最简二次根式再判断.
合并的方法与合并同类项类似,把根号外的因数(式)
相加,根指数和被开方数(式)不变.如:
m a n a m n a
例题讲解
例1 若最简根式
3 − 2 与 3 可以合并,
2
4 5 , 3 5, 2 5 .
化简后被开方数相同
获取新知
知识点一:同类二次根式
同类二次根式:几个二次根式化成最简二次根式后,它们
的被开方数相同, 这些二次根式就称为同类二次根式
备注:
1.同类二次根式首先必须是最简二次根式;
2.同类二次根式再次必须是被开方数相同
例题讲解
例1 下列根式中,与 3 不是同类二次根式的是( C )
第十六章 二次根式
16.3 第1课时 二次根式的加减
知识回顾
问题1 满足什么条件的根式是最简二次根式?
(1)被开方数不含分母;
(2)被开方数中不含能开得尽方的因数或因式.
问题2 化简下列两组二次根式,每组化简后有什么共同特点?
(1) 8 ,18 ,0.5;
人教版八年级下册数学《二次根式的概念》二次根式说课教学课件复习

2
2
x
3
x 3
③
x2 5 x
1
2 x
x2
2 x5
活动探究
3.在式子
1 2x
中, x的取值范围是____________.
1 x
1
1 2 x 0,
x
, 且x 1
2
解:由 1 x 0 得:
.注Leabharlann :在考虑式子有意义时,要考虑全面:
1·有无二次根式,有多个要同时满足
求代数式( − 2)2 − − 2 + 2 + 2 3的值 .
= 2 −4 + 4 − 2 + 4 + 2 3
=-4x + 8+ 2 3
把x= 3代入,得
-4x + 8+ 2 3 = −4 3+8+ 2 3=8- 2 3
02
练一练
已知a=3+2 5, b=3-2 5 ,求2 − 2 的值 .
2 、- 2 、
x y
2 、 x(x>0)、 0 、- 2 、 x y(x≥0,y≥0).
1
1
4
不是二次根式的有: 3 3 、 x 、 2、 x y .
形如 a (a 0)的式子叫做二次根式.
结论:1.表示a的算术平方根
2. a可以是数,也可以是式.
3. 形式上含有二次根号
4. a≥0,
=
5
=5-3
=2
2
−
3
2
02
练一练
(1) ( 2 − 6 ) × ( 2 + 6 )
人教版数学八年级下册第十六章16.3.2二次根式的混合运算课件

二次根式的乘法法则是什么?
+二次根=式的混合运算顺序=与实x数y类[(似x,+即先y乘)方2-, 2xy]
将所求对称式进行适当变形,使之成为只含有x+y,
=1×[(2 3 ) -2×1]=10. (2)(中考·包头)计算:
- +( -1)0=2
同学们,今天这节课,我们就一起来学习关于二次根式的混合运算的相关知识。
号(在“+,-,×,÷”中选择)后,其运算的结果为有理数,
则 x 不可能是( C )
A. 3+1
B. 3-1
C. 2 3
D. 1- 3
【点拨】A.( 3+1)-( 3+1)=0,故本选项不合题意;B.( 3+
1)×( 3-1)=2,故本选项不合题意;C.( 3+1)与 2 3无论是相 加,相减,相乘,相除,结果都是无理数,故本选项符合题意;
C. 6 到 7 之间
D. 7 到 8 之间
5. (2020·荆门)下列等式中成立的是( D )
A. (-3x2y)3=-9x6y3
B. x2=x+2 12-x-2 12
C.
2÷
1+ 2
13=2+
6
D. (x+1)1(x+2)=x+1 1-x+1 2
6. 计算:
(1)(2019·泰州) 8-
1 2×
人教版数学八年级下册
第十六章
16.3.2 二次根式的混合运算
复习旧知
1.二次根式的乘法法则是什么? 2.二次根式的除法法则是什么? 3.怎样进行二次根式的加减运算?
导入新知
同学们,今天这节课,我们就一 起来学习关于二次根式的混合运算的 相关知识。
二次根式的混合运算
学习目标
1.含有二次根式的式子实行乘除运算和含有二 次根式的多项式乘法公式的应用.
人教版八年级下册数学16.1.2二次根式的性质课件 (共18张PPT)

(
1 )2 3
1
___3_____;(
0 )2
__0_______ .
例2:计算
(1) ( 1.5)2
(2) (2 5)2
解:(2) (2 5)2 22 ( 5)2 4 5 20
(ab )2 a 2b 2
练习 计算:
(1). ( 3)2
(2) ( 3 2)2
(3) ( 0.2)2
人民教育出版社 八年级下册数学
16.1.2二次根式的性质
复习回顾
什么样的式子叫二次根式?
形如 a(a 0)的式子叫二次根式.
说一说:
下列各式哪些是二次根式?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
探索新知
思考:性质1:二次根式的双重非负性 完成下列各空:
当a>0时,a表示a的__算__术__平_方__根__,因此 a__>__0 当a=0时,a表示0的__算_术__平__方__根__,因此 a__=__0
当a<0时, a__无__意__义____
归纳与小结: 当a 0时,总有 a 0成立.
1:从运算顺序来看,
a 2先开方,后平方
2.从取值范围来看,
2 a
a≥0
a2
a2 先平方,后开方
a取任何实数
3.从运算结果来看:
a 2 =a
a (a≥ 0)
a2 =∣a∣= 0 (a=0) -a (a<0)
课堂检测
相信你是 最棒的!
(1)计算: ① ( 1.5)2;
③ (4 2 )2. 3
也就是说a是非负数,a也是非负数。
人教版数学八年级下册第十六章 二次根式 章末复习课件

上一级
目录
(4)二次根式的混合运算 ①二次根式的混合运算顺序: 与 实 数 的 混 合 运 算 顺 序 一 样 , 先 算 __乘__方____ , 再 算 __乘__除____ , 最 后 算 __加__减____,有括号的先算括号内的运算(或先去掉括号); ②在二次根式的混合运算中,实数的运算律、多项式的乘法法则、多项式 的乘法公式仍然适用.
上一级
目录
9.已知等腰三角形的两边长满足 a-4+b-2=0,那么这个等腰三角形
的周长为( B )
A.8
B.10
C.8 或 10
D.9
上一级
目录
10.【例】若 y= 2-x+ x-2+4,求 x2+y2 的平方根. 解:∵2-x≥0,x-2≥0, 解得 x≤2,x≥2,则 x=2, ∴y=4, 故 x2+y2=22+42=20, ∴x2+y2 的平方根为± 20 =±2 5 .
=2.
上一级
目录
16.【例】已知 a= 7-3,b= 7+3,求下列各式的值:(1)a2-b2; 解:∵a= 7 -3,b= 7 +3, ∴a+b=( 7 -3)+( 7 +3)=2 7 , a-b=( 7 -3)-( 7 +3)=-6, ab=( 7 -3)( 7 +3)=-2, a2-b2=(a+b)(a-b)=-12 7 ; (2)a2+b2. 解:a2+b2=(a+b)2-2ab=28+4=32.
B.a≤0
C.a<0
D.a≥-2
上一级
目录
题型3 二次根式的性质
7.【例】若实数 a,b,c 在数轴上的对应点如图所示,则 a2+ b2-|b-c|
的结果是( C )
A.a-c
B.-a-2b+c
人教版八年级下册数学课件:第十六章 二次根式 复习课(共75张PPT)

1 (6) x2
(8) 3 x | x | 4
x0
X≤3且X≠-4
3、若数轴上表示数x的点在原点的左边,则化简 |3x+x2| 的结果是( -2X )
4、求下列二次根式中字母的取值范围:
(1) a 1 (2) 1
1 2a
(3) (a 3)2
4 2 5x 5 2x 12
6 x 5 3 2x
x-y=4-(-8)= 4+ 8 =12
2.已知x,y为实数,且
x 1 +3(y-2)2 =0,则x-y的值为( D )
A.3
B.-3
C.1
D.-1
初中阶段的三个非负数:
a (a≥0)
|a|
≥0
a2
a + b = 0 ? a 0,b = 0 a+ | b |= 0 ? a 0,b = 0 a2+ | b |= 0 ? a 0,b = 0 ......
∴ x2 - 2x + 1 = 1- x = 1+ 3
∴当x=- 3时, x2 - 2x+ 1 = 1+ 3
( a )2 a (a 0)
a2
a
a(a 0) a(a 0)
a2与( a)2一样吗?
你的理由是什么?
( a )2 a(a 0)
a(a 0)
a2 a a(a 0)
注意区别 a 2 与( a)2
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号
4. a≥0, a ≥0 ( 双重非负性)
5.既可表示开方运算,也可表示运算的结果.
式子 S25 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
提高练习:
5、 已 知 : 4x2y2-4x6y100,
求 2 3x 9xy2
yx3-x2
15x x
xy的
编后语
• 常常可见到这样的同学,他们在下课前几分钟就开始看表、收拾课本文具,下课铃一响,就迫不及待地“逃离”教室。实际上,每节课刚下课时的几分 钟是我们对上课内容查漏补缺的好时机。善于学习的同学往往懂得抓好课后的“黄金两分钟”。那么,课后的“黄金时间”可以用来做什么呢?
(2 3)2______;(3 a)2_______
(2)2 =____; ( 23)2=_____ (m4)2 _____(m4); 9x2 6x1( 3x1)2 _______
巩固练习:
8 、 A B C 的 三 边 满 足 abbc 请 你 判 断 这 个 三 角 形 的 形 状 。
x C.
2
D.
练习
3、x取何值时,下列二次根式有意义?
(1) x+2 x≥-2
(2) -3-x
(3) x2 +1
X取全体实 ( 4 ) 1
数
3x
( 5 ) x 5 x≥0
( 6) x x 1
x>0
复习回顾: 2、最简二次根式定义:
(1)被开方数不含分母
(2)被开方数不含开的尽方的因数 或因式
巩固练习 3、化简
2019/7/8
最新中小学教学课件
thank
you!
2019/7/8
最新中小学教学课件
2
a a (a0,b0
b
b
加 、减、乘、除
复习回顾:
1、二次根式的定义:
形如 a (a0) 的式子
叫做二次根式.
巩固练习
1.判断下列各式是否是二次根式.
5 ( ×)
a (a 0)( ×) 83 ( ×) a(a 0)
2. 下列各式一定是二次根式的是( )
A. x 1 B. x 2 1
第二十一章 二次根式全章复
一、知识结构
四个概念
二
三个性质
次
根
式
两个法则
四种运算
二次根式
最简二次根式
同类二次根式
分母有理化
1 、 a 0 ,a 0 ( .双 重 非 负 性
2、 a2aa0
3、 a2 a
aa0
aa0
1 a b a b a 0 ,b
复习回顾:
二次根式的乘除法法则
a b ab a≥0,b≥0
a a a0,b0
b
b
巩固练习:
1、 计 算 : 3-4-22+12 2、 计 算 : 3x2x 25 x
8 x 4 50 3、 计 算 : 182 212+ 1 2 1
提高练习:
4、已知:x 31, y 31, 求x2 2xyy2 的值。 x2 y2
复习回顾:
2
12
32
10
3、同类二次根式的定义:
几个二次根式化成最简二次根式以后, 被开方数相同,这几个二次根式就叫做同类 根式.
巩固练习
5、下列各式中,哪些是同类二次根式
2 75
1
1
3
50 272 8ab3来自36b a 2b复习回顾: 4、分母有理化:
去掉分母中的二次根式 的变形叫分母有理化
巩固练习
6、化简(分母有理化)
1
1 6x y
2
27
3x
复习回顾: 二次根式的三个性质:
1 、 a 0 ,a 0 ( .双 重 非 负 性 )
2
2、a a(a0)
a (a≥ 0)
3、 a 2 =∣a∣ = -a (a≤0)
巩固练习:
7、计算:( 5)2=____;( 3)2=_____; 4
(1) 24, (2) 72,
2 6
6 2
(4) 9a,
3 a
(5) 2a2 ,
a 2
(3) 50
5 2
(6) a2b3
ab b
4、 化 简 :
( 1 ) a 4 b a2 b
( 2 ) 1 2 a 2 b 4a23b2a 3b ( 3 ) 8 a 3 b 4 4a22ab2a 2a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。