1.2传感器的一般特性

合集下载

传感器概述

传感器概述


dy(t ) y(t ) x(t ) dt
1.2 传感器的一般特性
(1)一阶传感器的单位阶跃响应
一阶传感器单位阶跃响应的通式:

dy(t ) y(t ) x(t ) dt
式中 x(t ) 、 (t ) 分别为传感器的输入量和输出 y 量,均是时间的函数,表征传感器的时间常数, 具有时间“秒”的量纲。 一阶传感器的传递函数:
1.1 基本概念
附:传感器组成示意图
敏感元件的输出作 为转换元件的输入
被测量
敏感 元件
转换 元件
转换 电路
电量
直接感受被测量
转化为电量参数
传感器组成示意图
1.1 基本概念
1.1.3 传感器的分类
物质定律如虎克定律 F = k x主要由物 质的性质决定
按工作机理分类 可分为物理型、化学型、生物型 按构成原理又分为:结构型、物性型和复合型三大类 无源传感器 按能量的转换分类 场的定律,如电场、磁场、物质场主 要由其结构参数决定 可分为能量控制型和能量转换型 按输入量分类 有源传感器 常用的有机、光、电和化学等传感器 按输出信号的性质分类 可分为模拟式传感器和数字式传感器
1.2 传感器的一般特性
以动态测温的问题为例说明传感器动态特性。 在被测温度随时间变化或传感器突然插入被测 介质中以及传感器以扫描方式测量某温度场的 温度分布等情况下,都存在动态测温问题,如 图所示:
动态测温
1.2 传感器的一般特性
传感器的种类和形式很多,但它们一般可以 简化为一阶或二阶系统。 高阶可以分解成若干个低阶环节。 对于正弦输入信号,传感器的响应称为频率 响应或稳态响应;对于阶跃输入信号,则称 为传感器的阶跃响应或瞬态响应。

传感器的一般特性

传感器的一般特性

• 通常用下面四个指标来表示传感器的动态性 能(P37): (1)时间常数τ (2)上升时间tr (3)响应时间t5、t2 (4)超调量

• 2.频域性能指标(P32) 通常在正弦信号作用下测定传感器动 态性能的频域指标,称为频率法。具体方 法是在传感器输入端加恒定幅值的正弦信 号,测出不同频率下稳定输出信号的幅值, 绘制出幅频特性曲线。 频域通常有下面三个动态性能指标: (1)通频带 b (2)工作频带 (3)相位误差
• 2.2传感器的动态特性 传感器的动态特性是指输入量随时间动态变 化时,其输出与输入的关系。传感器所检测的物 理量大多数是时间的函数,为使传感器输出信号 及时准确地反映输入信号的变化,不仅要求它具 有良好的静态特性,还要求它具有良好的动态特 性。 为研究传感器的动态特性,可建立其动态数 学模型,用数学中的逻辑推理和运算方法,分析 传感器在动态变化的输入量作用下,输出量如何 随时间改变。也常用实验手段研究传感器的动态 特性,即给传感器一个“标准”信号(正弦输入 和阶跃输入),测出其输出随时间的变化关系, 进而得到其各项动态特性技术指标。
1.理想的线性特性 当a0=a2 =a3=…=an=0时,具有这种特性。此时 y=a1x,静态特性曲线是一条直线,传感器的灵敏 度为Sn=y/x=a1=常数 2.非线性项仅有一次项和偶次项 即y= a1x+a2x2+a4x4+… 因不具有对称性,其线性范围较窄,所以在设 计传感器时一般很少采用这种特性。当出现 时,必须采取线性化补偿措施。
• 2.2.1传感器的动态数学模型 要精确建立传感器或其测试系统的数学 模型是很困难的,在工程上采取一些近似, 略去一些影响不大的因素。通常把传感器 看成一个线性时不变系统,用常系数线性 微分方程来描述其输出量y与输入量x之间的 关系。 对于一个复杂的系统或输入信号,求解 微分方程是很难的,常用一些足以反映系 统动态特性的函数,将系统的输出与输入 联系起来,这些函数有传递函数、频率响 应函数和脉冲响应函数等。

《自动检测技术》习题集及部分参考答案

《自动检测技术》习题集及部分参考答案

《自动检测技术》习题集及部分参考答案第一章传感器和测量的基本知识§1-1测量的基本概念复习思考题1.测量的定义及其内容是什么?2.直接测量和间接测量的定义是什么?3.直接测量的方法有几种方法?它们各自的定义是什么?4.仪表精度有几个指标?它们各自的定义是什么?(学习指导p1)5.仪表分辨力的定义是什么?作业题1.测量是借助和和,取得被测对象的某个量的大小或符号;或者取得与之间的关系。

(专用技术;设备;实验;计算;一个变量;另一变量)2.测量是将被测量与通过专用的技术和设备进行比表示测量结果时,必须注明(同性质的标准量;比较;标准量倍数;标准量某0的单位)3.直接测量是从事先间的函数关系,先测出,再通过相应的函数关系,被测量的数值。

(分度好的表盘;被测量;某种中间量;中间量;计算出)4.直接测量方法中,又分,和。

(零位法;偏差法;微差法)5.零位法是指在比较仪器中进行,让仪器指零机构,从而确定被测量等于该方法精度(被测量;已知标准量;比较;达到平衡(指零);已知标准量;较高)6.偏差法是指测量仪表用,直接指出被测量的大小。

该法测量精度一般不高。

(指针、表盘上刻度线位移)7.微差法是和的组合。

先将被测量与一个进行用测出。

(零位法;偏差法;已知标准量;比较;偏差法)8.测量仪表指示值程度的量称为精密度。

测量仪表指示值有规律地称为准确度。

(不一致;偏离真值)9.测量仪表的精确度简称,是和以测量误差的来表示。

(精度;精密度;准确度;相对值)10.显示仪表能够监测到被测量(最小变化)§1-2传感器的一般特性复习思考题1.试述传感器的定义及其在检测中的位置。

2.传感器静态特性和动态特性的定义是什么?3.传感器静态特性的技术指标及其各自的定义是什么?作业题1.传感器是与被测对象接触的环节,它将被测量转换成与机构。

它是检测和控制中最关键的部分。

(最初;被测量有确定对应关系;电量)2.通常用传感器的和来描述传感器输出-输入特性。

传感器的一般特性

传感器的一般特性

其传递函数为
H (s) H1 (s) H 2 (s)
1.2.1
传感器的动态数学模型
在大多数情况下,可假设bm =bm1 =…=b1 =0,则传感器的动态数学模型可简化为
b0 Y(s) H(s) X(s) an s n an 1s n 1 a1s a0
并可进一步写成
1.1 传感器的静态特性
√ √
1.1.1
1.1.2
传感器的静态数学模型
描述传感器静态特性的主要指标
第1章
传感器的一般特性

1.1 1.2
传感器的静态特性 传感器的动态特性
1.2
传感器的动态特性
当被测量随时间变化时, 传感器的输出量也 随时间变化,其间的关系要用动态特性来表示。除 了具有理想的比例特性外, 输出信号将不会与输入 信号具有相同的时间函数,这种输出与输入间的差 异就是所谓的动态误差。
1.1 传感器的静态特性

1.1.1 1.1.2
传感器的静态数学模型 描述传感器静态特性的主要指标
1.1.2
描述传感器静态特性的主要指标
通过理论分析建立数学模型往往很困难。 借助实验方法,当满足静态标准条件的要求, 且使用的仪器设备具有足够高的精度时,测得的 校准特性即为传感器的静态特性。 由校准数据可绘制成特性曲线,通过对校准 数据或特性曲线的处理,可得到描述传感器静态 特性的主要指标。
1.2.1
传感器的动态数学模型
r
1 H ( s) A 2 2 j 1 s 2 jnj s nj i 1 s pi
上式中, 每一个因子式可看成一个子系统的 传递函数。由此可见,一个复杂的高阶系统总可 以看成是由若干个零阶、一阶和二阶系统串联而 成的。

传感器原理及应用(第三版)第1章

传感器原理及应用(第三版)第1章
=0.0987/(e-1)=5.75%(非线性误差最小,拟合精度最高)
三、精确度(精度)
精确度由三个指标:精密度、正确度和精确度 (一)精密度
它说明测量结果的分散性。即对某一稳定的对象(被测量)由 同一测量者用同一传感器和测量仪表在相当短的时间内连续反复测 量多次其测量量的分散程度。 愈小则说明测量越精密。
常数;对非线性
传感器而言,灵
敏度随输入量的
变化而变化。
从输出曲线看,
曲线越陡,灵敏
度越高。可以通
xmax
过作该曲线某一 点的切线的方法
x (作图法)求得 曲线上任一点的
灵敏度。
灵敏度太高,检测系统的稳定性将降低。
例1 :已知某传感器静态特性方程y=ex,试分别用切线 法,端基法和最小二乘法,在0<x<1范围内拟合基准直 线方程,并求出相应的线性度。
电阻R/ 765 826 873 942 1032
电阻R随温度t的变化规律必须用MATLAB进行曲线拟合
1100
1000
900
800
700
20
40
60
80
100
例:一组测量数据的曲线拟合
已知一组(二维)数据,即平面上 n个点(xi,yi) i=1,…n,利用MATLAB,可以寻求到一个函数(曲线) y=f(x), 使 y=f(x)在某种准则下与所有数据点最为接近, 即曲线拟合得最好。
Y a1X a2 X 2 a4 X 4
(4)具有 X奇、偶次阶项的非线性[图1-1(d)]
Y a1X a2 X 2 a3 X 3 a4 X 4
上一页
下一页
返回
奇次项的曲 线在原点附 近较接近直 线

第1章 传感器的特性

第1章 传感器的特性
29
3.重复性(Repeatability) 传感器在同一工 作条件下输入量 按同一方向(同为 正行程或同为反 行程)作全量程连 续多次变动时所 得特性曲线的不 一致程度。
重复性误差:
Rmax R 100% YFS
△Rmax:正(反)行程中的最大重复偏差
特性曲线一致性好, 重复性就好,误差就小。
3
传感器的特性:传感器所有性质的总称。 传感器的基本特性:输出/输入特性。
概述
静态特性 : 被测参量基本不随时间变化或变化很缓慢时,传 感器的输出/输入特性。
动态特性 :
被测参量随时间变化时 ,传感器的输出/输入特 性。
5
传感器的特性
1.1 传感器静态特性方程与特性曲线 1.2 传感器的静态特性 1.3 传感器的动态特性
取2σ或3σ值即为传感器静态误差。静态误差也 可用相对误差表示,即:
3 100% y FS
静态误差是一项综合性指标,基本上包含了前面 叙述的非线性误差、迟滞误差、重复性误差、灵敏度 误差等。所以也可以把这几个单项误差综合而得,即:
L H R S
2 2 2
(3-3)
32
1.2 传感器静态特性的主要指标
• 由于受很多因素的影响,会引起灵敏度变化从而产生灵敏 度误差,习惯上用相对误差表示
s
k k
100%
• 灵敏度的量纲: 输出的量纲/输入的量纲。V/℃、mv/g、A/g、mv/mm
• 能量控制型传感器,灵敏度与供给sensor的电源电压有关。 例如:100(mv/mm.V) 某位移传感器,当电源电压为1V时,每1mm位移的变化量 引起输出电压变化100mv。
|
温度稳定性(温漂):传感器在外界温度变化情况下输 出量发生的变化,又称为温度漂移。 抗干扰能力稳定性:传感器对各种外界干扰的抵抗能力。

武汉大学传感器技术课件-传感器一般特性

武汉大学传感器技术课件-传感器一般特性
传感器技术
主讲人: 吴琼水
武汉大学电子信息学院
第1章 传感器的一般特性
1.1 传感器静态特性
静态特性指标
(1)线性度 (2)灵敏度 (3)精确度(精度) (4)最小检测量和分辨力 (5)迟滞 (6)重复性 (7)稳定性 (8)漂移
线性度(Linearity)
在规定的条件下,传感器静态校准曲线(实际曲线)与拟合直线间最大偏差 与满量程输出值的百分比称为线性度。
传感器技术
主讲人: 吴琼水
武汉大学电子信息学院
第1章 传感器的一般特性
1.1 传感器静态特性
静态特性指标
(1)线性度 (2)灵敏度 (3)精确度(精度) (4)最小检测量和分辨力 (5)迟滞 (6)重复性 (7)稳定性 (8)漂移
迟滞
传感器在输入量由小到大(正行程)及输入量由大到小(反行程)变化期间其输入 输出特性曲线不重合的现象称迟滞。
例:某电子秤: 增加砝码
电桥输出 减砝码输出
0 g —— 50g —— 100g —— 200g 0.5 mv --- 2.0mv -- 4.0mv --- 8.0mv 0.6 mv --- 2.2mv ---4.5mv --- 8.0mv
H
H max
/Y FS
100%
产生这种现象的主要原因是由于传感器敏感元件材 料的物理性质和机械另部件的缺陷所造成的,例如弹 性敏感元件弹性滞后、运动部件摩擦、传动机构的间 隙、紧固件松动等。
准确度
说明传感器输出值与真值的偏离程度。准确度是系统误差大小的标志。
精确度
是精密度与准确度两者的综合优良程度。
低精密度, 低正确度
高精密度, 低正确度
低精密度, 高正确度

传感器原理及应用_第三版_(王化祥_张淑英_)_课后答案

传感器原理及应用_第三版_(王化祥_张淑英_)_课后答案
1-3:答:传感器的精度等级是允许的最大绝对误差相对于其测量范围的百分数,即 A=ΔA/YFS*100% 1-4;答:(1):传感器标定曲线与拟合直线的最大偏差与满量程输出值的百分比叫传感器 的线性度;(2)拟合直线的常用求法有:端基法和最小二乘法。 1-5:答:由一阶传感器频率传递函数 w(jw)=K/(1+jωτ),确定输出信号失真、测量结果在 所要求精度的工作段,即由 B/A=K/(1+(ωτ)2)1/2,从而确定ω,进而求出 f=ω/(2π). 1-6:答:若某传感器的位移特性曲线方程为 y1=a0+a1x+a2x2+a3x3+……. 让另一传感器感受相反方向的位移,其特性曲线方程为 y2=a0-a1x+a2x2-a3x3+……, 则Δy=y1-y2=2(a1x+a3x3+ a5x5……),这种方法称为差动测量法。其特点输出信号中没有偶次 项,从而使线性范围增大,减小了非线性误差,灵敏度也提高了一倍,也消除了零点误差。 1-7:解:YFS=200-0=200 由 A=ΔA/YFS*100%有 A=4/200*100%=2%。 精度特级为 2.5 级。 1-8:解:根据精度定义表达式:A=ΔA/AyFS*100%,由题意可知:A=1.5%,YFS=100 所以 ΔA=A YFS=1.5 因为 1.4<1.5 所以 合格。 1-9:解:Δhmax=103-98=5 YFS=250-0=250 故δH=Δhmax/YFS*100%=2% 故此在该点的迟滞是 2%。 1-10:解:因为传感器响应幅值差值在 10%以内,且 Wτ≤0.5,W≤0.5/τ,而 w=2πf, 所以 f=0.5/2πτ≈8Hz 即传感器输入信号的工作频率范围为 0∽8Hz 1-11 解:(1)切线法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
因为曲线相对原点对 称,所以在相当宽的范 围内近似于线性;
检测技术与自动化仪表
(c) 仅有偶次非线性项
y a1x a2x2 a4x4
仅有偶次非线性项的 传感器,没有对称性, 线性范围窄,一般设计 传感器时很少使用者这 种特性;
检测技术与自动化仪表
(d) 奇次、偶次非线性项同时存在
y a1x a2 x2 a3x3 a4x4
对应于不同ζ值的二阶传感器的单位阶跃响应曲线如下图所示。
二阶传感器单位阶跃响应图
由图可见,在一定的ζ值下, 欠阻尼系统比临界阻尼系统更快地 到达稳态值。过阻尼系统反应迟钝, 动作缓慢,所以一般传感器都设计 成欠阻尼式的, 取值一般为0.6~ 0.8。
可以从时域中瞬态响应和过渡过程进行分析,阶跃信号、冲激
信号和斜坡信号都是常用的激励信号。
下面主要介绍阶跃输入时的阶跃响应。
设单位阶跃信号为:
xt
0 1
t0 t 0
则它的拉氏变换为:
X
s
Lxt
0
xt
e st
dt
1 s
检测技术与自动化仪表
(1)零阶传感器的单位阶跃响应 零阶传感器单位阶跃响应的通式:
一阶传感器的单位阶跃响应信号为:
t
y(t)=1-e
一阶传感器的单位阶跃响应 检测技术与自动化仪表
t=4τ时,可
以认为已达到 稳态, τ越小
越好
(3)二阶传感器的单位阶跃响应
二阶传感器的单位阶跃响应的通式为:
d
2 y(t) dt 2ຫໍສະໝຸດ 2ndy(t) dt
n2
y(t)
n2 x(t )
n ——传感器的固有频率
静态测量
检测技术与自动化仪表
动态测量
检测技术与自动化仪表
如何选择使用传感器、 如何评价传感器的好 坏——需要了解传感器 的特性
7/21/2020
检测技术与自动化仪表
第一章
1.2 传感器的一般特性
1.2.1传感器的静态特性
1.2.2传感器的动态特性 1.2.3 传感器的动态特性分析 1.2.4 传感器的标定
dt
式中 x(t)、 y(t)分别为传感器的输入量和输出量,均是 时间的函数,表征传感器的时间常数,具有时间“秒 ”的量纲。 一阶传感器的传递函数:
H (s) Y(S) 1
X (S) s 1
检测技术与自动化仪表
对阶跃信号,传感器输出的拉氏变换为:
Y(s)= H(s)X(s)= 1 1
s 1 s
传感器在输入按同一方向连续多次变动时所得特性曲线
不一致的程度
用标准差表示
R
2 ~ 3
YFS
100%
用最大偏差表示
y
ΔRmax2
正行程的最大重复性偏差 R max1
反行程的最大重复性偏差 R max2
取较大者为 R max
ΔRmax1 x
R (Rmax YFS ) 100 %
检测技术与自动化仪表
5. 精度
检测技术与自动化仪表
①理论拟合 y
ΔLmax
x
拟合直线为传感器的理论特性,是一条通过零点的直线 与实际测试值无关。这种方法十分简单,但一般说 LMax 较大
检测技术与自动化仪表
②过零旋转拟合
y
ΔL1 ΔL2
x
曲线过零的传感器。拟合时,使 L1 L2 LMax 这种方法也比较简单,非线性误差比第一种小得多。
检测技术与自动化仪表
1.2 传感器的基本特性
传感器的基本特性——输出量与输入量 之间的关系
静态量——输入量为常量或缓慢变化的量 动态量——输入量随时间变化的量
检测技术与自动化仪表
1.2.1 传感器的静态特性
静态特性:被测量在静态工作状态下,输出与输入的 关系式,即y=f(x)。与时间无关
传感器的静态特性方程式(不考虑迟滞、蠕变等因素的影响):
通常研究动态特性是根据标准输入特性来考虑传感器 的响应特性。常常将几种特定的输入时间函数如阶跃函数、 脉冲函数、斜坡函数以及正弦函数作为标准输入信号。
检测技术与自动化仪表
动态特性用数学模型来描述,对于连续时间系 统,研究其动态特性,可以从时域中的微分方程、 复数域中的传递函数以及频率域中的频率特性几 个方面采用瞬态响应法和频域响应法来分析。
最常见的漂移是温度漂移,即周围环境温度变化引起的输 出量的变化,温度漂移主要表现为温度零点漂移和温度灵敏度 漂移。
温度漂移通常用传感器工作环境温度偏移标准环境温度 (一般为20°C)时的输出值的变化量与温度变化量之比 来表 示,即:
yt y20
t
检测技术与自动化仪表
9.稳定性
稳定性是指传感器在相当长工作时间内保持其性能 的能力。因此稳定性又称长期稳定性。
检测技术与自动化仪表
休息一下
检测技术与自动化仪表
1.2.3 传感器的动态特性分析
传感器的种类很多,但它们一般可以简化为 一阶或二阶系统。这样,分析一阶和二阶系统的 动态特性,就对各种传感器的动态特性有了基本 了解,而不必一一分别研究。
检测技术与自动化仪表
1.传感器的瞬态响应
传感器的动态特性除了用频率域中的频率特性来评价外,也
输 出 量
零 点 输 出
理输
论 灵

敏量 度
非线性项系数
在实际工作中,为了读数方便,使仪表具有均匀刻度的 标尺和便于分析、处理测量结果,常用一条拟合直线近似地 代表实际的特性曲线
直线拟合线性化
非线性误差或线性度
检测技术与自动化仪表
L
LMax YFS
100%
最大偏差 满量程输出
注:YFS =Y max - Y0
H s
Y s X s
传感器的一般方程式,当其初值为零时,其拉氏变换式为:
H s
Y s Xs
bm s m an s n
bm1s m1 b1s1 b0 an1s n1 a1s1 a0
检测技术与自动化仪表
3.频率域中的频率特性
对于稳定的常系数线性系统,在初始条件为零的条件下,输
ζ ——传感器的阻尼比
二阶传感器的传递函数:
H (s)
s2
n2 2n s
n2
检测技术与自动化仪表
二阶传感器输出的拉氏变换:
Y (s) H (s)X (s)
n2
s s2 2ns n2
二阶传感器的单位阶跃响应信号为:
yt 1
e nt
1 2
s in d t
arcsin
1 2
检测技术与自动化仪表
精度是反映系统误差和随机误差的综合指标,一般用方 和根法或代数和法计算。用线性度、重复性和迟滞三项 的方和根或简单的代数和表示为
2 L
2 R
2 H
或者
= L R H
其中,方和根用得比较多。
检测技术与自动化仪表
6. 分辨力
分辨力是指传感器在规定测量范围内检测被测量的最 小变化量的能力。也就是说,如果输入量从某一非零值开 始缓慢地发生变化,当输入变化值未超过某一数值时,传 感器的输出不会发生变化(即传感器分辨不出输入量的变 化)。只有当输入量的变化超过了分辨力量值时,其输出 才会发生变化。分辨力的高低从某一个侧面也反映了传感 器的精度。
出信号y(t) 的傅氏变换Y(jω) 与输入信号X(jω) 之比为传
感器系统的频率响应函数(频率特性),记为H(jω) 或 H(ω),
即:
H ( j) Y ( j)
X ( j)
A H j H R 2 H I 2
-----------幅频特性。
arctan
H
j
arctan
H H
I R
-----------相频特性。
非线性误差是以一定的拟合直线或者理想直线为基准 直线算出来的。因此不能笼统的说线性度或非线性误差, 必须同时说明所依据的基准直线。 即使是同类传感器, 基准直线不同,所得线性度也不同。
检测技术与自动化仪表
直线拟合线性化
❖ 出发点
获得最小的非线性误差
拟合方法: ①理论拟合; ②过零旋转拟合; ③端点连线拟合; ④端点连线平移拟合; ⑤最小二乘拟合;(拟合精度最高) ⑥最小包容拟合
线性
非线性
灵敏度S值越高表示传感器越灵敏。但要注意:当讨论某一传感 器的灵敏度时,必须确切地说明它的单位。
检测技术与自动化仪表
3. 迟滞
正(输入量增大)反(输入量减小)行程中输出输入曲
线不重合的现象称为迟滞
Y
H
H max YFS
100%或 H
H max 2YFS
100%
H max —正反行程间输出的最大差值。
y(t) Kx(t)
式中 x(t)、y(t) 分别为传感器的输入量和输出量,均是 时间的函数,表征传感器的时间常数,具有时间“秒 ”的量纲。 零阶传感器的传递函数:
H (s) Y(s) K X (s)
检测技术与自动化仪表
(2)一阶传感器的单位阶跃响应
一阶传感器单位阶跃响应的通式:
dy(t) y(t) x(t)
ΔHmax x
迟滞误差的另一名称叫回程误差,常用绝对误差表示 检测回程误差时,可选择几个测试点。对应于每一输入信号,
传感器正行程及反行程中输出信号差值的最大者即为回程误差。
迟滞现象反映了传感器机械结构和制造工艺上的缺陷,如 轴承摩擦、间隙、螺钉松动、元件腐蚀或者碎裂及积尘等。
检测技术与自动化仪表
4. 重复性
检测技术与自动化仪表
1.动态特性的时域数学描述-微分方程
为了便于分析传感器的动态特性,必须建立数学模型。线性 系统的数学模型为一常系数线性微分方程。对线性系统动态特 性的研究,其方法之一就是分析数学模型的输入量 与输出量 之间的关系,通过对微分方程求解,就可得到动态性能指标。
相关文档
最新文档