中考总复习:统计与概率--知识讲解
2022版中考数学总复习第一部分考点知识梳理 第八章 统计与概率 概率

8.2 概 率◎能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率.◎知道通过大量地重复试验,可以用频率来估计概率.概率问题是安徽中考近几年必考内容之一,以填空题和解答题为主.2021年单独考查了概率计算(2021年第9题),2017~2020年概率与统计相结合在解答题中考查(2020年第21题,2019年第21题,2018年第21题,2017年第21题),一般都是两步概率,难度在中等或中等以上.解答此类问题一般要先用画树状图或列表法分析所有等可能出现的结果.十年真题再现命题点1 概率的计算[10年6考] 1.(2021·安徽第9题)如图,在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( D )A.14 B.13 C.38 D.49【解析】根据题意,图中共可围成9个矩形,而含点A 的矩形有4个,∴P (所选矩形含点A )=49. 2.(2013·安徽第8题)如图,若随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( B )A.16 B.13 C.12 D.23【解析】用画树状图或列表法可知,共有3种等可能的情况为K 1K 2,K 1K 3,K 2K 3,其中让两盏灯泡同时发光的只有K 1K 3这1种情况,即让两盏灯泡同时发光的概率为13.3.(2012·安徽第8题)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为( B ) A.16 B.13 C.12 D.23【解析】第一个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,∴第一个打电话给甲的概率是13.4.(2016·安徽第21题)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.解:(1)用树状图表示所有可能结果:∴得到所有可能的两位数为11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88.(2)共有16个两位数,其中算术平方根大于4且小于7的有6个,分别为17,18,41,44,47,48,所求概率P=616=38.5.(2014·安徽第21题)如图,管中放置着三根同样的绳子AA1,BB1,CC1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A,B,C三个绳头中随机选两个打一个结,再从右端A1,B1,C1三个绳头中随机选两个打一个结,求这三根绳子连接成一根长绳的概率.解:(1)共有3种等可能情况,其中恰好选中绳子AA1的情况为1种,∴小明恰好选中绳子AA1的概率P=13.(2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种等可能情况,列表或画树状图表示如下:或其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳,所以能连接成为一根长绳的情况有6种:①左端连AB,右端连A1C1或B1C1;②左端连BC,右端连A1B1或A1C1;③左端连AC,右端连A1B1或B1C1.故这三根绳子连接成为一根长绳的概率P=69=23.命题点2统计与概率相结合的问题[10年4考]6.(2020·安徽第21题)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.解:(2)由图可知被抽取的240人中最喜欢B套餐的人数为84,∴最喜欢B套餐的频率为84240=0.35, ∴估计全体960名职工中最喜欢B套餐的人数为960×0.35=336.(3)由题意,从甲、乙、丙、丁四人中任选两人,总共有6种等可能的不同结果,列举如下:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁.其中甲被选到的结果有甲乙、甲丙、甲丁,共3种,故所求概率P=36=12.7.(2019·安徽第21题)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸.个数据按从小到大的顺序整理成如下表格:按照生产标准,注:在统计优等品个数时,)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9 cm.(ⅰ)求a的值;(ⅱ)将这些优等品分成两组,一组尺寸大于9 cm,另一组尺寸不大于9 cm.从这两组中各随机抽取1件进行复检,求抽取到的2件产品都是特等品的概率.解:(1)∵抽检的合格率为80%,∴合格产品有15×80%=12个,即非合格品有3个.∵编号①至编号对应的产品中,只有编号①与编号②对应的产品为非合格品,∴编号为的产品不是合格品.(2)(ⅰ)∵从编号⑥到编号对应的6个产品为优等品,中间两个产品的尺寸数据分别为8.98和a ,∴中位数为8.98+a 2=9,则a =9.02.(ⅱ)优等品当中,编号⑥、编号⑦、编号⑧对应的产品尺寸不大于9 cm,分别记为A 1,A 2,A 3,编号⑨、编号、编号对应的产品尺寸大于9 cm,分别记为B 1,B 2,B 3,其中的特等品为A 2,A 3,B 1,B 2.从两组产品中各随机抽取1件,有如下9种不同的等可能结果:A 1B 1,A 1B 2,A 1B 3,A 2B 1,A 2B 2,A 2B 3,A 3B 1,A 3B 2,A 3B 3,其中2件产品都是特等品的有如下4种不同的等可能结果:A 2B 1,A 2B 2,A 3B 1,A 3B 2,∴抽到的2件产品都是特等品的概率P =49.8.(2017·安徽第21题)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5.(1)(2)依据表中数据分析,(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.解:(1)提示:甲的方差:110×[(9−8)2+2×(10−8)2+4×(8−8)2+2×(7−8)2+(5−8)2]=2.把丙运动员的射靶成绩从小到大排列:3,4,5,5,6,6,7,7,8,9,则中位数是6+62=6.(2)∵甲的方差是2,乙的方差是2.2,丙的方差是3,∴s 甲2<s 乙2<s 丙2,∴甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙丙甲),(乙甲丙),(丙甲乙),(丙乙甲). ∵共有6种情况,甲、乙相邻出场的有4种情况, ∴甲、乙相邻出场的概率=46=23.教材知识网络重难考点突破考点1确定性事件与随机事件典例1(2021·湖南怀化)“成语”是中华文化的瑰宝,是中华文化的微缩景观.下列成语:①“水中捞月”,②“守株待兔”,③“百步穿杨”,④“瓮中捉鳖”描述的事件是不可能事件的是() A.① B.② C.③ D.④【解析】①“水中捞月”是不可能事件;②“守株待兔”是随机事件;③“百步穿杨”是随机事件;④“瓮中捉鳖”是必然事件.【答案】A提分1(2021·广西玉林)一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( A )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球考点2频率与概率典例2(2021·江苏盐城)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.(1)从π的小数部分随机取出一个数字,估计数字是6的概率为;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表法求解) 【答案】(1)110.(2),列表如下:∵共有12种等可能的结果,612=12.(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有等可能的结果,再求出概率.(2)当一个事件涉及三个或更多元素时,为了不重不漏地列出所有等可能的结果,通常采用画树状图法求概率.的概率是 0.8 .数点后一位)【解析】根据表格数据可知频率稳定在0.8,所以估计这名运动员射击一次时“射中9环以上”的概率是0.8. 提分3 (2021·河北)某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同. (1)求嘉淇走到十字道口A 向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.解:(1)嘉淇走到十字道口A向北走的概率为13.(2)补全树状图如下:共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,∴向西参观的概率为39=13,向南参观的概率=向北参观的概率=向东参观的概率=29,∴嘉淇经过两个十字道口后向西参观的概率较大.。
中考统计与概率知识点大全

统计与概率知识点归纳
考点一、全面调查与抽样调查
考点二、统计学中的几个基本概念
总体、个体、样本、样本容量、样本平均数、总体平均数 考点三、平均数(x 读作“X 拔”)、加权平均数、 众数、中位数
1、众数:
2、中位数:
考点四、方差 、标准差
1、方差的概念、通常用“2s ”表示,])()()[(1222212x x x x x x n
s n -++-+-= 2、标准差的概念、用“s ”表
])()()[(1222212x x x x x x n
s s n -++-+-== 考点五、几种常见的统计图
1、 条形统计图、折线统计图、扇形统计图
2、 频数分布直方图
① 极差: ②频数: ③频率:
考点六、确定事件和随机事件
1、确定事件:
2、随机事件:
考点七、概率的意义与表示方法
1、概率的意义:
2、事件的概率的表示方法:
考点八、列表法求概率
1、列表法
2、列表法的应用场合 (当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
)
考点九、树状图法求概率
1、树状图法
2、运用树状图法求概率的条件 (当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
)
考点十、用频率估计概率、 考点十一、概率的应用:主要用来评判某项活动是否“合算”,游戏是否“公平”等。
中考数学统计与概率基础知识

中考数学统计与概率基础知识概率与统计是数学中的一个重要分支,也是中考数学中的一项重要内容。
通过学习概率与统计的基础知识,我们能够更好地理解和应用数学在实际生活中的意义。
本文将从概率与统计的概念、统计数据的描述与分析以及概率的计算等方面介绍中考数学中的基础知识。
一、概率与统计的概念1. 概率的定义概率是指某一事件发生的可能性大小。
概率的取值范围为0-1,其中0表示不可能发生,1表示必然发生。
一般情况下,概率用一个介于0和1之间的实数表示。
2. 统计的定义统计是指通过收集、整理和分析数据,以了解和描述一定现象或现象的规律性。
统计可以帮助我们从大量的数据中提取有用的信息,为决策提供依据。
二、统计数据的描述与分析1. 数据的收集在进行统计分析之前,首先需要进行数据的收集。
数据的收集可以通过实地调查、问卷调查、实验观测等方式进行。
收集到的数据应具有代表性,以确保统计结果准确可靠。
2. 数据的整理收集到的数据需要进行整理,包括数据的录入、分类、排序等。
通过数据的整理,可以更好地进行后续的统计分析。
3. 数据的分析数据的分析包括描述性统计和推论性统计两个方面。
描述性统计主要是对数据的基本特征进行描述,包括频数、众数、中位数、均值等。
推论性统计则是通过样本数据的分析来推断总体的特征。
三、概率的计算1. 随机事件随机事件是在一定的条件下可能发生也可能不发生的事件。
在计算概率时,首先要确定随机事件的样本空间和样本点,并根据事件发生的可能性来计算概率。
2. 概率的计算方法概率的计算主要通过以下两种方法进行:频率法和几何法。
频率法是指通过大量实验或观测数据来计算概率。
几何法是指通过对几何模型进行分析和推理来计算概率。
四、概率与统计的应用1. 随机抽样随机抽样是统计中常用的一种方法,通过从总体中随机选择一部分个体作为样本,来推断总体的特征。
使用随机抽样的方法可以减小误差,提高结果的可靠性。
2. 概率统计模型概率统计模型是利用统计学原理和概率理论来描述和分析一定现象的数学模型。
中考数学总复习概率与统计知识点梳理

中考数学总复习概率与统计知识点梳理概率与统计是中考数学中的重要内容,考查的主要知识点包括:概率、统计、抽样调查和相关性等。
以下是对这些知识点的详细梳理。
1.概率:概率是描述件事情发生可能性大小的数值,是随机试验结果的度量标准。
概率的计算方法包括:理论概率、几何概率和频率概率。
-理论概率:根据随机试验的全部可能结果进行计算,概率值范围为0到1之间。
-几何概率:通过对随机试验的几何模型进行分析,计算几何概率。
-频率概率:通过重复实验来估计事件发生的概率,概率值近似于实验中事件发生的频率。
2.统计:统计是收集、整理和分析数据,从而得出有关事物规律的学科。
统计的主要目的是对研究对象进行客观的描述和分析。
-数据的收集和整理:对于给定的研究对象,要通过合理的方法收集数据并进行整理,包括调查问卷、实验、采样等方法。
-数据的分析和表示:使用图表、统计量等方法对收集到的数据进行分析和表示,主要包括频数表、频率分布表、直方图、折线图等。
-数据的描述性统计:通过描述性统计指标,如均值、中位数、众数、极差、方差、标准差等,对数据的特征进行描述。
3.抽样调查:为了对整个群体进行研究,使用抽样调查的方法从群体中抽取一部分样本进行调查。
抽样调查的方法包括概率抽样和非概率抽样。
-概率抽样:每个样本被抽取的概率相等,可以使用简单随机抽样、系统抽样、分层抽样和整群抽样等方法。
-非概率抽样:每个样本被抽取的概率不等,可以使用方便抽样、判断抽样、专家抽样和雪球抽样等方法。
4.相关性:相关性是用来衡量两个变量之间关系的指标,包括正相关、负相关和不相关。
2012年中考数学第一轮总复习:统计与概率

.统计与概率考点1 . 统计的方法――普查与抽样调查:1)普查:为一特定目的而对所有考察对象做的全面调查叫普查;2)抽样调查:为一特定目的而对部分考察对象做的调查叫抽样调查。
说明:1)下列的情形常采用抽样调查:①当受客观条件限制,无法对所有个体进行普查时;②当调查具有破坏性,不允许普查时。
2)抽样调查的要求:①抽查的样本要有代表性;②抽查的样本不能太少。
考点2 与统计有关的概念:1)总体:所要考查的对象的全体叫总体;2)样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本中个体的数目叫做样本容量。
使总体的每一个个体有同等的机会被选中,这样的样本称为简单随机样本; 3)个体:总体中每一个考查的对象叫做个体;4)频数:统计时,每个对象出现的次数叫频数,频数之和等于总数; 5)频率:每个对象出现的次数与总次数的比值叫频率,频率之和等于1。
注意:考查对象不是笼统的某人某物,而是某人某物的某项数量指标。
考点3 统计图表:1)扇形统计图是用圆代表总体,圆中各个扇形分别代表总体中不同部分的统计图,它可以直观地反映部分占总体的百分比大小,一般不表示具体的数量;2)条形统计图能清楚地表示每个项目的具体数目及反映事物某一阶段属性的大小变化,复合条形图的描述对象是多组数据;3)折形统计图可以反映数据的变化趋势;4)频数分布表和频数分布直方图,能直观、清楚地反映数据在各个小范围内的分布情况。
说明:绘制频数分布直方图的一般步骤:①计算最大值与最小值的差;②决定组距与组数(当数据在100个以内时,一般取5~12组);③确定分点,常使分点比数据多一位小数,并且把第一组的起点稍微减小一点;④列频数分布表;⑤用横轴表示各分段数据,纵轴反映各分段数据的频数,小长方形的高表示频数,绘制频数分布直观图;考点4 数据的代表:反映数据集中趋势的特征数1)平均数:一组数据中所有数据之和再除以数据的个数称为这组数据的平均数; ①算术平均数:一般地,如果n 个数321,,x x x …,n x , 那么nx x x x x n++++=321叫做这n 个数的平均数;②加权平均数:一般地,如果n 个数321,,x x x …,n x 中,11f x 出现次,22f x 出现次,…, kx 出现k f 次(+++321f f f …n f +=n ),那么nf x f x f x f x x kk ++++=332211叫做321,,x x x …,个数的加权平均数这n x n ,其中、、、321f f f …k f 、叫做 321,,x x x …,k x 的权;2)中位数:将一组数据按照由小到大或由大到小的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数,就是这组数据的中位数;3)众数:一组数据出现中出现次数最多的数据叫做这组数据的众数。
人教版中考数学第一轮复习第八章 统计与概率

第八章统计与概率第二十七讲数据的收集与处理【基础知识回顾】一、数据的收集方式。
1、全面调查(普查):是为了一定的目的对考察对象进行的全面调查,其中所要考查对象的称为总体,组成总体的考查对象称为个体2、抽样调查(抽查):是指从总体中抽取对象进行调查,然后根据调查数据推理全体对象的情况,其中,被抽取的那些组成一个样本,样本中的数目叫做样本容量。
【名师提醒:1、对被考查对象进行全面调查还是抽样调查要根据就考查对象的特点而选择,例如:当被考查对象数量有限时可采取,当受条件限制无法对所有个体都进行调查或调查具有破坏性时,应采用,然后用样本估计总体的情况。
2、注意:被考察对象不是笼统的某人某物,而是某人某物的某项指标。
】二、统计图:1、统计图是表示统计数据的图形,是数据及其关系的直观表现的反映,几种常见的统计图有统计图统计图统计图2、频数分布直方图:⑴频数:在统计数据中落在不同小组中的个数,叫做频数⑵频率:=⑶绘制频数直方图的步骤:a:计算与的差,b:决定和c:确定分点d:列出f:画出【名师提醒:1、各类统计图的特点:条形统计图可以反映折线统计图能够显示从扇形统计图能够看出,扇形的圆心角=3600×2、频数分布直方圆中每个长方形的高是所有小长方形高的和为】【典型例题解析】1.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱2.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.3.2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频率50.5-60.5 16 0.0860.5-70.5 40 0.270.5-80.5 50 0.2580.5-90.5 m 0.3590.5-100.5 24 n(1)这次抽取了名学生的竞赛成绩进行统计,其中:m= ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?第二十八讲数据分析【基础知识回顾】一、数据的代表:1、平均数:⑴算术平均数如果有n个数x1 ,x2 ,x3 …xn那么它们的平均数x=⑵加权平均数:若在一组数据中x1出现f1次,x2出现f2次...... xk出现fk次,则其平均数x= (其中f1+ f2+...... fk=n)2、中位数:将一组数据按大小依次排列,把处在或叫做这组数据的中位数。
河南省中考数学总复习第一部分考点全解第八章统计与概率第27讲概率(35分)课件

10.(2018·开封一模)随着科技的迅猛发展,人与人之间的沟通方式更多样,便捷, 某校数学兴趣小组设计了“你最喜欢的沟通方式”的调查问卷(每人必选且只选一 种),在全校范围内随机调查了部分学生,并将调查结果绘制了如下两幅尚不完整的 统计图.
请结合图中所给的信息解答下列问题. (1)这次统计共抽查了_________名学生;在扇形统计图中,“Q Q ”所对应的扇形圆 心角的度数为_________; (2)请将条形统计图补充完整; (3)若该校共有 2 500 名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少 人?
4.频率与概率的区别和联系 (1)区别:概率是一个确定的数,客观存在的,只要有事件存在,就有一个概率存 在,与试验次数无关;频率是随机变化的,具有随机性,试验前不能确定. (2)联系:一般地,在大量重复试验时,如果事件 A 发生的频率mn 稳定于某个常数 P 附近,那么事件 A 发生的概率 P(A)=P(0≤P(A)≤1). 5.几何概型的概率公式: P(A)=全部构结成果事所件构A的成区的域区长域度长度面积面或积体或积体积.
3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正
数的概率是( D ) A .12
B .59
C .49
D .23
4.(2018·省实验四模)某商店进行“迎五一,大促销”摸奖活动,凡是有购物小
票的顾客均可摸球一次,摸到白球即可获奖.规则如下:一个不透明的袋子中装有
10 个黑球和若干白球,它们除颜色不同外,其余均相同,从袋子中随机摸出一个球,
(4)某天甲,乙两名同学都想从“微信”“QQ”“电话”三种沟通方式中选一种方 式与对方联系,请用列表或画树状图的方法求出甲,乙两名同学恰好选择同一种沟通 方式的概率.
中考数学复习攻略 专题5 统计与概率综合(含答案)

专题五 统计与概率综合统计图表:认真审题,从统计图表中获取有用信息,根据题意求出相应的量.统计量的计算:中位数是排出来的,众数是数出来的,平均数、方差是算出来的.概率的计算和应用:利用画树状图或列表法列举所有等可能结果是解决这类题目的关键.利用画树状图或列表法可以不重复不遗漏地列出所有等可能的结果,列表法适合于两步完成的事件,画树状图适合两步或两步以上完成的事件.注意用到的知识点:概率等于所求情况数与总情况数之比.中考重难点突破 统计图表与三数的综合【例1】(2021·苏州中考)为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如表.班级一班 二班 三班 四班 五班 废纸质量/kg4.54.45.13.35.7则每个班级回收废纸的平均质量为( C ) A .5 kg B .4.8 kg C .4.6 kg D .4.5 kg【解析】求五个班废纸回收质量的平均数即可得出答案.1.(2021·盘锦中考)甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( C )A .甲B .乙C .丙D .丁概率的计算【例2】(2019·百色适应性演练)欢度端午节,小新用不透明袋子装了4个粽子来学校与同学分享,其中有豆沙棕和肉棕各1个,板栗粽2个,这些粽子形状与大小完全一样.(1)若小新随机从袋子中取出一个粽子,取出的是肉粽的概率是多少?(2)若小新随机从袋子中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小新取出的两个都是板栗粽的概率.【解析】(1)直接根据概率公式计算可得结果;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得结果. 【解答】解:(1)∵一共有4个粽子,其中肉粽有1个,∴取出的是肉粽的概率是14;(2)由题意,画树状图:由图可知,共有12种等可能的结果,其中小新取出的两个都是板栗粽的结果有2种,∴小新取出的两个都是板栗粽的概率为212 =16.2.(2021·南通中考)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4. (1)随机摸取一个小球的标号是奇数,该事件的概率为________;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.解:(1)12;(2)由题意,画树状图:由图可知,共有16种等可能的结果,其中两次取出小球标号的和等于5的结果有4种,∴两次取出小球标号的和等于5的概率为416 =14.统计与概率的综合【例3】(2021·西藏中考)为铸牢中华民族共同体意识,不断巩固民族大团结,红星中学即将举办庆祝建党100周年“中华民族一家亲,同心共筑中国梦”主题活动.学校拟定了演讲比赛、文艺汇演、书画展览、知识竞赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了200名学生进行调查(每人只能选择一种方案),将调查结果绘制成如下两幅不完整的统计图,请你根据以下两幅图所给的信息解答下列问题.甲 乙(1)在抽取的200名学生中,选择“演讲比赛”的人数为________,在扇形统计图中,m 的值为________; (2)根据本次调查结果,估计全校2 000名学生中选择“文艺汇演”的学生大约有多少人?(3)现从喜爱“知识竞赛”的四名同学a ,b ,c ,d 中,任选两名同学参加学校知识竞赛,请用树状图或列表法求出a 同学参加的概率.【解析】(1)总人数乘以A 对应的百分比即可求出其人数,再根据四种方案的人数之和等于总人数求出C 方案人数,再用C 方案人数除以总人数即可得出m 的值;(2)用总人数乘以样本中B 方案人数所占比例即可得出答案;(3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)40;30;[选择“演讲比赛”的人数为200×20%=40(人),则选择“书画展览”的人数为200-(40+80+20)=60(人),∴在扇形统计图中,m %=60200×100%=30%,即m =30.](2)估计全校2 000名学生中选择“文艺汇演”的学生大约有2 000×80200=800(人);(3)由题意,列表:a b c da (b ,a ) (c ,a )(d ,a ) b (a ,b )(c ,b ) (d ,b ) c (a ,c ) (b ,c ) (d ,c ) d (a ,d ) (b ,d ) (c ,d )由表可知,共有12种等可能的结果,其中a 同学参加的结果有6种,∴a 同学参加的概率为612 =12.3.(2020·百色一模)学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B :好,C :一般,D :较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了______名学生;(2)将条形统计图补充完整;扇形统计图中D 类学生所对应的圆心角是多少度?(3)为了共同进步,陈老师从被调查的A 类和D 类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.解:(1)20;(2)C 类学生人数为20×25%=5(名),C 类女生人数为5-2=3(名).D 类学生所占的百分比为1-15%-50%-25%=10%,D 类学生人数为20×10%=2(名),D 类男生人数为2-1=1(名).补充条形统计图如图所示.扇形统计图中D 类学生所对应的圆心角是360°×10%=36°; (3)A 类学生中的两名女生分别记为A 1和A 2, 由题意,列表:女A 1 女A 2 男A 男D (女A 1,男D) (女A 2男D) (男A ,男D) 女D (女A 1,女D) (女A 2,女D) (男A ,女D)由表可知,共有6种等可能结果,其中一男一女的结果有3种,∴所选两位同学恰好是一名男生和一名女生的概率为36 =12 .中考专题过关1.(2021·陕西中考)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图.根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为________,众数为________; (2)求这60天的日平均气温的平均数;(3)若日平均气温在18 ℃~21 ℃的范围内(包含18 ℃和21 ℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.解:(1)19.5 ℃;19 ℃;[这60天的日平均气温的中位数为19+202=19.5(℃),众数为19 ℃.](2)这60天的日平均气温的平均数为160×(17×5+18×12+19×13+20×9+21×6+22×4+23×6+24×5)=20(℃);(3)∵12+13+9+660×30=20(天),∴估计西安市今年9月份日平均气温为“舒适温度”的天数为20天. 2.(2021·营口中考)李老师为缓解小如和小意的压力,准备了四个完全相同(不透明)的锦囊,里面各装有一张纸条,分别写有:A.转移注意力,B.合理宣泄,C.自我暗示,D.放松训练.(1)若小如随机取走一个锦囊,则取走的是写有“自我暗示”的概率是________; (2)若小如和小意每人先后随机抽取一个锦囊(取走后不放回),请用列表法或画树状图的方法求小如和小意都没有取走“合理宣泄”的概率.解:(1)14;(2)由题意,画树状图:由图可知,共有12种等可能的结果,其中小如和小意都没有取走“合理宣泄”的结果有6种,∴小如和小意都没有取走“合理宣泄”的概率为612 =12.3.(2021·盐城中考)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.祖冲之(1)从π的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)解:(1)110;(2) 甲 乙 丙 丁 甲 (乙,甲) (丙,甲) (丁,甲) 乙 (甲,乙) (丙,乙) (丁,乙) 丙 (甲,丙) (乙,丙) (丁,丙) 丁 (甲,丁) (乙,丁) (丙,丁)由表可知,共有∴其中有一幅是祖冲之的概率为612 =12.4.(2021·枣庄中考)某中学为组织学生参加庆祝中国共产党成立100周年书画展评活动,全校征集学生书画作品.王老师从全校20个班中随机抽取了A ,B ,C ,D 四个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.图1图2(1)王老师采取的调查方式是________(填“普查”或“抽样调查”),王老师所调查的4个班共征集到作品______件,并补全条形统计图;(2)在扇形统计图中,表示C 班的扇形圆心角的度数为________;(3)如果全校参展作品中有4件获得一等奖,其中有1件作品的作者是男生,3件作品的作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)解:(1)抽样调查;24;B 班级的件数有4÷60°360°-4-10-4=6(件),补全条形统计图如图所示;(2)150°;[1024×360°=150°.](3)由题意,画树状图如图:由图可知,共有12种等可能的结果,其中恰好抽中一男一女的结果有6种,∴P (恰好抽中一男一女)=612 =12.5.(2021·济宁中考)某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,并根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题.(1)在这次调查中,“优秀”所在扇形的圆心角的度数是________; (2)请补全条形统计图;(3)若该校九年级共有学生1 200人,则估计该校“良好”的人数是________;(4)已知“不及格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率.解:(1)108°;[在这次调查中,“优秀”所在扇形的圆心角的度数是360°×30%=108°.] (2)这次调查的人数为12÷30%=40(人).则及格的人数为40-3-17-12=8(人).补全条形统计图如图;(3)510人;[估计该校“良好”的人数为1 200×1740=510(人).](4)由题意,画树状图如图:由图可知,共有6种等可能的结果,其中抽到两名男生的结果有2种,26=1 3.∴抽到两名男生的概率为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考总复习:统计与概率—知识讲解【知识网络】【考点梳理】考点一、数据的收集及整理1.一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.2.调查收集数据的方法:普查与抽样调查.要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想.(3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样. 3.数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.考点二.数据的分析1.基本概念:总体:把所要考查的对象的全体叫做总体;个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本;样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数;极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.计算方差的公式:设一组数据是,是这组数据的平均数。
则这组数据的方差是:标准差:一组数据的方差的算术平方根,叫做这组数据的标准差.用公式可表示为:要点诠释:1.平均数、中位数和众数可以用来概括一组数据的集中趋势.平均数的优点:平均数的计算过程中用到了一组数据中的每一个数,因此比中位数和众数更灵敏,反映了更多数据的信息.平均数的缺点:计算较麻烦,而且容易受到极端值的影响.中位数的优点:计算简单,不容易受到极端值的影响,确定了中位数之后,可以知道小于中位数的数值和大于中位数的数值在这组数据中各占一半.中位数的缺点:除了中间的值以外,不能反映其他数据的信息.众数的优点:众数很容易从直方图中获得,它可以清楚地告诉我们:在一组数据中哪个或哪些数值出现的次数最多.众数的缺点:不能反映众数比其他数出现的次数多多少,而且也丢失了很多其他数据的信息.2.极差、方差是表示一组数据离散程度的指标.极差就是一组数据中的最大值减去最小值所得的差.它可以反映一组数据的变化范围.极差的不足之处在于只和极端值相关,而方差则弥补了这一不足.方差可以比较全面地反映一组数据相对于平均值的波动情况,只是计算比较复杂.2.绘制频数分布直方图的步骤①计算最大值与最小值的差;②决定组距和组数;③决定分点;④画频数分布表;⑤画出频数分布直方图.3.加权平均数在一组数据中,各个数在总结果中所占的百分比称为这个数的权重,每个数乘以它相应的权重后所得的平均数叫做这组数据的加权平均数.要点诠释:在通常计算平均数的过程中,各个数据在结果中所占的份量是相等的。
而实际情况有时并非如此,如果要区分不同的数据的不同权重,就需要使用加权平均数.当我们改变一组数据中各个数值所占的权重时,这组数据的加权平均数就有可能随之改变.考点三、概率1.概率的定义:一般地,如果在一次实验中,有n种可能结果,并且它们发生的可能性相等,事件A包含其中m种结果,那么事件A发生的概率P(A)= .2.概率的求法(1)用列举法(2)用频率来估计:事件A的概率:一般地,在大量重复进行同一实验时,事件A发生的频率,总是接近于某个常数,在它附近摆动.这个常数叫做事件A的概率,记作P(A).3.事件必然事件:那些无需通过实验就能够预先确定它们在每一次实验中都一定会发生的事件称为必然事件.不可能事件:那些在每一次实验中都一定不会发生的事件称为不可能事件.随机事件:无法预先确定在一次实验中会不会发生的事件称为不确定事件或随机事件.要点诠释:①求一个事件概率的基本方法是通过大量的重复实验;②当频率在某个常数附近摆动时,这个常数叫做事件A的概率;③概率是频率的稳定值,而频率是概率的近似值;④概率反映了随机事件发生的可能性的大小;⑤必然事件的概率是1,不可能事件的概率是0,因此0≤P(A)≤1;⑥必然事件和不可能事件统称为确定事件.【典型例题】类型一、数据的统计1. 连云港市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:次数 6 12 15 18 20 25 27 30 32 35 36人数 1 1 7 18 10 5 2 2 1 1 2⑴求这次抽样测试数据的平均数、众数和中位数;⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?【思路点拨】本题是以统计初步知识在该市怎样定中考女生“一分钟仰卧起坐”项目测试的合格标准的应用为背景,把制定体育成绩的某项合格指标转化为统计问题,求出了统计中的平均数、众数、中位数.【答案与解析】⑴该组数据的平均数众数为18,中位数为18;⑵该市中考女生一分钟仰卧起坐项目测试的合格标准应定为 18次较为合适,因为众数及中位数均为18,且50人中达到18次的人数有41人,确定18次能保证大多数人达标;⑶根据⑵的标准,估计该市中考女生一分钟仰卧起坐项目测试的合格率为 82%.【总结升华】确定众数的方法是找该组数据中出现次数最多的数,如果有多个数出现的次数相同,那这些出现次数相同的数都是这组数据的众数;平均数、众数、中位数及其应用,在中考试卷中它们有机地交汇于实际情境中,考查应用意识.举一反三:【变式】某校九年级数学模拟测试中,六名学生的数学成绩如下(单位:分):110,106,109,111,108,110,下列关于这组数据描述正确的是()A.众数是110 B.方差是16 C.平均数是109.5 D.极差是6【答案】A.2.为了了解学生关注热点新闻的情况,郑州“上合会议”期间,小明对班级同学一周内收看“上合会议”新闻次数情况作了调查,调查结果统计如图所示(其中男生收看3次的人数没有标出).根据上述信息,解答下列问题:(1)该班级女生人数是人,女生收看“上合会议”新闻次数的中位数是次,平均数是次;(2)对于某个性别群体,我们把一周内收看热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“上合会议”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“上合会议”新闻次数的特点,小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是.【思路点拨】(1)将柱状图中的女生人数相加即可求得总人数,中位数为第10与11名同学的次数的平均数.(2)先求出该班女生对“两会”新闻的“关注指数”,即可得出该班男生对“两会”新闻的“关注指数”,再列方程解答即可.(3)比较该班级男、女生收看“两会”新闻次数的离散程度,小明需要关注方差.【答案与解析】解:(1)20,3,3;(2)由题意知:该班女生对新闻的“关注指数”为65%,所以,男生对新闻的“关注指数”为60%.设该班的男生有x人.则=60%,解得:x=25.经检验x=25是原方程的解.答:该班级男生有25人;(3)小明相比较该班级男、女生收看“上合会议”新闻次数的离散程度,那么小明要关注的统计量是方差.故答案为20,3,3;方差.【总结升华】本题考查了平均数,中位数,方差的意义.3.某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).甲、乙两人射箭成绩统计表第1次第2次第3次第4次第5次甲成绩9 4 7 4 6乙成绩7 5 7 a 7(1)a=________;X=________________.乙(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出_____的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中.【思路点拨】本题考点:方差;折线统计图;算术平均数.【答案与解析】(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a=30-7-7-5-7=4,X=30÷5=6,故答案为:4,6;乙(2)如图所示:;(3)①观察图,可看出乙的成绩比较稳定, 故答案为:乙;2S 乙=15[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.由于2S 乙<2S 甲,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 【总结升华】主要考查了方差的定义以及折线图和平均数的意义,根据已知得出a 的值进而利用方差的意义比较稳定性即可. 举一反三:【变式】求下列数据的方差:-2,1,4. 【答案】.类型二、概率的应用4.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【思路点拨】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图,再根据概率公式即可得出答案.【答案与解析】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为:=.【总结升华】此题考查的是用列表法或树状图法求概率的知识.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=符合条件的情况数与总情况数之比.5.“六一”儿童节前夕,我市某县“关心下一代工作委员会”决定对品学兼优的“留守儿童”进行表彰,某校八年级8个班中只能选两个班级参加这项活动,且8(1)班必须参加,另外再从其它班级中选一个班参加活动.8(5)班有学生建议采用如下的方法:将一个带着指针的圆形转盘分成面积相等的4个扇形,并在每个扇形上分别标上1,2,3,4四个数字,转动转盘两次,将两次指针所指的数字相加,(当指针指在某一条等分线上时视为无效,重新转动)和为几就选哪个班参加,你认为这种方法公平吗?请说明理由.【思路点拨】本例是判断游戏公平的题,它的关键是正确求出概率,而后看它们获胜的概率是否相等.【答案与解析】方法不公平.用表格说明:所以,8(2)班被选中的概率为:,8(3)班被选中的概率为:,8(4)班被选中的概率为:,8(5)班被选中的概率为:,8(6)班被选中的概率为:,8(7)班被选中的概率为:,8(8)班被选中的概率为:,所以这种方法不公平.【总结升华】判断游戏是否公平的(或者奖项设置是否合理)原则是双方获胜的概率是否相等,公平的游戏机会是相等的;这类题既可以考查同学们正确掌握求概率方法的程度,也可以考查运用概率思想和知识解决实际问题的能力.无论是强化应用意识,还是培养综合能力,都是有价值的.6 .在围棋盒中有x 颗黑色棋子和y 颗白色棋子,从盒中随机地取出一个棋子,如果它是黑色棋子的概率是⋅83 (1)试写出y 与x 的函数关系式.(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为21,求x 和y 的值. 【思路点拨】概率公式;二元一次方程组的应用.【答案与解析】 (1)根据题意得:x x y +=⋅83 整理,得8x=3x+3y ,∴5x=3y ,∴y=53x ; (2)解法一:根据题意,得1010x x y +++=12, 整理,得2x+20=x+y+10,∴y=x+10,(8分)∴5x=3(x+10),∴x=15,y=25.解法二:(2)根据题意,可得38101102x x y x x y ⎧=⎪+⎪⎨+⎪=⎪++⎩,整理得53010x y y x -=⎧⎨=+⎩, 解得1525x y =⎧⎨=⎩.【总结升华】考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.举一反三:【变式】五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.①写出转动一次转盘获得45元购书券的概率;②转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由.【答案】①P(获得45元购书券)= ;②(元).∵15元>10元,∴转转盘对读者更合算.。