紫外分光光度法和荧光分析法
环境监测常用分析方法简介

环境监测常用分析方法简介环境样品的测试方法是在现代分析化学各个领域的测试技术和手段的基础上发展起来的,用于研究环境污染物的性质、来源、含量、分布状态和环境背景值。
随科学技术的不断发展,除经典的化学分析、各种仪器分析为环境分析监测服务外,一些新的测试手段和技术,如色谱-质谱联用、激光、中子活化法、遥感遥测技术也很快被广泛应用于环境污染的监测中,为了及时反映监测对象和取样时的真实情况,确切掌握环境污染连续变化的状况,许多小型现场监测仪器和大型自动监测系统也获得迅速的发展。
一、化学分析法是以特定的化学反应为基础的分析方法,分重量分析法和容量分析法两类。
重量法操作麻烦,对于污染物浓度低的,会产生较大误差,它主要用于大气中总悬浮颗粒、降尘量、烟尘、生产性粉尘及废水中悬浮固体、残渣、油类、硫酸盐、二氧化硅等的测定。
随着称量工具的改进,重量法得到进一步发展。
例如,近几年用微量测重法测定大气飘尘和空气中的汞蒸汽等。
容量法具有操作方便、快速、准确度高、应用范围广、费用低的特点,在环境监测中得到较多应用,但灵敏度不够高,对于测定浓度太低的污染物,也不能得到满意的结果。
它主要用于水中的酸碱度、NH3-N、COD、BOD、DO、Cr6+、硫离子、氰化物、氯化物、硬度、酚等的测定,及废气中铅的测定。
二、光学分析法是以光的吸收、辐射、散射等性质为基础的分析方法,主要有以下几种:(一)分光光度法是一种具有仪器简单、容易操作、灵敏度较高、测定成分广等特点的常用分析法。
可用于测定金属、非金属、无机和有机化合物等。
在国内外的环境监测分析法中占有很大的比重。
(二)原子吸收分光光度法是在待测元素的特征波长下,通过测量样品中待测元素基态原子(蒸气)对特征谱线吸收的程度,以确定其含量的一种方法。
此法操作简便、迅速、灵敏度高、选择性好、抗干扰能力强、测定元素范围广,是环境中痕量金属污染物测定的主要方法,可测定70多种元素,国内外都用作测定重金属的标准分析方法。
紫外分光光度法和荧光分析法

差示分光光度法
▪ 一般分光光度法一般只适于测定微量组分, 当待测组分含量较高时,将产生较大旳误差。 需采用示差法。
▪ 即提升入射光强度,并采用浓度稍低于待 测溶液浓度旳原则溶液作参比溶液。
▪ 设:待测溶液浓度为cx,原则溶液浓度为 cs(cs < cx)。则:
▪ Ax= εb cx As = εb cs
4.构造分析
▪ 1.鉴别物质旳异构体,如互变异构体, 顺反异构体,开链和成环异构体,旋 光异构体,空间异构体等。反式异构 体空间位阻小,共轭程度较完全。最 大吸收峰波长,最大摩尔吸收系数, 不小于顺式。
▪ 2.推测物质旳共轭体系和部分骨架 ▪ 一般需与色谱,红外,质谱,波谱等
多种仪器联合作物质旳构造分析。
▪ 激发单色器 : 置于光源和样品室之间旳为激发单色器或第一单
色器,筛选出特定旳激发光谱。
▪ 发射单色器:置于样品室和检测器之间旳为发射单色器或第二
单色器,常采用光栅为单色器。筛选出特定旳发射光谱
▪ 样品室: 一般由石英池(液体样品用)或固体样品架(粉末或片状样
品)构成。
▪ 检测器: 一般用光电管或光电倍增管作检测器。可将光信号放大
并转为电信号。
荧光分析法与紫外-可见分析法异同点
荧光分析法与紫外-可见比较: 均属于分子光谱 仪器构造 基本相同
荧光
可见-紫外
本质
发射光谱
吸收光谱
敏捷度 选择性
10-10-10-12 g/ml 高
10-4-10-7g/ml 一般
应用
硫色素荧光法测定维生素B1
维生素B1 在碱性溶液中被铁氰化钾氧化成硫色素,在紫(365nm)
②物质对光吸收呈加和性旳原理,即在某一样品旳吸收曲线上, 各波长旳吸光度是维生素A与杂质吸光度旳代数和,因而吸收曲线 也是两者吸收旳叠加。
荧光分析法知识讲解

荧光分析法荧光分析法●习题精选一、选择题(其中1~6题为单选,7~10题为多选)1.下列化合物中荧光最强、发射波长最长的化合物是( )。
A. B.C. D.2.所谓荧光,即指某些物质经入射光照射后,吸收了入射光的能量,从而辐射出比入射光( )。
A. 波长长的光线;B. 波长短的光线;C. 能量大的光线;D. 频率高的光线3.单光束荧光分光光度计的光路图是( )。
A.B.C.D. 4A. 1-氯丙烷;B. 1-溴丙烷;C. 1-碘丙烷;D. 1,2-二碘丙烷5.下列化合物荧光最强的是( );磷光最强的是( )。
Cl BrA B C D I6.下列化合物荧光量子产率最大的是( )A B C DCOO H-COO O -O OH COO HO OH O OCOO -O -O -7.下列说法正确的是( )A 荧光发射波长永远大于激发波长B 荧光发射波长永远小于激发波长C 荧光光谱形状与激发波长无关D 荧光光谱形状与激发波长有关8.荧光物质的荧光强度与该物质的浓度成线性关系的条件是( )A. 单色光;B. ECl ≤0.05;C. 入射光强度I 0一定;D. 样品池厚度一定9.下列化合物中可产生荧光的化合物是( )A BC DNN N N10.在相同条件下,荧光、延时荧光、磷光三者波长之间的关系为( )A. 荧光波长与延时荧光波长相等;B. 磷光波长比荧光波长、延时荧光波长长;C. 磷光波长与延时荧光波长相等;D. 磷光波长比荧光波长、延时荧光波长短二、填空题1.荧光寿命与延时荧光寿命相比,寿命短;荧光寿命与磷光寿命相比,寿命长;磷光寿命与延时荧光寿命相比,二者。
2.荧光光谱的形状与激发光谱的形状,常形成。
3.一般情况下,溶液的温度,溶液中荧光物质的荧光强度或荧光量子产率越高。
4.激发光谱的形状与光谱形状极为相似,所不同的只是。
5.荧光分光光度计中光源与检测器呈角度。
这是因为。
6.紫外分光光度计与荧光分光光度计的主要区别是(1)。
食品中2,3-丁二酮形成机制和检测方法综述

食品中2,3-丁二酮形成机制和检测方法综述食品中2,3-丁二酮形成机制和检测方法综述本文关键词:综述,检测方法,机制,食品,丁二酮食品中2,3-丁二酮形成机制和检测方法技术手段综述本文简介:2,3-丁二酮又名双乙酰、丁二酮,是一种黄色至浅绿色且具有强烈奶油香味的突出香料。
2,3-丁二酮天然存在于发酵乳制品和啤酒啤酒等发酵橙汁中,1983年被美国食品药品监督管理局(FDA)规定为GRAS级(generallyrecognizedassafe),普遍用作焙烤食品、非酒精饮料、糖果、乳制品替代品食品中2,3-丁二酮形成机制和检测方法综述本文内容:2,3-丁二酮又名双乙酰、丁二酮,是一种黄色至浅绿色浓厚且具有强烈奶油香味的重要香料。
2,3-丁二酮天然存在于发酵乳制品饮品和啤酒等发酵饮料中,1983年被翌年美国食品药品监督管理局( FDA) 规定为 GRAS级( generally recognized as safe) ,广泛用作焙烤食品、非酒精饮料、糖果、乳制品替代品、奶油等食用油的风味物质[1 -4]。
最近的研究表明,2,3-丁二酮具有细导至闭塞性细支气管炎、诱导氧化应激等毒性作用,食品中 2,3-丁二酮的安全性问题引起了国内外的广泛关注[5 -6]。
本文综述了食品中 2,3-丁二酮形成机制和检测方法方面的研究进展。
1 食品中 2,3-丁二酮形成机制在食品加工进程中,2,3-丁二酮的形成途径主要包括脂质氧化、糖类分解、美拉德反应、微生物发酵和核黄素光敏氧化等。
1. 1 脂质氧化富含脂肪酸的食品在烹调和热加工过程中能够产生 2,3-丁二酮等羰基化合物,其可能反应途径见图 1[4]。
不饱和脂肪酸在超氧阴离子( O-2·) 、单线态氧(1O2) 、羟自由基( ·OH) 等活性氧作用下发生过氧化反应,形成氢过氧化物、环氧化合物等中间产物,中间产物能能够集中精力反应并生成 2,3-丁二酮等活性烷基化合物[3,7]。
生物样品的常用分析方法

气相色谱法 (gas chromatography,GC) 缺点:
要求被测药物及其代谢物必须具有一定的 挥发性和热稳定性。
解决方法:
固定相发展和衍生化试剂的广泛使用,使 生物样品不再受限制。
www。themegallery。
气相色谱法 (gas chromatography,GC)
www。themegallery。
高效液相色谱法
液-固吸附色谱法 液-液分配色谱法 离子交换色谱法
分 离 方 法
凝胶排阻色谱法
www。themegallery。
高效液相色谱法 色谱分离方法的选择 主要根据是样品的相对分子质量 的大小,在水中和有机溶剂中的溶解 度,极性和稳定程度以及化学结构等 物理、化学性质。
体内药物分析是借助于现代化的仪器 与技术来分析药物在体内数量与质量的变 化,以获得药物在体内的各种药代动力学 参数、代谢方式、代谢途径等信息。目前, 用于生物样品分析的方法有很多,归纳起 来主要有以下几类:
www。themegallery。
生物样品的常用分析方法
1. 色谱分析法 2. 光谱分析法
3. 免疫分析法
www。themegallery。
荧光分析法 (三)荧光探针分析法
(Fluorescence method) 局限 衍生化增加分析 步骤,易引入分析 使用荧光探针从无荧光的药物制备有荧光 误差。 的衍生物。
优点
1
2
3
增强待分析 物质的荧光 响应,提高 检测灵敏度 和选择性。
稳定分析物, 有助于化合 物基团的确 尤其针对活 证。 泼的和有挥 发性的化合 物。
www。themegallery。
高效液相色谱法 一、相对分子质量
荧光分析法实验(有思考题答案)

实验二.氨基酸的荧光激发、发射及同步荧光光谱的测量五.数据处理1.用实验获得的数据绘制两种氨基酸的激发、发射、同步光谱图(如图3、4)。
2.从激发和发射光谱中找出最大激发波长和最大发射波长值,以及它们相对应的峰高。
在它们的同步荧光光谱中也确定最大波长和对应的峰高。
苯丙氨酸的荧光光谱图苯丙氨酸扫描激发波长在214nm和285m两处出现最高峰,本实验选择214nm为最大激发波长。
此外,激发波长曲线在280-300nm处出现了一个十分完美的峰,此峰为倍频峰,非激发波长峰,我们通过同步扫描荧光光谱技术可以验证,如图,我们通过同步扫描荧光光谱技术获得的激发波长也在215nm,与之前基本吻合。
色氨酸的荧光光谱图色氨酸扫描激发波长在217nm处有一个最大峰,所以激发波长为217,发射波长为361。
发射波长曲线在450-460nm处出现了一个十分完美的峰(在这张图上没显示出来),此峰为倍频峰,非激发波长峰,我们通过同步扫描荧光光谱技术可以验证。
六.讨论与思考1.对待测溶液进行预扫描的有何作用?从预扫描得到激发和发射波长的初步结果,根据我们得到的初步结果对仪器进行设置,然后对两种氨基酸溶液测量它们的荧光激发、发射和同步荧光光谱。
2.观察激发波长的整数倍处荧光发射光谱在有何特点?该波长是否适合于进行定量分析?激发波长的整数倍处荧光发射光谱会出现以很强的峰,是倍频峰。
不适合定量分析。
3.同步荧光技术有哪些优点?比较激发、发射和同步荧光光谱中的峰值及对应波长,比较他们的不同,并解释原因。
同步荧光法能简化光谱,减少光谱重叠和散射的影响,提高对荧光性质相近化合物同时测定的选择性和灵敏度。
同步荧光法相对于激发光谱和发射光谱,得到的峰比较窄,更明显。
同步荧光光谱不是荧光物质的激发光谱和发射光谱的简单叠加。
在选合适的扫描波长差值的情况下,同时扫描激发光谱和发射光谱重叠波长处,才同时产生信号,4.通过两种氨基酸的化学结构,是否可以不经试验判断其荧光强度的大小次序。
紫外可见分光光度法与分子荧光光度法的比较

紫外可见分光光度法与分子荧光光度法的比较
紫外可见分光光度法和分子荧光光度法,是两种现代分析化学中常用的光度测定技术,它们之间有许多不同之处。
首先,紫外可见分光光度法可以用来测量悬浮液和溶液中某种物质含量,通过检测它
们吸收波长不同的光,并使用紫外可见分光仪可以很好地用来定量分析一种物质的含量,
主要原因是它可以采用强度谱的方式测定光谱分析,这是数据量最大的分光光度法。
而分子荧光光度法则与紫外可见分光光度法存在很大的不同。
分子荧光光度法是一种
用于测定物质的定量分析的光度测量技术,其原理是通过激发某种物质的激发状态,并采
用光谱分析的方式测定淬发状态下某种物质吸收的光谱,采用发射率谱测量它发射出来的
光谱,这种方法有利于识别样品中含量很小的物质。
此外,两种光度测量技术在检测样品中的某种物质的含量时也有很大的差异。
紫外-
可见分光光度法通常可以测到复杂样品中有结构特性的物质,因此适用于分析各种复杂混
合样品,分子荧光光度法则是通过向某种物质添加少量共振激发剂来标记样品中某种物质,然后进行定量分析,它可以清楚地测量某种独特结构物质,因此被广泛应用于纯化和同位
素比值等细胞研究中,并可以更明确地测量和筛选出某种物质。
综上所述,紫外可见分光光度法和分子荧光光度法是两种现代分析化学中常用的光度
测定技术,它们在原理,应用,检测样品中含量的某种物质等方面都存在差异,根据实际
情况和需要,可以依据自身需要选择不同的光度测量技术,以获得更准确的定量分析结果。
叶酸的检测方法

叶酸的检测方法作者:王娜娜来源:《教育周报·教育论坛》2020年第11期摘要:目前已经发展的一些叶酸检测的方法各不相同,主要根据测定式样来决定其测定方法,最早发展的是微生物法,灵敏度高,但重复性相对较差,主要有比色法、紫外分光光度法、荧光分析法等等。
关键词:叶酸检测方法微生物法微生物法的检测原理为酪乳酸杆菌的生长必需叶酸,培养基中若缺乏叶酸则该细菌不能生长。
在一定的条件下,酪乳酸杆菌的生长及其代谢产物的浓度与培养基中叶酸的含量成正比关系,可测定细菌代谢物或菌体的浓度,即用酸度或浑浊度测定试样中叶酸的含量。
荧光法超声氧化荧光法叶酸自身荧光很弱,在中性介质中经超声照射后,能被氧化成喋呤羧酸,其荧光强度在462 nm波长处比叶酸自身有显著提高。
基于以上现象,建立了一种超声氧化预处理,荧光检测叶酸的方法。
荧光分光光度法本法利用高锰酸钾在酸性介质中氧化叶酸为1-氨基-4-羟基喋吮-6-叶酸后,其荧光强度可以测定复方制剂中叶酸的含量,其他维生素可用硅藻土吸附除去,本法灵敏度较高,可测得0. l ug/ml的叶酸。
衍生荧光法在酸性条件下,用强氧化剂氧化叶酸,并于254 nm紫外光下照射30 min,其氧化产物均具有强的荧光性质,因此荧光强度大大增强,比叶酸自身灵敏度提高2-3个数量级。
实验结果表明:高锰酸钾氧化一光照体系检出限为3.2 x10 -9mol/L,过氧化氢氧化一光照体系检出限为6. 5 x 10 -9mol/L。
离子捕获法1995年,wilson等提出了离子捕获法检测叶酸。
即在实验中,样品中加入变性剂后,叶酸与内源性结合蛋白分离,释放后的叶酸再与带有大量阴离子的亲合试剂结合,合成产物经过离子捕获池而与阳离子纤维结合,最后通过碱性磷酸酶与喋酸(叶酸的类似物)结合物对叶酸结合蛋白上游离结合位点的探测,定量分析样品中叶酸的含量。
色谱法高效液相色谱法在薄膜强阴离子交换树脂(0.01 *300cm pellicular)柱上用氯化钾一磷酸盐缓冲液(pH = 7.5)在40℃的温度下进行梯度洗脱,可将三经基叶酸(THF), N5-甲基一三经基叶酸(N5-CH3, -THF),去氢叶酸(DHF)、叶酸(FA)等异构体的混合物分离,洗脱的顺序是:THF, N5- CH3 -THF, DHF, FA。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
▪ 设:待测溶液浓度为cx,标准溶液浓度为 cs(cs < cx)。则:
▪ Ax= εb cx As = εb cs
▪ ΔA=Ax -As =εb(cx - cs )=εbΔc
▪ 测得的吸光度相当于普通法中待测溶液与
标准溶液的吸光度之差ΔA。示差法测得的
吸光度与Δc呈直线关系。由标准曲线上查得 相应的Δc值,则待测溶液浓度cx :
三点校正法
本方法是在三个波长处测得吸光度,根据校正公式计算吸光度 校正值后,再计算含量。其原理主要基于以下两点:
①杂质的无关吸收再310~340nm的波长范围内几乎呈一条直线, 且随波长的增大吸光度下降。
②物质对光吸收呈加和性的原理,即在某一样品的吸收曲线上, 各波长的吸光度是维生素A与杂质吸光度的代数和,因而吸收曲线 也是二者吸收的叠加。
▪ cx = cs + Δc
可编辑ppt
12
双波长分光光度法
▪ 不需空白溶液作参比;但需要两个单色器获得两 束单色光(λ1和λ2);以参比波长λ1处的吸光度Aλ1 作为参比,来消除干扰。在分析浑浊或背景吸收 较大的复杂试样时显示出很大的优越性。灵敏度、 选择性、测量精密度等方面都比单波长法有所提 高。
例:地蒽酚中二羟基蒽醌的检查 二羟基蒽醌的三氯甲烷溶液 在432nm处有最大吸收,而 地蒽酚在该处几乎无吸收。
可编辑ppt
7
2、药物的含量测定
如巴比妥类药物的含量测定(巴比妥类药物 在碱性介质中电离为具有紫外吸收特征的结构)、 芳酸及其脂类药物含量测定、维生素A含量测定 (在325~328nm的波长范围内有最大吸收)等。
可编辑ppt
8
3、药物的鉴别
对比吸收光谱特征数据 对比吸收度(或吸收系数)的比值 对比吸收光谱的一致性
例 苯磺舒:用含盐酸的乙醇[取盐酸溶液(9-1000)2ml,加乙制成 100ml]制成没1ml中含20ug的溶液,在225nm与249nm的波长处有 最大吸收,在249nm波长处的吸收度为0.67 。 甾体激素类药物:丙酸倍氯米松的乙醇溶液(20ug/ml),在 239nm的波长处应有最大吸收,吸光度为0.57~0.60;在239nm与 263nm波长处的吸光度比值应为2.25~2.45
光谱分析法
一、紫外—可见光分光光度法 二、荧光分析法
可编辑ppt
1
基本原理 仪器主要部件
主要应用
可编辑ppt
2
基本原理
概述:紫外-可见分光光度法是通过被测物 质在紫外-可见光区的特定波长或一定波长 范围内光的吸收度,对该物质进行定性和 定量分析的方法。主要用于药品的鉴别、 检查和含量测定。
范围: 紫外光区(200~400nm)
可编辑ppt
9
4.结构分析
▪ 1.判别物质的异构体,如互变异构体, 顺反异构体,开链和成环异构体,旋 光异构体,空间异构体等。反式异构 体空间位阻小,共轭程度较完全。最 大吸收峰波长,最大摩尔吸收系数, 大于顺式。
▪ 2.推测物质的共轭体系和部分骨架
▪ 一般需与色谱,红外,质谱,波谱等 多种仪器联合作物质的结构分析。
可编辑ppt
10
紫外分光光度测定方法
▪ 普通测定分光光度法
▪ 1.单组分的测定 ▪ 通常采用 A-C 标准曲线法定量测定。 ▪ 2.多组分的同时测定 ▪ ⑴若各组分的吸收曲线互不重叠,则可在各自
最大吸收波长处分别进行测定。这本质上与单组 分测定没有区别。
▪ ⑵若各组分的吸收曲线互有重叠,则可根据吸 光度的加合性求解联立方程组得出各组分的含量。
可见光区(400~760nm)
可编辑ppt
3
Beer-Lambort
*A为吸收度;
定律A=log
1 T
=Ecl
*T为透光率;
*E为吸收系数(以
E
1% 1cm
) 表示,溶液浓度为1%(g/ml),厚度为1cm时的吸光度值
*c为溶液浓度;
*l为样品总厚度。
适用条件:入射光为单色光 溶液是稀溶液 固体、 液体和气体样品在同一波长 下,各组分吸光度具有加和性
可编辑ppt
4
仪器主要部件
光源
单色器 吸收池 检测器
信号显 示系统
光 源: 常采用氘灯和钨卤灯 钨灯最适宜的使用波长范围为320~1000nm。 氘灯能发出光的波长范围一般为190~400nm
单色器:棱镜或光栅
吸收池:玻璃或石英吸收池
检测器:光电池、光电管、光电倍增管及二极管阵列检测器
可编辑ppt
▪ Aλ1= εaλ1bca + εbλ1bcb ▪ Aλ2= εaλ2bca + εbλ2bcb
可编辑ppt
11
差示分光光度法
▪ 普通分光光度法一般只适于测定微量组分, 当待测组分含量较高时,将产生较大的误差。 需采用示差法。
▪ 即提高入射光强度,并采用浓度稍低于待 测溶液浓度的标准溶液作参比溶液。
可编辑ppt
15
原理 与紫外-可见法异同点
应用
可编辑ppt
16
原理
荧光—分子吸收电磁波后,从其最低激发 态重新发射紫外线或可见光的现象
利用某些物质被一定波长的光照射后所产 生的,能够反映该物质特性的荧光来进行 定性定量的分析方法——荧光分析法。
▪ 利用吸光度(或透光度)对波长的导数曲线来进行分 析:
▪ I=I0 e-εbc
▪ 假定入射光强度I0 在整个波长范围内保持恒定:
▪ dI 0 /dλ=0
▪ 则:dI/dλ=-I0 bc e -εbc dε/dλ
▪
=-I0 bc dε/dλ
▪ (例子:课本233页)
可编辑ppt
14
其他
▪ 卡尔曼滤波法 ▪ 偏最小二乘法 ▪ 小波变换 ▪ 三波长分光光度法 ▪ 系数倍率法 ▪ ……
▪ ΔA=A λ2 -A λ1 =(ελ2 -ελ1 ) b c ▪ 两波长处测得的吸光度差值ΔA与待测组分浓度
成正比
▪ (例子:课本366页)
可编辑ppt
13
导数分光光度法
▪ 导数分光光度法在多组分同时测定、浑浊样品分析、 消除背景干扰、加强光谱的精细结构以及复杂光谱 的辨析等方面,显示了很大的优越性。
5
仪器分类
▪ 单光束紫外可见分光光度计 ▪ 准双光束紫外可见分光光度计 ▪ 双光束紫外可见分光光度计 ▪ 双波长紫外可见分光光度计
可编辑ppt
6
主要应用
1、药物的杂质检查
利用药物与杂质对光的选择性吸收性质的差异,若药物在杂质的 最大吸收波长处没有吸收,则可在此波长处测样品溶液的吸收度,通 过控制样品溶液吸收度来控制杂质的量。