屈婉玲版离散数学课后习题答案
离散数学屈婉玲版课后习题

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p →q)∧(p →r)⇔(p →(q ∧r))(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨q) ∧⌝(p ∧q)证明(2)(p →q)∧(p →r)⇔ (⌝p ∨q)∧(⌝p ∨r)⇔⌝p ∨(q ∧r))⇔p →(q ∧r)(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨(⌝p ∧q)) ∧(⌝q ∨(⌝p ∧q)⇔(p ∨⌝p)∧(p ∨q)∧(⌝q ∨⌝p) ∧(⌝q ∨q)⇔1∧(p ∨q)∧⌝(p ∧q)∧1⇔(p ∨q)∧⌝(p ∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p →q)→(⌝q ∨p)(2)⌝(p →q)∧q ∧r(3)(p ∨(q ∧r))→(p ∨q ∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p∨(⌝q∨p))∧(⌝q∨(⌝q∨p))⇔1∧(p∨⌝q)⇔(p∨⌝q) ⇔ M1⇔∏(1)(2) 主合取范式为:⌝(p→q)∧q∧r⇔⌝(⌝p∨q)∧q∧r⇔(p∧⌝q)∧q∧r⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p∨(q∧r))→(p∨q∨r)⇔⌝(p∨(q∧r))→(p∨q∨r)⇔(⌝p∧(⌝q∨⌝r))∨(p∨q∨r)⇔(⌝p∨(p∨q∨r))∧((⌝q∨⌝r))∨(p∨q∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r ∨q 前提引入⑤¬r ④化简律⑥r ∧¬s 前提引入⑦r ⑥化简律⑧r ∧﹁r ⑤⑦ 合取由于最后一步r ∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有错误!未找到引用源。
离散数学答案-屈婉玲版-第二版-高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⌝p∨(q∧r))p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q)(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)1∧(p∨q)∧⌝(p∧q)∧1(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⌝(p ∨q)∨(⌝q ∨p)(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⌝(p ∨q)∨(⌝q ∨p)(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⌝(p ∨(q ∧r))→(p ∨q ∨r)(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解:F(x): 2=(x+)(x).G(x): x+5=9.(1)在两个个体域中都解释为)∀,在(a)中为假命题,在(b)中为真命题。
离散数学答案屈婉玲版第二版高等教育出版社课后答案

离散数学答案屈婉玲版第二版高等教育出版社课后答案离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1) p V (q A r)二0 V (0 A 1) =0(2) ( p?r)A (「q V s)二(0?1)A (1 V 1) = 0A 1= 0.(3) ( — p A 一q A r) ?(p A q A「r)二(1 A 1 A 1) ? (0 A 0A 0)=0(4) (一「A s)—(p A _q) = (0A 1)—(1 A 0) =0—0=117.判断下面一段论述是否为真:“二是无理数。
并且,如果3是无理数,则也是无理数。
另外6能被2整除,6才能被4整除。
”答:p:二是无理数1q: 3 是无理数0r: ' 2是无理数1s: 6能被2整除1t: 6 能被4整除0命题符号化为:p A (q —r) A (t —s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4) (p —q) —( 一q—一p)(5) (p A r) ' ( 一p A 一q)(6) ((p —q) A (q —r)) —(p —r)答:(4)p q p —q _q _p —q—一p (p —q) — (一q—一p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5) 公式类型为可满足式(方法如上例)(6) 公式类型为永真式(方法如上例)第二章部分课后习题参考答案3. 用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值?⑴飞A q-q)(2) (p -(p V q)) V (p -r)(3) (p V q) -(p A r)答:(2) (p—(p V q) )V (p —r)=(—p V (p V q)) V (_p V r) u - p V p V q V r= 1 所以公式类型为永真式⑶P q r p V q p A r (p V q)—(p A r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4. 用等值演算法证明下面等值式:(2) (p —q) A (p —r)二(p —(q A r))⑷(p A - q) V (-p A q)=(p V q) A 一(p A q)证明(2) (p —q) A (p —r)(一p V q) A ( 一p V r):二_ p V (q A r))二p—(q A r)(4) (p A - q) V ( 一p A q)u (p V (一p A q)) A(_ q V (一p A q)-(p V _ p) A (p V q) A ( 一q V 一p) A ( 一q V q)=1 A (p V q) A 一(p A q) A 1二(p V q) A _ (p A q)5. 求下列公式的主析取范式与主合取范式,并求成真赋值(1) ( _p—q) —(一q V p)(2) _(P —q) A q A r(3) (p V (q A r)) -(p V q V r)解:(1) 主析取范式(- p-q) —( 一q p)二_(p q) ( 一q p)=(- p -q) ( 一q p)=(一p _q) (一q p) (一q _p) (p q) (p _q)u ( - p _q) (p _q) (p q)-刀(0,2,3)主合取范式:(_p—q) —( 一q p)-_(p q) ( 一q p)=(- p -q) ( 一q p)=(一P (一q P)) (一q (一q p))=1 (p — q)二(p —q)二M i=n (i)(2) 主合取范式为:_(p —q) q r=—(一p q) q ru (p _q) q 产0所以该式为矛盾式?主合取范式为n (0,123,4,5,6,7)矛盾式的主析取范式为0(3) 主合取范式为:(p (q r)) —(p q r)=一(p (q r)) —(p q r)=(一p (一q _r)) (p q r)=(一p (p q r)) (( _q - r)) (p q r))二 1 i二 1所以该式为永真式永真式的主合取范式为1主析取范式为刀(0,123,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2) 前提:p—. q, —(q r),r(4)前提:q— p,q『s,s『t,t r结论:p q证明:(2)①—(q r) 前提引入②—q —r ①置换③q,一「②蕴含等值式④r 前提引入⑤一q ③④拒取式⑥p- q 前提引入⑦」p (3)⑤⑥拒取式证明(4):①t r 前提引入②t ①化简律③qi s 前提引入④s—?t 前提引入⑤q r t ③④等价三段论( q > t)(t r q)?⑤置换炉(q >t)⑥化简⑧q ②⑥假言推理⑨ q—;p 前提引入⑩p ⑧⑨假言推理(11)p q ⑧⑩合取15在自然推理系统P中用附加前提法证1 F面各推理:结论:_ p(1)前提:pr (qr r),s r p,q结论:s —? r ①s 附加前提引入②Sr P前提引入③P①②假言推理④ p —;(q —; r)前提引入⑤q — r③④假言推理⑥q 前提引入⑦r⑤⑥假言推理16在自然推理系统 P 中用归谬法证明下面各推理:(1)前提:p ,—q, - r q,r _s结论:- p 证明:①p 结论的否定引入② p —「q 前提引入q ①②假言推理 r q 前提引入⑤「r ④化简律⑥r 「s 前提引入⑦r ⑥化简律⑧r 「r ⑤⑦合取由于最后一步r 「r 是矛盾式,所以推理正确. 第四章部分课后习题参考答案3.在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为的真值:(1)对于任意 x,均有 2=(x+ )(x ).证明(a),(b) 条件时命题(2)存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合.解:F(x): 2=(x+ 一)(x 一).G(x): x+5=9.(1) 在两个个体域中都解释为-xF(x),在(a)中为假命题,在(b)中为真命题。
离散数学第三版-屈婉玲-课后习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)111 19、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q0 0 1 1 1 10 1 1 0 1 01 0 0 1 0 11 1 0 0 0 1由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q) 1q0q0成真赋值有:01,10,11。
所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(p q)r(pq r,此即主析取范式。
屈婉玲版离散数学课后习题答案【1】

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
〔1〕p∨(q∧r)⇔0∨(0∧1)⇔0〔2〕〔p↔r〕∧(﹁q∨s)⇔〔0↔1〕∧(1∨1)⇔0∧1⇔0.〔3〕〔⌝p∧⌝q∧r〕↔(p∧q∧﹁r)⇔〔1∧1∧1〕↔ (0∧0∧0)⇔0(4)〔⌝r∧s〕→(p∧⌝q)⇔〔0∧1〕→(1∧0)⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
〞答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:〔4〕(p→q) →(⌝q→⌝p)〔5〕(p∧r)↔(⌝p∧⌝q)〔6〕((p→q) ∧(q→r)) →(p→r)答:〔4〕p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式//最后一列全为1〔5〕公式类型为可满足式〔方法如上例〕//最后一列至少有一个1〔6〕公式类型为永真式〔方法如上例〕//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)〔p→(p∨q)〕∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r 〔p∨q〕→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明〔2〕(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)〔4〕(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取X式与主合取X式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:〔1〕主析取X式(⌝p→q)→(⌝q∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q) ⇔(⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取X 式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q)⇔ M 1⇔∏(1)(2) 主合取X 式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取X 式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取X 式为 0(3)主合取X 式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取X 式为 1主析取X 式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:〔2〕①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明〔4〕:①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥〔q→t〕∧(t→q) ⑤置换⑦〔q→t〕⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r是矛盾式,所以推理正确.。
屈婉玲版离散数学课后习题答案【1】

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式//最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q) ⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p)) ⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r ⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.。
离散数学第三版-屈婉玲-课后习题答案

离散数学习题答案习题一及答案:(P14-15)14、将下列命题符号化:(5)李辛与李末是兄弟解:设p:李辛与李末是兄弟,则命题符号化的结果是p(6)王强与刘威都学过法语p q解:设p:王强学过法语;q:刘威学过法语;则命题符号化的结果是(9)只有天下大雨,他才乘班车上班q p解:设p:天下大雨;q:他乘班车上班;则命题符号化的结果是(11)下雪路滑,他迟到了解:设p:下雪;q:路滑;r:他迟到了;则命题符号化的结果是(p q)r15、设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起.求下列复合命题的真值:(p q r)((p q)r)(4)解:p=1,q=1,r=0,(p q r)(110)1,((p q)r)((11)0)(00)1 (p q r)((p q)r)111 19、用真值表判断下列公式的类型:(p p)q(2)解:列出公式的真值表,如下所示:p p qq(p p)(p p)q0 0 1 1 1 10 1 1 0 1 01 0 0 1 0 11 1 0 0 0 1由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。
20、求下列公式的成真赋值:(4)(p q)q解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是:p0(p q) 1q0q0成真赋值有:01,10,11。
所以公式的习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值:(2)(p q)(q r)解:原式(p q)q r(p p)q rq r,此即公式的主析取范式,m m(p q r)(p q r)37所以成真赋值为011,111。
*6、求下列公式的主合取范式,并求成假赋值:(2)(p q)(p r)解:原式,此即公式的主合取范式,M(p p r)(p q r)(p q r)4所以成假赋值为100。
7、求下列公式的主析取范式,再用主析取范式求主合取范式:(1)(p q)r解:原式p q(r r)((p p)(q q)r)(p q r)(p q)r(p q)r(p q)r(p q)r(pq r(p q r)(p q)r(p q)r(p q)r(pq r,此即主析取范式。
离散数学屈婉玲版课后习题

第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔ 0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数 0r: 2是无理数 1s: 6能被2整除 1t: 6能被4整除 0命题符号化为: p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1 所以公式类型为永真式(3) P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p →q)∧(p →r)⇔(p →(q ∧r))(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨q) ∧⌝(p ∧q) 证明(2)(p →q)∧(p →r)⇔ (⌝p ∨q)∧(⌝p ∨r) ⇔⌝p ∨(q ∧r))⇔p →(q ∧r)(4)(p ∧⌝q)∨(⌝p ∧q)⇔(p ∨(⌝p ∧q)) ∧(⌝q ∨(⌝p ∧q)⇔(p ∨⌝p)∧(p ∨q)∧(⌝q ∨⌝p) ∧(⌝q ∨q) ⇔1∧(p ∨q)∧⌝(p ∧q)∧1 ⇔(p ∨q)∧⌝(p ∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p →q)→(⌝q ∨p)(2)⌝(p →q)∧q ∧r (3)(p ∨(q ∧r))→(p ∨q ∨r) 解:(1)主析取范式(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q) ⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p) ⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p∨(⌝q∨p))∧(⌝q∨(⌝q∨p))⇔1∧(p∨⌝q)⇔(p∨⌝q) ⇔ M1⇔∏(1)(2) 主合取范式为:⌝(p→q)∧q∧r⇔⌝(⌝p∨q)∧q∧r⇔(p∧⌝q)∧q∧r⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p∨(q∧r))→(p∨q∨r)⇔⌝(p∨(q∧r))→(p∨q∨r)⇔(⌝p∧(⌝q∨⌝r))∨(p∨q∨r)⇔(⌝p∨(p∨q∨r))∧((⌝q∨⌝r))∨(p∨q∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p(3)⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p →(q →r) 前提引入 ⑤q →r ③④假言推理 ⑥q 前提引入 ⑦r ⑤⑥假言推理16在自然推理系统P 中用归谬法证明下面各推理:(1)前提:p →⌝q,⌝r ∨q,r ∧⌝s 结论:⌝p 证明:①p 结论的否定引入 ②p →﹁q 前提引入 ③﹁q ①②假言推理 ④¬r ∨q 前提引入 ⑤¬r ④化简律 ⑥r ∧¬s 前提引入 ⑦r ⑥化简律 ⑧r ∧﹁r ⑤⑦ 合取由于最后一步r ∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章部分课后习题参考答案
3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:
(1) 对于任意x,均有2=(x+)(x).
(2) 存在x,使得x+5=9.
其中(a)个体域为自然数集合.
(b)个体域为实数集合.
解:
F(x): 2=(x+)(x).
G(x): x+5=9.
(1)在两个个体域中都解释为)(x
∀,在(a)中为假命题,在
xF
(b)中为真命题。
(2)在两个个体域中都解释为)(x
∃,在(a)(b)中均为真命
xG
题。
4. 在一阶逻辑中将下列命题符号化:
(1) 没有不能表示成分数的有理数.
(2) 在卖菜的人不全是外地人.
解:
(1)F(x): x能表示成分数
H(x): x是有理数
命题符号化为: ))
F
x∧
x
⌝∃
⌝
)
(
H
(
(x
(2)F(x): x是卖菜的人
H(x): x是外地人
命题符号化为: ))
F
⌝∀
x
x→
(x
(
H
)
(
5. 在一阶逻辑将下列命题符号化:
(1) 火车都比轮船快.
(3) 不存在比所有火车都快的汽车.
解:
(1)F(x): x是火车; G(x): x是轮船; H(x,y): x比y快
命题符号化为: ))
F
y
x
G
∀
y
∀
∧
x→
(
(
))
(
H
)
x
((y
,
(2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快
命题符号化为: )))
x
F
x
y
G
∧
∀
H
⌝∃
y→
)
(
,
x
(
(
(
(y
)
9.给定解释I如下:
(a) 个体域D为实数集合R.
(b) D中特定元素=0.
(c) 特定函数(x,y)=x y,x,y D
∈.
(d) 特定谓词(x,y):x=y,(x,y):x<y,x,y D
∈.
说明下列公式在I下的含义,并指出各公式的真值:
(1)))
y
y
x
∀
∀
→
x⌝
G
)
(
,
,
(
x
(y
F
(2)))
a
x
y
f
F
∀
x→
y
∀
(
G
(
,
),
)
,
(y
x
(
答:(1) 对于任意两个实数x,y,如果x<y, 那么x≠y. 真值1.
(2) 对于任意两个实数x,y,如果x-y=0, 那么x<y. 真值0.
10. 给定解释I如下:
(a)个体域D=N(N为自然数集合).
(b)D中特定元素=2.
(c)D上函数=x+y,(x,y)=xy.
(d)D上谓词(x,y):x=y.
说明下列各式在I下的含义,并讨论其真值.
(1)xF(g(x,a),x)
(2)x y(F(f(x,a),y)→F(f(y,a),x)
答:(1) 对于任意自然数x, 都有2x=x, 真值0.
(2) 对于任意两个自然数x,y,使得如果x+2=y, 那么y+2=x. 真值0.
11. 判断下列各式的类型:
(1)
(3) yF(x,y).
解:(1)因为1
⇔
→
q
→p
p
p为永真式;
q
p
⌝
(
)
)
(⇔
∨
∨
⌝
所以为永真式;
(3)取解释I个体域为全体实数
F(x,y):x+y=5
所以,前件为任意实数x存在实数y使x+y=5,前件真;
后件为存在实数x对任意实数y都有x+y=5,后件假,]
此时为假命题
再取解释I个体域为自然数N,
F(x,y)::x+y=5
所以,前件为任意自然数x存在自然数y使x+y=5,前件假。
此时
为假命题。
此公式为非永真式的可满足式。
13. 给定下列各公式一个成真的解释,一个成假的解释。
(1) (F(x)
(2) x(F(x)G(x)H(x))
解:(1)个体域:本班同学
F(x):x会吃饭, G(x):x会睡觉.成真解释
F(x):x是人,G(x):x是人.(2)成假解释
(2)个体域:泰山学院的学生
F(x):x出生在,G(x):x出生在,H(x):x出生在,成假解释.
F(x):x会吃饭,G(x):x会睡觉,H(x):x会呼吸. 成真解释.
第五章部分课后习题参考答案
5.给定解释I如下:
(a)个体域D={3,4};
(b))(x
=f
f为3
)3(=
f
,4
)4(
(c)1
F
F
=F
F
=
F为.
x
y
)
,0
)4,3(
=
)3,3(
)4,4(
,
)3,4(
(=
试求下列公式在I下的真值.
(1)),(y
x∃
∀
yF
x
(3))))
x
F
F
y
x→
∀
∀
f
y
(
(
),
x
)
(
,
(y
f
(
解:(1)))4,(
yF
x
x∨
∃
x
∀
⇔
∀
y
(
)3,
F
)
(
,
F
x
(x
⇔))
F
F∨
F
∨
(F
∧
4,4(
)3,4(
(
))
4,3(
)3,3(
⇔1)01()10(⇔∨∧∨
(2)
)))(),((),((y f x f F y x F y x →∀∀ ))))4(),(()4,(()))3(),(()3,(((f x f F x F f x f F x F x →∧→∀⇔
)))3),(()4,(())4),(()3,(((x f F x F x f F x F x →∧→∀⇔
)))3),3(()4,3(())4),3(()3,3(((f F F f F F →∧→⇔
)))3),4(()4,4(())4),4(()3,4(((f F F f F F →∧→∧
)))3,4()4,3(())4,4(0((F F F →∧→⇔)))3,3(0())4,3(1((F F →∧→∧
)11()00(→∧→⇔)00()11(→∧→∧1⇔
12.求下列各式的前束式。
(1)),()(y x yG x xF ∀→∀
(5))),()((),(2121211x x G x x H x x F x ⌝∃→→∃ (本题课本上有错误) 解:(1) ),()(y x yG x xF ∀→∀),()(y t yG x xF ∀→∀⇔)),()((y t G x F y x →∀∃⇔
(5)
)),()((),(2121211x x G x x H x x F x ⌝∃→→∃ )),()((),(2323211x x G x x H x x F x ⌝∀→→∃⇔
)),()((),(2332411x x G x H x x x F x ⌝→∀→∃⇔
))),()((),((2334121x x G x H x x F x x ⌝→→∀∀⇔
15.在自然数推理系统F 中,构造下面推理的证明:
(1) 前提: ))())()((()(y R y G y F y x xF →∨∀→∃,)(x xF ∃
结论: ∃xR(x)
(2) 前提: ∀x(F(x)→(G(a)∧R(x))), xF(x)
结论:x(F(x)∧R(x))
证明(1)
①)(x
∃前提引入
xF
②F(c) ①EI
③))
x
y
F
xF→
∃前提引入
G
→
∀
∨
y
)
y
))
(
(
(
((
(y
R
)
④))
y
F
G
y
∀①③假言推理
∨
y→
(
R
))
)
(
((y
(
⑤(F(c)∨G(c))→R(c)) ④UI
⑥F(c)∨G(c) ②附加
⑦R(c) ⑤⑥假言推理
⑧∃xR(x) ⑦EG
(2)
①∃xF(x) 前提引入
②F(c) ①EI
③∀x(F(x)→(G(a)∧R(x))) 前提引入
④F(c)→(G(a)∧R(c)) ③UI
⑤G(a)∧R(c) ②④假言推理
⑥R(c) ⑤化简
⑦F(c)∧R(c) ②⑥合取引入
⑧∃x(F(x)∧R(x))。