第27章《相似》单元测试卷
精品解析:人教新版九年级下学期《第27章相似》单元测试卷(解析版)

《第27章相似》单元测试卷一.选择题1. 已知32xy=,那么下列等式中一定正确的是()A. 392xy= B.33xy++=65C.3322x xy y-=⋅-D.52x yx+=【答案】A【解析】分析:根据比例的基本性质,两内项之积等于两外项之积来判断.详解:A.3x•2=9y,则2x=3y,所以A选项正确;B.5(x+3)=6(y+3),则5x﹣6y=3,所以B选项错误;C.2y(x﹣3)=3x(y﹣2),则xy﹣6x+6y=0,所以C选项错误;D.2(x+y)=5x,则3x=2y,所以D选项错误.故选A.点睛:本题考查了比例的基本性质,两内项之积等于两外项之积,即a cb d=,则ad=bc;反之如果ad=bc,则a cb d =.2. 已知a:b=3:2,则a:(a﹣b)=()A. 1:3B. 3:1C. 3:5D. 5:3【答案】B【解析】试题分析:利用分比性质进行计算.解:∵=,∴==3.故选B.考点:比例的性质.3. 在比例尺是1:8000的南京市城区地图上,太平南路的长度约为25cm,它的实际长度约为()A. 320cmB. 320mC. 2000cmD. 2000m【答案】D【解析】【分析】首先设它的实际长度是xcm ,然后根据比例尺的定义,即可得方程:1:800025:x =,解此方程即可求得答案,注意统一单位.【详解】设它的实际长度是xcm ,根据题意得:1:800025:x =,解得:200000x =,2000002000cm m =,∴它的实际长度为2000m .故选D .【点睛】此题考查了比例线段.此题难度不大,解题的关键是理解题意,根据比例尺的定义列方程,注意统一单位.4. 已知线段AB =1,C 是AB 的黄金分割点,AC >BC ,则BC 的长为( )A. 1B. C. 35D. 【答案】C【解析】【分析】 把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分)叫做黄金比. 【详解】解:根据黄金分割的概念得:AC=12AB=12 ∴BC=AB-AC=32. 故选C . 【点睛】本题考查黄金分割定理,解题关键是理解黄金分割的概念,熟悉黄金比的值.5. 如图,若////DC FE AB ,则有( )A. OD OCOF OE= B.OF OBOE OA= C.OA ODOC OB= D.CD ODEF OE=【答案】D【解析】根据平行线分线段成比例定理,根据题意直接列出比例等式,对比选项即可得出答案.解:∵DC∥FE∥AB,∴OD:OE=OC:OF(A错误);OF:OE=OC:OD(B错误);OA:OC=OB:OD(C错误);CD:EF=OD:OE(D正确).故选D.6. 我们已经学习了相似三角形,也知道,如果两个几何图形形状相同而大小不一定相同,我们就把它们叫做相似图形.比如两个正方形,它们的边长、对角线等所有元素都对应成比例,就可以称它们为相似图形.现给出下列4对几何图形:①两个圆;②两个菱形;③两个长方形;④两个正六边形,是相似图形的有()A. ①③ B. ①② C. ①④ D. ②③【答案】C【解析】试题分析:根据相似形的定义,对选项进行一一分析,排除错误答案.解:①两个圆,形状相同,而大小不一定相同,符合相似形的定义,故正确;②两个菱形,属于不唯一确定图形,不一定相似,故错误;③两个长方形,属于不唯一确定图形,不一定相似,故错误;④两个正六边形,形状相同,而大小不一定相同,符合相似形的定义,故正确.故选C.考点:相似图形.点评:本题考查的是相似形的识别,相似图形的形状相同,但大小不一定相同.7. 如图所示的两个四边形相似,则α的度数是( )A. 60°B. 75°C. 87°D. 120°【答案】C【解析】【分析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.8. 若两个相似三角形的面积之比为1:4,则它们的周长之比为()A. 1:2B. 2:1C. 1:4D. 4:1【答案】A【解析】∵两个相似三角形的面积之比为1:4,∴它们的相似比为1:2,(相似三角形的面积比等于相似比的平方)∴它们的周长之比为1:2.故选A.【点睛】相似三角形的面积比等于相似比的平方,相似三角形的周长的比等于相似比.9. 如图,已知AB=2,AD=4,∠DAB=90°,AD∥BC.E是射线BC上动点(点E与点B不重合),M是线段DE的中点,连接BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,则线段BE的长为A. 3B. 6C. 3或8D. 2或8【答案】D【解析】【分析】因为如果三角形ADN和BME相似,一定不相等的角是∠ADN和∠MBE,因为AD∥BC,如果两角相等,那么M与D重合,显然不合题意,故应分两种情况进行讨论.【详解】设线段BE的长为x.如果三角形ADN和BME相似,因为AD∥BC,所以∠ADN和∠MBE一定不相等,故应分两种情况进行讨论.①如图1,当∠ADN=∠BEM时,那么∠ADB=∠BEM,过点D作DF⊥BE,垂足为F,tan∠ADB=tan∠BEM.AB:AD=DF:FE=AB:(BE–AD).即2:4=2:(x–4).解得x=8.即BE=8.②如图2,当∠ADB=∠BME,而∠ADB=∠DBE,∴∠DBE=∠BME,∵∠E是公共角,∴△BED∽△MEB,∴DE BE BE EM,∴BE2=DE•EM=12DE2,∴BE2=x2=12[22+(4–x)2],∴x1=2,x2=–10(舍去),∴BE=2.综上所述线段BE的长为8或2,故选D.【点睛】考查相似三角形的判定和性质、锐角三角函数、平行线的性质等知识,解题的关键是学会用分类讨论的思想思考问题.10. 如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A. 3:2:1B. 5:3:1C. 25:12:5D. 51:24:10【答案】D【解析】【分析】【详解】连接EM,CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣35)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5 设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=512K,∴BH:HG:GM=512k:12k:5k=51:24:10故选:D.11. 1米长的标杆直立在水平的地面上,它在阳光下的影长为0.8米;在同一时刻,若某电视塔的影长为100米,则此电视塔的高度应是()A. 80米B. 85米C. 120米D. 125米【答案】D【解析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.解:设电视塔的高度应是x,根据题意得:=,解得:x=125米.故选D.命题立意:考查利用所学知识解决实际问题的能力.12. 在Rt△ABC中,∠ACB=90°,CD⊥AB于D,若AD=3,BD=1,则BC的值是()A. 3B. 3C. 2D. 4【答案】C【解析】【分析】利用射影定理得到BC2=BD•BA,然后把AD=3,BD=1代入计算即可.【详解】解:根据射影定理得BC2=BD•BA,即BC2=1×(1+3),所以BC=2.故选C.【点睛】本题考查射影定理:直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.13. 如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD 与四边形A′B′C′D′的面积比为()A. 4:9B. 2:5C. 2:323【答案】A【解析】【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:4:9,故选:A.【点睛】本题是对相似图形的考查,熟练掌握多边形相似的性质是解决本题的关键.二.填空题14. 已知线段a=10cm,b=2m,则ba=__.【答案】201.【解析】【分析】根据比例的定义即可直接写出(注意保持单位一致).【详解】解:根据题意,b=2m=200cm,则ba=20010=201.故答案为201. 【点睛】本题考查求线段的比,解题关键是求线段的比的时候,要统一单位. 15. 若 x y z 0234==≠ ,则 2x 3y z+ =________. 【答案】134 【解析】【分析】【详解】设234x y z k ===, 即x=2k, ,y=3k , z=4k .代入2322331313444x y k k k z k k +⨯+⨯===. 考点:比例的应用.16. 已知线段b=2,c=8,若线段a 是线段b 与c 的比例中项,则a=_____.【答案】4【解析】2a bc = 即216a =,则a=4.17. 黄金分割比是=510.61803398-=⋯,将这个分割比用四舍五入法精确到0.001的近似数是 .【答案】0.618【解析】根据四舍五入的原则将510.61803398-=⋯用四舍五入法精确到0.001的近似数是0.618 18. 如图,点D 、E 、F 分别位于△ABC 的三边上,满足DE ∥BC ,EF ∥AB ,如果AD :DB=3:2,那么BF :FC=_____.【答案】3:2【解析】因为DE ∥BC,所以32AD AE DB EC ==,因为EF ∥AB ,所以23CE CF EA BF ==,所以32BF FC =,故答案为: 3:2. 19. 利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是________.【答案】1:4【解析】【分析】根据是相似三角形周长的比等于三角形边长的比解答即可.【详解】因为原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,所以放大前后的两个三角形的周长比为5:20=1:4.故答案为1:4.【点睛】本题考查了相似三角形的性质,关键是根据相似三角形周长的比等于三角形边长的比解答. 20. 已知两个相似多边形的相似比为5:7,若较小的一个多边形的周长为35,则较大的一个多边形的周长为__;若较大的一个多边形的面积是4,则较小的一个多边形的面积是___.【答案】 (1). 49, (2).10049. 【解析】【分析】根据相似多边形的对应边的比相等,周长的比等于相似比,面积的比等于相似比的平方.【详解】解:∵两个相似多边形的相似比为5:7,较小的一个多边形的周长为35.∴较大的一个多边形的周长为35×75=49; ∵面积之比等于相似比的平方,即(75)2=2549. 较大的一个多边形的面积是4,则较小的一个多边形的面积是4×2549=10049. 故答案为(1). 4; (2).10049. 【点睛】本题考查相似多边形的性质.相似多边形对应边之比、周长之比等于相似比,而面积之比等于相似比的平方.21. 如图,在钝角三角形ABC 中,6AB cm =,12AC cm =,动点D 从A 点出发到B 点止,动点E 从C 点出发到A 点止.点D 运动的速度为1/cm 秒,点E 运动的速度为2/cm 秒.如果两点同时运动,那么当以点A 、D 、E 为顶点的三角形与ABC ∆相似时,运动的时间是___.【答案】3秒或4.8秒 【解析】 【分析】如果以点A 、D 、E 为顶点的三角形与△ABC 相似,由于A 与A 对应,那么分两种情况:①D 与B 对应;②D 与C 对应.再根据相似三角形的性质分别作答.【详解】解:根据题意得:设当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是x 秒, ①若△ADE ∽△ABC ,则AD :AB=AE :AC , 即x :6=(12-2x ):12, 解得:x=3;②若△ADE ∽△ACB ,则AD :AC=AE :AB , 即x :12=(12-2x ):6, 解得:x=4.8;所以当以点A 、D 、E 为顶点的三角形与△ABC 相似时,运动的时间是3秒或4.8秒. 故答案为:3秒或4.8秒.【点睛】此题考查了相似三角形的性质,解题时要注意此题有两种相似形式,别漏解;还要注意运用方程思想解题.22. 如图,已知点B 、E 、C 、F 在同一条直线上,∠A =∠D ,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是______.(只需写一个条件,不添加辅助线和字母)【答案】∠B=∠DEC(不唯一) 【解析】试题解析:答案不唯一,如.B DEC ∠=∠ 可添加.B DEC ∠=∠ B DEC A D ∠=∠∠=∠,,.ABC DEF ∴∽故答案为.B DEC ∠=∠点睛:两角分别相等的两个三角形相似.23. 如图,四边形ABCD 中,AD∥BC ,CM 是∠BCD 的平分线,且CM⊥AB ,M 为垂足,AM=AB .若四边形ABCD 的面积为,则四边形AMCD 的面积是 .【答案】1. 【解析】试题分析:如图所示:延长BA 、CD ,交点为E .∵CM 平分∠BCD ,CM⊥AB ,∴MB=ME . 又∵AM=AB ,∴AE=AB ,∴AE=BE . ∵AD∥BC ,∴△EAD∽△EBC ,∴,∴S 四边形ADBC =S △EBC =,∴S △EBC =,∴S △EAD =×=,∴S 四边形AMCD =S △EBC ﹣S △EAD =﹣=1.故答案为1.考点:相似三角形的判定与性质;等腰三角形的判定与性质.24. 如图,某水平地面上建筑物的高度为AB ,在点D 和点F 处分别竖立高是2米的标杆CD 和EF ,两标杆相隔52米,并且建筑物AB 、标杆CD 和EF 在同一竖直平面内,从标杆CD 后退2米到点G 处,在G 处测得建筑物顶端A 和标杆顶端C 在同一条直线上;从标杆FE 后退4米到点H 处,在H 处测得建筑物顶端A 和标杆顶端E 在同一条直线上,则建筑物的高是__________米.【答案】54 【解析】设建筑物的高为x米,根据题意易得△CDG∽△ABG,∴CD DGAB BG=,∵CD=DG=2,∴BG=AB=x,再由△EFH∽△ABH可得EF FHAB BH=,即24x BH=,∴BH=2x,即BD+DF+FH=2x,亦即x-2+52+4=2x,解得x=54,即建筑物的高是54米.25. 在方格纸中,每个小格的顶点称为格点,以格点的连线为边的三角形称为格点三角形,如图所示的5×5的方格纸中,如果想作格点△ABC与△OAB相似(相似比不能为1),则C点坐标为.【答案】(4,4)或(5,2).【解析】【分析】要求△ABC与△OAB相似,因为相似比不为1,由三边对应相等的两三角形全等,知△OAB的边AB不能与△ABC的边AB对应,则AB与AC对应或者AB与BC对应并且此时AC或者BC是斜边,分两种情况分析即可.【详解】根据题意得:OA=2,OB=1,5∴当AB与AC对应时,有AB OAAC AB=或者AB OBAC AB=,∴AC=52或AC=5,∵C在格点上,∴AC=52(不合题意),则AC=5,∴C点坐标为(5,2),同理当AB与BC对应时,可求得BC=52或者BC=5,也是只有后者符合题意,此时C点坐标为(4,4),∴C点坐标为(5,2)或(4,4).故答案为(4,4)或(5,2).26. 如图,Rt△ABC中,∠ACB=90°,CD⊥AB,AD=4,BD=1,则CD的长为_____.【答案】2.【解析】【分析】根据射影定理得到:CD2=BD•AD,代入求值即可.【详解】∵如图,在Rt△ABC中,∠C=90°,CD⊥AB,AD=4,BD=1,∴由射影定理得:CD2=BD•AD=1×4=4,∴CD=2(舍去负值).故答案是:2.【点睛】本题考查了射影定理.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项.每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.27. 如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,B的坐标是(4,2),那么点B′的坐标是___.【答案】(2,1)或(﹣2,﹣1).【解析】【分析】利用位似图形的性质得出位似比,进而得出对应点的坐标.【详解】解:∵矩形OA′B′C′的面积等于矩形OABC面积的14,∴两矩形面积的相似比为:1:2,∵B的坐标是(4,2),∴点B′的坐标是:(2,1)或(-2,-1).故答案为(2,1)或(-2,-1).【点睛】本题考查位似变换的性质,得出位似图形对应点坐标特点是解题关键.28. 如图,在平面直角坐标系中,矩形AOCB的两边OA,OC分别在x轴和y轴上,且OA=2.OC=1,则矩形AOCB的对称中心的坐标是___;在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的3 2倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大32倍,得到矩形A2OC2B,…,按此规律,则矩形A4OC4B4的对称中心的坐标是___.【答案】(1). (﹣1,12),(2). (﹣8116,8132).【解析】【分析】先利用矩形的性质写出B点坐标,则根据线段中点坐标公式可写出矩形AOCB的对称中心的坐标;再利用以原点为位似中心的对应点的坐标之间的关系分别写出B1、B2、B3、B4的坐标,然后矩形A4OC4B4的对称中心的坐标.【详解】解:∵OA=2.OC=1,∴B(-2,1),∴矩形AOCB的对称中心的坐标为(-1,12),∵将矩形AOCB以原点O为位似中心放大为原来的32倍,得到矩形A1OC1B1,∴B 1(-3,32), 同理可得B 2(-92,94),B 3(-274,278),B 4(-818,8116),∴矩形A 4OC 4B 4的对称中心的坐标是(﹣8116,8132).故答案为(-1,12),(﹣8116,8132).【点睛】本题考查作图-位似变换:先确定位似中心;再分别连接并延长位似中心和能代表原图的关键点;接着根据位似比,确定能代表所作的位似图形的关键点;然后顺次连接上述各点,得到放大或缩小的图形.三.解答题29. 若x 、y 、z 满足y z x+=z x y +=x yz +=k ,求k 的值.【答案】k =﹣1;k =2. 【解析】 【分析】可分x+y+z=0和x+y+z ≠0两种情况代入求值和利用等比性质求解. 【详解】①当x+y+z =0时,y+z =﹣x , ∴k =y z x -=xx-=﹣1; ②x+y+z≠0时,k =y z z x x y x y z +++++++=()2x y z x y z++++=2.即k 的值为:-1或2.【点睛】考查比例性质的应用;分两种情况探讨此题是解题关键. 30. 已知:2a =3b =4c ,求a bb c++的值. 【答案】57. 【解析】 【分析】设2a =3b =4c=k (k≠0),则a =2k ,b =3k ,c =4k ,代入求值即可. 【详解】设2a =3b =4c=k (k≠0),则a =2k ,b =3k ,c =4k ,则a bb c + +=2334k kk k++=57.【点睛】本题考查了比例的性质.31. 如图1,点C将线段AB分成两部分,如果AC BCAB AC=,那么称点C为线段AB的黄金分割点.某研究小组在进行课题学习时,由黄金分割点联想到“黄金分割线”,类似地给出“黄金分割线”的定义:直线l将一个面积为S的图形分成两部分,这两部分的面积分别为1S,2S,如果121S SS S=,那么称直线l 为该图形的黄金分割线.(1)研究小组猜想:在ABC中,若点D为AB边上的黄金分割点(如图2),则直线AB是ABC的黄金分割线.你认为对吗?为什么?(2)请你说明:三角形的中线是否也是该三角形的黄金分割线?(3)研究小组在进一步探究中发现:过点C任作一条直线交AB于点D,再过点D 作直线DF CE,交AB 于点D ,连接AB(如图3),则直线AB也是ABC的黄金分割线.请你说明理由.(4)如图4,点D是ABCD的边AB的黄金分割点,过点D作DF CE,交AB于点D ,显然直线AB 是ABCD的黄金分割线.请你画一条ABCD的黄金分割线,使它不经过ABCD各边黄金分割点.【答案】(1)对,理由见解析(2)不可能(3)理由见解析(4)见解析【解析】【分析】【详解】(1)直线CD是ABC的黄金分割线.理由如下:设ABC的边AB上的高为h.12ADCS AD h=△,12BDCS BD h=△,12ABCS AB h=△,所以,ADCABCS ADS AB=△△,BDCADCS BDS AD=△△.又因为点D 为边AB的黄金分割点,所以有AD BD AB AD =.因此ADC BDC ABC ADCS S S S =△△△△. 所以,直线CD 是ABC 的黄金分割线.(2)因为三角形的中线将三角形分成面积相等的两部分,此时1212s s s ==,即 121s s s s ≠,所以三角形的中线不可能是该三角形的黄金分割线. (3)因为DFCE ,所以DEC 和FCE △的公共边CE 上的高也相等,所以有DGE FGC S S =△△.设直线EF 与CD 交于点G .所以DGE FGC S S =△△. 所以ADC FGC AFGD S S S =+△△四边形DGE AEF AFGD S S S =+=△△四边形,BDC BEFC S S =四边形△.又因为ADC BDC ABC ADC S S S S =△△△△,所以BEFCAEF ABC AEFS S S S =四边形△△△.因此,直线EF 也是ABC 的黄金分割线. (4)画法不惟一,现提供两种画法;画法一:如答图1,取EF 的中点G ,再过点G 作一条直线分别交AB ,EF 于M ,G 点,则直线DC 就是ABCD 的黄金分割线.画法二:如答图2,在EF 上取一点G ,连接EF ,再过点G 作FM NE ∥交AB 于点M ,连接DC ,则直线DC 就是ABCD 的黄金分割线. (1)由于,,ACDBCDABCSSS是同高,而点D 为边AB 的黄金分割点,则AD BDAB AD=,所以ADC BDCABC ADCS S S S =△△△△,故直线CD 是ABC 的黄金分割线(2)只需判断它们面积比是否相等,若相等则中线是三角形的黄金分割线,否则不是(3)根据平行线间的距离相等,则DGE FGC S S =△△,通过图形面积的转化,直线EF 分三角形的图形面积有BEFCAEFABC AEFSSS S=四边形△△△,故直线EF也是ABC的黄金分割线(4)画法不惟一,只需分成图形面积比相等即可32. 如果一个矩形ABCD(AB<BC)中,512ABBC-=≈0.618,那么这个矩形称为黄金矩形,黄金矩形给人以美感.在黄金矩形ABCD内作正方形CDEF,得到一个小矩形ABFE(如图),请问矩形ABFE是否是黄金矩形?请说明你的结论的正确性.【答案】矩形ABFE是黄金矩形.说明见解析.【解析】【分析】只需求得其宽与长的比是否符合黄金比即可.【详解】矩形ABFE是黄金矩形.∵AD=BC,DE=AB,∴511151AE AD DE BC AB BCAB AB AB AB---===-=-=-.∴矩形ABFE是黄金矩形.【点睛】本题考查黄金分割定理,解题关键是根据已知条件和正方形的性质进行分析求解.33. 如图所示,在矩形ABCD中,AC、BD相交于点O,OE⊥BC于E,连接DE交OC于点F,作FG⊥BC 于G.(1)说明点G是线段BC的一个三等分点;(2)请你依照上面的画法,在原图上画出BC的一个四等分点(保留作图痕迹,不必证明).【答案】(1)见解析;(2)见解析.【解析】【分析】(1)根据矩形对角线的性质可以判断E 为BC 的二等分点,再由OE ∥CD ,OE=12CD ,得出EG=12GC ,从而得出GC=23CE=13BC . (2)依题意,根据平行线分线段成比例定理直接在图中作图即可. 【详解】(1)解:∵OE⊥BC,CD⊥BC,∴OE∥CD. ∵△OEF∽△CDF, ∴12EF OE OB FD CD BD === . ∵四边形ABCD 是矩形, ∴AD∥BC. ∴12CG CE EF BG AF FD === . ∴G 是BC 的三等分点 (2)解:依题意画图所示,【点睛】本题考查的知识点是平行线分线段成比例, 矩形的性质,解题的关键是熟练的掌握平行线分线段成比例, 矩形的性质.34. 如图,在△ABC 中,D 为BC 边的中点,E 为AC 边上的任意一点,BE 交AD 于点O . 某学生在研究这一问题时,发现了如下的事实:(1)当BC FE =时,有22321AO AD ==+,如图(1) (2)当11312AE AC ==+时,有113222n nn n b b -+-=⋅=,如图(2) (3)当11413AE AC ==+时,有数与式,如图(3)在图(4)中,当11AEAC n=+时,参照上述研究结论,请你猜想用n表示AOAD的一般结论,并给出证明(其中n是正整数)【答案】AOAD=22n+,证明见解析.【解析】【分析】作DF∥BE交AC于F,如图4,根据平行线分线段成比例定理,由DF∥BE得到CFEF=CDBD,则EF=CF,再利用比例性质由AEAC=11n+得到AEEF=2n,再由OE∥DF得到AOOD=AEEF=2n,然后根据比例性质求解.【详解】过D作DF∥BE交AC于F,∴AO:AD=AE:AF.∵D为BC边的中点,∴CF=EF=0.5EC.∵AEAC=11n+,∴AE:(AE+2EF)=1:(1+n),AE+2EF=AE+AEnAEn=2EF,∴AE:EF=2:n.∴AE:AF=2:(n+2).∴AOAD=22n+.【点睛】本题考查平行线分线段成比例:三条平行线截两条直线,所得的对应线段成比例;平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.35. 下列每组图形状是否相同?若相同,它们的对应角有怎样的关系?对应边呢?(1)正三角形ABC与正三角形DEF;(2)正方形ABCD与正方形EFGH.【答案】(1)形状相同.它们的对应角相等,都是60°.对应边的比相等;(2)形状相同.它们的对应角相等,都是90°.对应边的比相等.【解析】【分析】(1)两个正三角形的形状相同,对应角相等,对应边的比相等.(2)两个正方形的形状相同,对应的角相等,对应边的比相等.【详解】(1)正△ABC与正△DEF的形状相同.它们的对应角相等,都是60°.根据正三角形的边长相等可以得到对应边的比相等.(2)正方形ABCD与正方形EFGH的形状相同.它们的对应角相等,都是90°.根据正方形的边长相等可以得到对应边的比相等.【点睛】本题考查相似图形,相似图形是指形状相同的图形,判断两个正多边形的形状是否相同,就看它们的对应角是否相等,对应边的比是否相等.36. 下框中是小明对一道题目的解答以及老师的批改.题目:某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1,在温室内,沿前侧内墙保留3 m 的空地,其他三侧内墙各保留1 m的通道,当温室的长与宽各为多少时,矩形蔬菜种植区域的面积是288 m2?解:设矩形蔬菜种植区域的宽为x_m,则长为2x m,根据题意,得x·2x=288.解这个方程,得x1=-12(不合题意,舍去),x2=12,所以温室的长为2×12+3+1=28(m),宽为12+1+1=14(m)答:当温室的长为28 m,宽为14 m时,矩形蔬菜种植区域的面积是288 m2.我的结果也正确!小明发现他解答的结果是正确的,但是老师却在他的解答中画了一条横线,并打了一个?.结果为何正确呢?(1)请指出小明解答中存在的问题,并补充缺少的过程:变化一下会怎样?(2)如图,矩形A′B′C′D′在矩形ABCD的内部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,设AB与A′B′、BC 与B′C′、CD与C′D′、DA与D′A′之间的距离分别为a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d应满足什么条件?请说明理由.【答案】(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由;(2)a cb d++=2.【解析】【分析】(1)根据题意可得小明没有说明矩形蔬菜种植区域的长与宽之比为2:1的理由,所以由已知条件求出矩形蔬菜种植区域的长与宽的关系即可;(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多边形的性质,可得A DA B''''=ADAB,然后利用比例的性质.【详解】解(1)小明没有说明矩形蔬菜种植区域的长与宽之比为2∶1的理由.在“设矩形蔬菜种植区域的宽为x m,则长为2x m.”前补充以下过程:设温室的宽为x m,则长为2x m.则矩形蔬菜种植区域的宽为(x-1-1)m,长为(2x-3-1)m.∵23111xx----=242xx--=2,∴矩形蔬菜种植区域的长与宽之比为2∶1;(2)要使矩形A′B′C′D′∽矩形ABCD,就要A DA B''''=ADAB,即()()AD a cAB b d-+-+=21,即()()2AB a c AB b d -+-+=21, 即2AB -2(b +d )=2AB -(a +c ),∴a +c =2(b +d ), a c b d即++=2.【点睛】本题考查了相似多边形的性质及比例的性质,如果两个多边形相似,那么它们对应边的比相等,对应角相等,对应周长的比都等于相似比;它们对应面积的比等于相似比的平方.37. 如图,四边形ABCD 为平行四边形,AE 平分∠BAD 交BC 于点E ,过点E 作EF ∥AB ,交AD 于点F ,连接BF .(1)求证:BF 平分∠ABC ;(2)若AB =6,且四边形ABCD ∽四边形CEFD ,求BC 长.【答案】(1)证明见解析;(2)BC =5【解析】【分析】(1)首先证明四边形ABEF 是平行四边形,再由平行线的性质和角平分线证出∠BAE=∠AEB ,证出AB=EB ,得出四边形ABEF 是菱形,即可得出结论;(2)由相似多边形的性质得出对应边成比例,即可得出BC 的长.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∴∠FAE =∠AEB ,∵EF ∥AB ,∴四边形ABEF 是平行四边形,∵AE 平分∠BAD ,∴∠FAE=∠BAE,∴∠BAE=∠AEB,∴AB=EB,∴四边形ABEF是菱形,∴BF平分∠ABC;(2)解:∵四边形ABEF为菱形;∴BE=AB=6,∵四边形ABCD∽四边形CEFD,∴AB BCCE CD=,即666BCBC=-,解得:BC=3±35(负值舍去),∴BC=3+35.【点睛】本题考查菱形的判定与性质、相似多边形的性质、平行四边形的判定与性质、等腰三角形的判定;熟练掌握平行四边形的判定与性质,证明四边形ABEF是菱形是解题关键.38. 将两块全等的含30°角的三角尺如图①摆放在一起,它们的较短直角边长为6(1)将△DCE沿直线l向右平移到图②的位置,使E点落在AB上,求平移的距离;(2)将△DCE绕点C按顺时针方向旋转到图③的位置,使点E落在AB上,则△DCE旋转了多少度数;(3)将△DCE沿直线AC翻折到图④的位置,ED′与AB相交于点F,求证:BF=EF.【答案】(1)CC′=6﹣3;(2)△DCE旋转的度数是30度;(3)见解析.【解析】【分析】(1)根据三角函数求得AC的长,易证△BEC′∽△BAC,根据相似三角形对应边的比相等,即可求得BC′,则可得CC′的长;(2)根据旋转的定义得到:CE=CB,易证△BCE是等边三角形,则∠BCE可得,则△DCE旋转的度数即可求解;(3)证明△AEF≌△DBF即可证得.【详解】(1)在直角△ABC中,AC=BC•tan60°=63.∵△BEC′∽△BAC,∴'BCBC='C EAC即'6BC=63,解得:BC′=23,∴CC′=BC﹣BC′=6﹣23;(2)∵△BCE中,CE=CB,∠EBC=60°,∴△BCE是等边三角形,∴∠BCE=60°,∴∠ACE=90﹣60=30°,即△DCE旋转的度数是30度.(3)∵AC=CD,CE=CB,∴AE=BD,又∵∠AFE=∠DFB,∠A=∠EDC,∴△AEF≌△DBF,∴BF=EF.【点睛】本题考查旋转的定义,注意先确定旋转角,并且在证明线段相等的问题时,一般是转化为证明三角形全等的问题来解决.39. 如图,在△ABC中,∠ACB=90°,CD⊥AB,(1)图1中共有对相似三角形,写出来分别为(不需证明);(2)已知AB=10,AC=8,请你求出CD的长;(3)在(2)的情况下,如果以AB为x轴,CD为y轴,点D为坐标原点O,建立直角坐标系(如图2),若点P从C点出发,以每秒1个单位的速度沿线段CB运动,点Q出B点出发,以每秒1个单位的速度沿线段BA运动,其中一点最先到达线段的端点时,两点即刻同时停止运动;设运动时间为t秒是否存在点P,使以点B、P、Q为顶点的三角形与△ABC相似?若存在,请求出点P的坐标;若不存在,请说明理由.【答案】(1)3对,分别是:△ABC∽△ACD,△ABC∽△CBD ,△ACD∽△CBD;(2)4.8;(3)存在,(1.35,3)或(3.15,1.8).【解析】【分析】(1)根据两角对应相等的两三角形相似即可得到3对相似三角形,分别为:△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD;(2)先在△ABC中由勾股定理求出BC的长,再根据△ABC的面积不变得到12AB•CD=12AC•BC,即可求出CD的长;(3)由于∠B公共,所以以点B、P、Q为顶点的三角形与△ABC相似时,分两种情况进行讨论:①△PQB∽△ACB;②△QPB∽△ACB.【详解】解:(1)图1中共有3对相似三角形,分别为:△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD.故答案为3,△ABC∽△ACD,△ABC∽△CBD,△ABC∽△CBD;(2)如图1,在△ABC中,∵∠ACB=90°,AB=10,AC=8,∴==6.∵△ABC的面积=12AB•CD=12AC•BC,∴CD=6810AC BCAB⋅⨯==4.8;(3)存在点P,使以点B、P、Q为顶点的三角形与△ABC相似,理由如下:在△BOC中,∵∠COB=90°,BC=6,OC=4.8,∴==3.6.分两种情况:①当∠BQP=90°时,如图2①,此时△PQB∽△ACB,。
人教版数学九年级下《第27章相似》单元检测题有答案

ABCPD(第6题图)(第3题图)(第4题图)A BCDEF人教版数学九年级下《第27章相似》单元检测题有答案一、选择题1.已知△ABC ∽△A ′B ′C ′,且BC ∶B ′C ′= AC ∶A ′C ′,若AC =3,A ′C ′=1.8,则△ABC与△A ′B ′C ′的相似比是( ).A .2∶3B .3∶2C .5∶3D .3∶5 2. 下列说法正确的是( ).A .所有的矩形都是相似形B .所有的正方形都是相似形C .对应角相等的两个多边形相似D .对应边成比例的两个多边形相似 3. 若两个相似三角形的面积之比为1:4,则它们的周长之比为( ).A . 1:2B . 1:4C . 1:5D . 1:16 4. 如图,小东用长为3.2m 的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的同一点.此时,竹竿与这一点相距8m ,与旗杆相距22m ,则旗杆的高为( ). A .12m B .10m C .8m D .7m5.如图,已知△ABC 与△ADE 中,则∠C =∠E , ∠DAB =∠C A E,则下列各式①∠D =∠B , ② AF AC = AD AB , ③DEBC=AE AC ,④ AD AE = ABAC中,成立的个数是( ). A .1个 B .2个 C .3个 D .4个 6.如图, AB ∥CD ,AD 与BC 相交于点P ,AB =4, CD =7,AD =10,则AP 的长等于 ( ). A .7011 B .407 C .704D .40117.如图,若∠1=∠2=∠3,则图中相似的三角形有( ).A .1对B .2对C .3对D .4对(第7题图)(第13题图)ACBD E (第11题图) DCB A(第12题图) (第7题图)8.如图,∠ABD =∠BDC =90°,∠A =∠CBD ,AB =3,BD =2,则CD的长为( )A .43B . 34C .2D .3二、填空题9.若///C B A ABC ∆∆∽,且∠A =45°,∠B =30°,则∠C ′=_________ .10.已知△ABC ∽△DEF ,若△ABC 与△DEF 的相似比为2:3,则△ABC 与△DEF 对应边上的中线的比为________.10.在一张比例尺为1∶20的图纸上,某矩形零件的面积为12cm 2;则这个零件的实际面积为 cm 2.11.如图,在Rt △ABC 中,∠B =90°,点D 是AB 边上的一定点,点E 是AC 上的一个动点,若再增加一个条件就能使△ADE 与△ABC 相似,则这个条件可以是___________.12.如图,BC 平分∠ABD ,AB =12,BD =15,如果∠ACB =∠D ,那么BC 边的长为 .13.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有三棵树,则河宽为 米.三、解答题(本大题共5小题,共44分)15. 如图,在△ABC 中,AB =AC ,∠A =36°,BD 为角平分线,DE ⊥AB ,垂足为E .写出图中一对相似比不为1的相似三角形并加以证明.16.已知△ABC ∽△ADE ,AB =30cm ,AD =18cm ,BC =20cm ,∠BAC =75°,∠ABC=40°.(1)求∠ADE 和∠AED 的度数;D EA(2)求DE 的长.18.如图,已知A (﹣4,2),B (﹣2,6),C (0,4)是直角坐标系平面上三点. (1)把△ABC 向右平移4个单位再向下平移1个单位,得到△A 1B 1C 1.画出平移后的图形,并写出点A 的对应点A 1(2)以原点O 为位似中心,将△ABC 缩小为原来的一半,得到△A 2B 2C 2,请在所给的坐标系中作出所有满足条件的图形.19.如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B . (1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =6,AF =4,求AE 的长.九年级数学单元检测题答案(第27章)一、选择题(本大题共8小题.每小题4分,共32分) 1.C 2.B 3.A 4. A 5.C 6.D 7.D 8.B 二、填空题(本大题共6小题.每小题4分,共24分)•9.105 ° 10.2:3 11. 4800 12. DE AC 13.14. 22.5三、解答题(本大题共5小题,共44分) 15. (6分)解:△ABC ∽△BCD ;证明:∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°. ∵BD 为角平分线,∴∠DBC =12∠ABC =36°=∠A . 又∵∠C =∠C ,∴△ABC ∽△BCD .16. (8分)解:(1)∵∠BAC =75°,∠ABC =40°,∴∠C =180°﹣∠BAC ﹣∠ABC =180°﹣75°﹣40°=65°, ∵△ABC ∽△ADE ,∴∠ADE =∠ABC =40°,∠AED =∠C =65°;(2)∵△ABC ∽△ADE ,∴∠A =∠BCD .在△ACD 中,∠ADC =90°, ∴∠A +∠ACD =90°.∴∠BCD +∠ACD =90°,即∠ACB =90°.18. (10分)(1)△A 1B 1C 1如图所示,其中A 1的坐标为:(0,1);(2)符合条件△A 2B 2C 2有两个,如图所示.∥CD ,AD ∥BC , ∴∠C +∠B =180°,∠ADF =∠DEC . ∵∠AFD +∠AFE =180°,∠AFE =∠B , ∴∠AFD =∠C . ∴△ADF ∽△DEC .(2)解:∵□ABCD ,∴CD =AB =8. 由(1)知△ADF ∽△DEC ,∴DE AD =CD AF ,∴DE =AFCDAD ∙==12.在Rt △ADE 中,由勾股定理得:AE =22AD DE -=22)36(12-=6.。
人教版九年级下《第二十七章相似》单元测试卷含答案

人教版九年级下《第二十七章相似》单元测试卷含答案一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分) 1.若y x =34,则x +y x的值为( )A .1 B.47 C.54 D.742.已知△ABC∽△A′B′C′且AB A ′B ′=12,则S △ABC ∶S △A ′B ′C ′为( )A .1∶2B .2∶1C .1∶4D .4∶13.如图,身高为1.6米的某学生想测量学校旗杆的高度,当她在C 处时,她的影子正好与旗杆的影子重合,并测得AC =2米,BC =8米,则旗杆的高度是( )A .6.4米B .7米C .8米D .9米4.如图,E 是平行四边形ABCD 的边BC 的延长线上的一点,连接AE 交CD 于点F ,则图中共有相似三角形( )A .1对B .2对C .3对D .4对5.如图,在Rt △ABC 中,∠ACB =90°,AC =4,BC =6,以斜边AB 上的一点O 为圆心所作的半圆分别与AC ,BC 相切于点D ,E ,则AD 为( )A .2.5B .1.6C .1.5D .16.如图,AD 是△ABC 的角平分线,则AB∶AC 等于( )A .BD ∶CDB .AD ∶CDC .BC ∶AD D .BC ∶AC7.如图,AB =4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BE =12DB ,作EF⊥DE 并截取EF =DE ,连接AF 并延长交射线BM 于点C.设BE =x ,BC =y ,则y 关于x 的函数解析式为( )A .-12x x -4B .-2x x -1C .-3x x -1D .-8x x -48.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF =14CD ,下列结论:①∠BAE =30°;②△ABE∽△AEF;③AE⊥EF;④△ADF∽△ECF.其中正确的个数为( )A .1个B .2个C .3个D .4个 二、填空题(本大题共6个小题,每小题3分,共18分)9.如果a b =c d =ef =k(b +d +f≠0),且a +c +e =3(b +d +f),那么k =________.10.在△ABC 中,AB =8,AC =6,在△DEF 中,DE =4,DF =3,要使△ABC 与△DEF 相似,则需要添加一个条件是______________________________.(写出一种情况即可)11.如图,AB ∥CD ,AD 与BC 相交于点O ,OA =4,OD =6,则△AOB 与△DOC 的周长比是________.12.如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB⊥BD,CD ⊥BD ,且测得AB =1.2米,BP =1.8米,PD =12米,那么该古城墙的高度是________米.(平面镜的厚度忽略不计)13.如图,矩形EFGH 内接于△ABC,且边FG 落在BC 上,若BC =3,AD =2,EF =23EH ,那么EH 的长为________.14.如图,一条4m 宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为________m 2.三、解答题(共9个小题,共70分)15.(5分)(2017·长春模拟)如图,在△ABC 中,D ,E 分别是AB ,AC 上一点,且∠AED =∠B.若AE =5,AB =9,CB =6,求ED 的长.16.(6分)如图所示,已知AB∥CD,AD,BC相交于点E,F为BC上一点,且∠EAF =∠C.求证:(1) ∠EAF=∠B;(2) AF2=FE·FB.17.(7分)如图所示,在正方形ABCD中,BE平分∠DBC且交CD边于点E,将△BCE 绕点C顺时针旋转到△DCF的位置,并延长BE交DF于点G.(1) 求证:△BDG∽△DEG;(2) 若EG·BG=4,求BE的长.18.(7分)如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1) 画出位似中心点O;(2) 求出△ABC与△A′B′C′的位似比;(3) 以点O为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5.19.(7分)王亮同学利用课余时间对学校旗杆的高度进行测量,他是这样测量的:把长为3m的标杆垂直放置于旗杆一侧的地面上,测得标杆底端距旗杆底端的距离为15m,然后往后退,直到视线通过标杆顶端正好看不到旗杆顶端时为止,测得此时人与标杆的水平距离为2m,已知王亮的身高为1.6m,请帮他计算旗杆的高度(王亮眼睛距地面的高度视为他的身高).20.(8分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F 为线段DE上一点,且∠AFE=∠B.(1) 求证:∠DFA=∠ECD;(2) △ADF与△DEC相似吗?为什么?(3) 若AB=4,AD=33,AE=3,求AF的长.21.(9分)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图①,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1) 求证:△AEF∽△ABC;(2) 求这个正方形零件的边长;(3) 如果把它加工成矩形零件如图②,问这个矩形的最大面积是多少?22.(9分)如图,已知AB 是⊙O 的直径,BC 是⊙O 的弦,弦ED⊥AB 于点F ,交BC 于点G ,过点C 的直线与ED 的延长线交于点P ,PC =PG.(1 )求证:PC 是⊙O 的切线;(2) 当点C 在劣弧AD 上运动时,其他条件不变,若BG 2=BF·BO.求证:点G 是BC 的中点;(3) 在满足(2)的条件下,若AB =10,ED =46,求BG 的长.23.(12分)如图,在平面直角坐标系xOy 中,抛物线y =-16x 2+bx +c 过点A(0,4)和C(8,0),P(t ,0)是x 轴正半轴上的一个动点,M 是线段AP 的中点,将线段MP 绕点P 顺时针旋转90°得线段PB ,过点B 作x 轴的垂线,过点A 作y 轴的垂线,两直线相交于点D. (1) 求b ,c 的值;(2) 当t为何值时,点D落在抛物线上;(3) 是否存在t,使得以A,B,D为顶点的三角形与△AOP相似?若存在,求此时t 的值;若不存在,请说明理由.答案; 一、1---8 DCCCB AAB 二、 9. 310. ∠A =∠D(或BC ∶EF =2∶1) 11. 2∶3 12. 8 13. 3214. 80 三、15. 解:∵∠AED=∠B,∠A =∠A,∴△AED ∽△ABC ,∴AE AB =DEBC ,∵AE =5,AB =9,CB =6,∴59=DE 6,解得DE =10316. 证明:(1)∵AB∥CD,∴∠B =∠C,又∠C=∠EAF,∴∠EAF =∠B(2)∵∠EAF=∠B,∠AFE =∠BFA,∴△AFE ∽△BFA ,则AF BF =FE FA ,∴AF 2=FE·FB17. 解:(1)证明:∵BE 平分∠DBC,∴∠CBE =∠DBG,∵∠CBE =∠CDF ,∴∠DBG =∠CDF,∵∠BGD =∠DGE,∴△BDG ∽△DEG(2)∵△BDG∽△DEG,DG BG =EGDG ,∴DG 2=BG·EG=4,∴DG =2,∵∠EBC +∠BEC=90°,∠BEC =∠DEG,∠EBC =∠EDG,∴∠BGD =90°,∵∠DBG =∠FBG,BG =BG ,∴△BDG ≌△BFG ,∴FG =DG =2,∴DF =4,∵BE =DF ,∴BE =DF =4.18. 解:(1) 连接A′A,C ′C ,并分别延长相交于点O ,即为位似中心(2) 位似比为1∶2 (3) 略19. 解:根据题意知,AB ⊥BF ,CD ⊥BF ,EF ⊥BF ,EF =1.6 m ,CD =3 m ,FD =2 m ,BD =15 m ,过E 点作EH⊥AB,交AB 于点H ,交CD 于点G ,则EG⊥CD,EH ∥FB ,EF =DG =BH ,EG =FD ,CG =CD -EF.因为△ECG∽△EAH,所以EG EH =CG AH ,即22+15=3-1.6AH ,所以AH =11.9 m ,所以AB =AH +HB =AH +EF =11.9+1.6=13.5(m ),即旗杆的高度为13.5 m20. 解:(1)证明:∵∠AFE=∠B,∠AFE +∠DFA=180°,∠B +∠ECD=180°,∴∠DFA =∠ECD(2)△ADF∽△DEC.证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠ADF =∠DEC,∴△ADF ∽△DEC(3)∵四边形ABCD 是平行四边形,∴AD∥BC,CD =AB =4,又∵AE⊥BC,∴AE ⊥AD ,在Rt △ADE 中,DE =AD 2+AE 2=(33)2+32=6,∵△ADF ∽△DEC ,∴AD DE =AFCD,∴336=AF4,AF =2 3 21. 解:(1)∵四边形EFHG 为正方形,∴BC ∥EF ,∴△AEF ∽△ABC(2)∵四边形EFHG 为正方形,∴EF ∥BC ,EG ⊥BC ,又∵AD⊥BC,∴EG ∥AD ,设EG =EF =x ,则KD =x ,∵BC =120 mm ,AD =80 mm ,∴AK =80-x ,∵△AEF ∽△ABC ,∴EF BC =AK AD ,即x 120=80-x 80,解得x =48,∴这个正方形零件的边长是48 mm (3)设EG =KD =m ,则AK =80-m ,∵△AEF ∽△ABC ,∴EF BC =AK AD ,即EF 120=80-m 80,∴EF =120-32m ,∴S 矩形EFHG =EG·EF=m·(120-32m)=-32m 2+120m =-32(m -40)2+2400,故当m =40时,矩形EFHG 的面积最大,最大面积为2400 mm 222. 解:(1)连接OC ,∵ED ⊥AB ,∴∠BFG =90°,∴∠B +∠BGF=90°,又∵PC =PG ,∴∠PCG =∠PGC,而∠PGC=∠BGF,∴∠B +∠PCG=90°,又∵OB=OC ,∴∠B =∠BCO.∴∠BCO+∠PCG=90°,则∠PCO=90°,即OC⊥PC,而OC 是半径,∴PC 是⊙O 的切线(2)连接OG ,∵BG 2=BF·BO,∴BG BF =BO BG ,而∠B=∠B,∴△BFG ∽△BGO ,∴∠BGO =∠BFG=90°,∴OG ⊥BC ,∴点G 是BC 的中点(3)连接OE ,∵AB 是⊙O 的直径,ED ⊥AB ,∴EF =12ED ,∵AB =10,ED =46,∴EF =26,OE =OB =12AB =5.在Rt △OEF 中,OF =OE 2-EF 2=1,∴BF =OB -OF =5-1=4,∴BG =BF ·BO =2 523. 解:(1)由抛物线y =-16x 2+bx +c 过点A(0,4)和C(8,0),可得⎩⎪⎨⎪⎧c =4,-16×64+8b +c =0,解得⎩⎪⎨⎪⎧c =4b =56(2)∵∠AOP=∠PEB=90°,∠OAP =90°-∠APO=∠EPB,∴△AOP ∽△PEB ,且相似比为AO PE =AP PB=2,∵AO =4,PE =2,OE =OP +PE =t +2,又∵DE=OA =4,∴点D 的坐标为(t +2,4),∴点D 落在抛物线上时,有-16(t +2)2+56(t +2)+4=4,解得t =3或t =-2,∵t >0,∴t =3,故当t 为3时,点D 落在抛物线上(3)存在t ,能够使得以A ,B ,D 为顶点的三角形与△AOP 相似.理由:①当0<t <8时,若△POA∽△ADB,则PO AD =AO BD ,即t t +2=44-12t ,整理,得t 2+16=0,∴t 无解,若△POA∽△BDA ,同理,解得t =-2+25(负值舍去);②当t >8时,若△POA∽△ADB,则PO AD =AO BD ,即t t +2=412t -4,解得t =8+45(负值舍去),若△POA∽△BDA,同理,解得t 无解.综上所述,当t =-2+25或t =8+45时,以A ,B ,D 为顶点的三角形与△AOP 相似。
第27章 相似单元测试卷(含答案)

第27章相似单元检测卷一、选择题.(每小题3分,共30分)1.下列四组线段中,不是成比例线段的为()A.a=3,b=6,c=2,d=4B.a=4,b=6,c=5,d=10C.a=1,b=2,c=6,d=3D.a=2,b=5,c=15,d=232.下列命题正确的是()A.所有的等腰三角形都相似B.所有的菱形都相似C.所有的正方形都相似D.有一个角是30°的两个等腰三角形相似3.如图,在△ABC中,D、E分别是AB、AC的中点,下列说法中不正确的是()A.12=DE BC B. =AD AEAB ACC.△ADE∽△ABCD.S△ADE∶S△ABC=1∶2第3题图第5题图第6题图4.如果两个相似三角形的面积比是1∶4,那么它们的周长比是()A.1∶16B.1∶4C.1∶6D.1∶25.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()6.(2016·安徽)如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4B.42C.6D.437.如图,在下列由位似变换得到的图形中,其相似比为2的是(点A是原图形上的点)()A.OA=OA′B.OA=AA′C.OA=12AA′D.OA′=2AA′8.如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且CF=14CD,下列结论:①△ABE∽△AEF;②AE⊥EF;③△ADF∽△ECF,其中正确的个数为()A.0个B.1个C.2个D.3个第8题图第9题图第10题图9.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5B.1.6C.1.5D.110.如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E、F,则BFEF的值是()A. 2-1B.2+ 2C. 2+1D. 2二、填空题.(每小题3分,共24分)11.若△ABC∽△A′B′C′,AB=16cm,A′B′=4cm,AD平分∠BAC,A′D′平分∠B′A′C′,A′D′=3cm,则AD= cm.12.若△ABC的三边之比为2∶5∶6,与其相似的另一个△A′B′C′的最大边长为15cm,那么△A′B′C′的最小边长为.13.已知E(-3,3),F(-1,-1),以坐标原点O为位似中心,按相似比为2∶1把△EFO放大,则点E的对应点E′的坐标为.14.如图所示,等腰梯形ABCD中,AD∥BC,且AD=12BC,E为AD上一点,AC与BE交于点F,若AE∶DE=2∶1,则AEFCBFSSVV= .第14题图第15题图第16题图第17题图第18题图15.如图,路灯距离地面8m,身高1.6m的小明站在距离灯的底部(点O)16m的点A 处,则小明的影子AM长m.16.(2016·湖南娄底)如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)17.(2016·四川成都)如图,△ABC内接于⊙O,AH⊥BC于点H.若AC=24,AH=18,⊙O的半径OC=13,则AB= .18.如图,在△ABC中,∠B=90°,AB=6,BC=8,沿DE将△ABC折叠,使点C落在AB边上的C ′处,并且C ′D ∥BC ,则CD 的长是 .三、解答题.(共66分)19.(8分)(2016·广西南宁改编)如图,在平面直角坐标系中,已知△ABC 三个顶点的坐标分别是A (2,2),B (4,0),C (4,-4).(1)请画出△ABC 向左平移6个单位长度后得到的△A 1B 1C 1;(2)以点O 为位似中心,将△ABC 缩小为原来的12,得到△A 2B 2C 2,请在y 轴右侧画出△A 2B 2C 2,并求出111222A B C A B C S S V V 的值.20.(8分)如图,网格中的每个小正方形的边长都是1,每个小正方形的顶点叫做格点.△ACB 和△DCE 的顶点都在格点上,ED 的延长线交AB 于点F .求证:(1)△ACB ∽△DCE ;(2)EF ⊥AB .21.(8分)(2016·浙江杭州)如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,∠AED =∠B ,射线AG 分别交线段DE ,BC 于点F ,G ,且=AD DE AC CG . (1)求证:△ADF ∽△ACG ;(2)若12=AD AC ,求AF FG的值.22.(8分)如图,在△ABC 中,CD ⊥AB 于D ,BE ⊥AC 于E ,连接DE .求证:∠AED =∠ABC .23.(10分)某高中学校为高一新生设计的学生板凳的正面视图如图所示,其中BA=CD ,BC =20cm,BC 、EF 平行于地面AD 且到地面AD 的距离分别为40cm 、8cm.为使板凳两腿底端A 、D 之间的距离为50cm ,那么横梁EF 应为多长?(材质及厚度等忽略不计)24.(12分)如图,在直角坐标系xOy中,直线y=12x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作矩形ABCD,使得AD=5.过点D作DH⊥OA,垂足为H.(1)求证:△ADH∽△BAO;(2)求点D的坐标.25.(12分)(2016·湖北襄阳)如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.(1)求证:四边形EFDG是菱形;(2)探究线段EG,GF,AF之间的数量关系,并说明理由;(3)若AG=6,EG=25,求BE的长.。
人教新版九年级(下)第27章-相似单元测试卷含解析

,
,
当 时, ,
,
解得 .
当 时, ,
,
解得 ,
故答案为3或 .
三.解答题(共8小题)
21.已知: , ,求: (化成最简整数比)
解: , ,
.
22.如图,在 中, , ,
(1)求 的长;
(2)若点 在 的直角边上,点 在斜边 上,当 时,求 的长.
解:(1)在 中, ,
,
设 , ,则 ,
四边形 是平行四边形,
, ,
是 的中点,
, ,
, ,
,
与 等高,
,
设 , ,则
是 中点,
故选: .
6.如图,直线 ,直线 、 、 分别和直线 交于点 、 、 ,和直线 交于点 、 、 ,若 , , ,则线段 的长为
A.2B.3C.4D.6
解: ,
,
即 ,
,
.
故选: .
7.如图,已知 ,任取一点 ,连 , , ,并取它们的中点 , , ,得 ,则下列说法正确的个数是
A.1B.1.2C.2D.2.5
解: ,
,即 ①,
,
,即 ②,
① ②,得 ,
解得 .
故选: .
9.如图,正方形 边长为6, 是 的中点,连接 ,以 为边在正方形内部作 ,边 交 于 ,连接 .则下列说法正确的有
① ② ③ ④
A.①②③B.②④C.①④D.②③④
【解答】证明:延长 到 ,使 ,连接 .如图所示:
① 与 是位似图形;
② 与 是相似图形;
③ 与 的周长比为 ;
④ 与 的面积比为 .
A.1B.2C.3D.4
解:根据位似性质得出① 与 是位似图形,
人教新版 九年级下学期 第27章 相似 单元测试卷 含解析

九年级(下)第二学期第27章相似单元测试卷一、选择题1.若,则A.B.C.D.2.若与△相似且对应中线之比为,则周长之比和面积比分别是A.,B.,C.,D.,3.如图,下列条件中不能判定的是A.B.C.D.4.如图,四边形和四边形是以点为位似中心的位似图形,若,则四边形和四边形的面积比为A.B.C.D.5.如图,在中,,,垂足为点,如果,,那么的长是A.4B.6C.D.6.如图,已知直线,直线、与、、分别交于点、、、、、,若,,,则的值是A.14B.15C.16D.177.如图,在矩形中,点是边的中点,则A.B.C.D.8.如图,在中,,分别是,上的点,,的平分线交于点,若,则A.B.C.D.9.如图,在中,,且,则等于A.B.C.D.10.如图,点是正方形的边延长线一点,连接交于,作,交的延长线于,连接,当时,作于,连接,则的长为A.B.C.D.二.填空题(共11小题)11.已知,,,是成比例线段,,,,则线段的长为.12.如果在比例尺的滨海区地图上,招宝山风景区与郑氏十七房的距离约是,则它们之间的实际距离约为千米.13.若点是线段的黄金分割点,,则较长线段的长是.14.如图,将矩形沿折叠,使点落在边上的点处,若与相似,则和的数量关系为.15.如图,,、相交于点,过作交于点,如果,,那么的长等于.16.在中,,,,是边上的一点,,是边上的一点与端点不重合),如果以、、为顶点的三角形与相似,那么的长是.17.如图,在中,点、分别在的两边、上,且,如果,,,那么线段的长是.18.有一块直角边,的的铁片,现要将它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为.19.如图.等边的边长为5,点、、分别在三边、、上,且,,,则的长为.20.如图,四边形中,,,,,是上一点,若以、、为顶点的三角形与相似,则.21.如图,,△,△是全等的等边三角形,点,,,在同一条直线上,连接交于点,交于点,则的值为.三.解答题(共7小题)22.如图,边长为6的正方形中,,,连接和交于点,求的长.23.如图,在中,为上一点,为延长线上一点,且,,求证:.24.如图,在中,,为边上的中线,于点.(1)请你写出图中所有与相似的三角形;(2)若,,求的长.25.如图所示:在中,,,,分别为.边上一点,,(1)求证:;(2)与是否相等?请说明理由;(3)若,求的长.26.如图,在中,,,.点为的中点,联结,过点作,交的垂线于点,分别交、于点、.(1)求的长;(2)求的面积.27.在中,,,点从点出发,速度为4个单位每秒,同时点从点出发,以个单位每秒的速度向运动.当有一个点到达点时,点,同时停止运动.设运动时间为.(1)若,,求的面积.(2)若在运动过程中,始终平行于,求的值.28.如图,已知抛物线经过点,点.点在线段上(与点,不重合),过点作轴的垂线与线段交于点,与抛物线交于点,联结.(1)求抛物线表达式;(2)联结,当时,求的长度;(3)当为等腰三角形时,求的值.参考答案一.选择题(共10小题)1.若,则A.B.C.D.解:,,,,故选:.2.若与△相似且对应中线之比为,则周长之比和面积比分别是A.,B.,C.,D.,解:与△相似,且对应中线之比为,其相似比为,与△周长之比为,与△面积比为,故选:.3.如图,下列条件中不能判定的是A.B.C.D.解:、由,可得,此选项不符合题意;、由不能判定,此选项符合题意;、由,可得,此选项不符合题意;、由,即,且可得,此选项不符合题意;故选:.4.如图,四边形和四边形是以点为位似中心的位似图形,若,则四边形和四边形的面积比为A.B.C.D.解:四边形和是以点为位似中心的位似图形,,,四边形与四边形的面积比为:.故选:.5.如图,在中,,,垂足为点,如果,,那么的长是A.4B.6C.D.解:,,,,,又,,,,,即,解得,,,解得,,,故选:.6.如图,已知直线,直线、与、、分别交于点、、、、、,若,,,则的值是A.14B.15C.16D.17解:,,,,,即,解得.故选:.7.如图,在矩形中,点是边的中点,则A.B.C.D.解:点是边的中点,,四边形是矩形,,,,,;故选:.8.如图,在中,,分别是,上的点,,的平分线交于点,若,则A.B.C.D.解:,,,,,.故选:.9.如图,在中,,且,则等于A.B.C.D.解:,,,,设的面积是,则和的面积分别是,,则和分别是,,.故选:.10.如图,点是正方形的边延长线一点,连接交于,作,交的延长线于,连接,当时,作于,连接,则的长为A.B.C.D.解:过点作于点,如图所示:四边形是正方形,,,,,在与中,,,,在与中,,,,即,延长交于点,作,,,,,,在中,,.,,,.在与中,,,,,,.在等腰直角与等腰直角中,,,在和中,,△,,,四边形是正方形,,为的中位线,,,,,,故选:.二.填空题(共11小题)11.已知,,,是成比例线段,,,,则线段的长为9.解:已知,,,是成比例线段,根据比例线段的定义得:,代入,,,解得:,故答案为:9.12.如果在比例尺的滨海区地图上,招宝山风景区与郑氏十七房的距离约是,则它们之间的实际距离约为19千米.解:设它们之间的实际距离为,,解得.千米.所以它们之间的实际距离为19千米.故答案为19.13.若点是线段的黄金分割点,,则较长线段的长是.解:是线段的黄金分割点,,,而,;故答案为:.14.如图,将矩形沿折叠,使点落在边上的点处,若与相似,则和的数量关系为.解:矩形沿折叠,使点落在边上的点处,,,,,当时,与相似,则,不合题意舍去;当时,与相似,,此时,在中,,,在中,,,四边形为矩形,,,.故答案为.15.如图,,、相交于点,过作交于点,如果,,那么的长等于15.解:,,,,,,,,,故答案为15.16.在中,,,,是边上的一点,,是边上的一点与端点不重合),如果以、、为顶点的三角形与相似,那么的长是或.解:,,,,,,三点组成的三角形与相似,或,,或,或,解得:,或,故答案为:或.17.如图,在中,点、分别在的两边、上,且,如果,,,那么线段的长是.解:,,,,,故答案为.18.有一块直角边,的的铁片,现要将它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为.解:如图,过点作,垂足为,交于.,.,,,,.设,则有:,解得,故答案为:.19.如图.等边的边长为5,点、、分别在三边、、上,且,,,则的长为.解:是等边三角形,,,,,,,,,,,过作于,,,,,,,中,,故答案为:.20.如图,四边形中,,,,,是上一点,若以、、为顶点的三角形与相似,则2或3.解:设.则以,,为顶点的三角形与以,,为顶点的三角形相似,①当时,解得或3.②当时,,解得,当,,为顶点的三角形与以,,为顶点的三角形相似,的值为2或3.故答案为2或3.21.如图,,△,△是全等的等边三角形,点,,,在同一条直线上,连接交于点,交于点,则的值为.解:,△,△是全等的等边三角形,,,,△,,,同理:,,,,故答案为:.三.解答题(共7小题)22.如图,边长为6的正方形中,,,连接和交于点,求的长.解:边长为6的正方形中,,,,,,作,交于,,,,,,,,即,.23.如图,在中,为上一点,为延长线上一点,且,,求证:.【解答】证明:,,,,,,,,四边形平行四边形,.24.如图,在中,,为边上的中线,于点.(1)请你写出图中所有与相似的三角形;(2)若,,求的长.【解答】(1)解:,为边上的中线,,,,,,,,,,,即图中所有与相似的三角形有,,;(2)解:,由(1)得,,,.25.如图所示:在中,,,,分别为.边上一点,,(1)求证:;(2)与是否相等?请说明理由;(3)若,求的长.【解答】(1)证明:,,,,即;(2),,,,;(3),,,,即,解得,,由(1)得,,则.26.如图,在中,,,.点为的中点,联结,过点作,交的垂线于点,分别交、于点、.(1)求的长;(2)求的面积.解:(1),,,,,,又,,,,.(2),,,.,,又,.27.在中,,,点从点出发,速度为4个单位每秒,同时点从点出发,以个单位每秒的速度向运动.当有一个点到达点时,点,同时停止运动.设运动时间为.(1)若,,求的面积.(2)若在运动过程中,始终平行于,求的值.解:(1),,点从点出发,速度为4个单位每秒,,,,的面积为:.答:的面积为8.(2)始终平行于始终平行于不妨取解得:答:的值为3.28.如图,已知抛物线经过点,点.点在线段上(与点,不重合),过点作轴的垂线与线段交于点,与抛物线交于点,联结.(1)求抛物线表达式;(2)联结,当时,求的长度;(3)当为等腰三角形时,求的值.解:(1)将,分别代入抛物线解析式,得.解得.故该抛物线解析式是:;(2)设直线的解析式是:,把,分别代入,得.解得,.则该直线方程为:.故设,.则,.,.,...又,.于是,即.解得,(舍去).;(3)由两点间的距离公式知,,,.①若,,解得,(舍去).即符合题意.②若,,解得,(舍去).即符合题意.③若,,解得.综上所述,的值为1或或2.。
人教版九年级下册数学《第27章相似》单元检测试卷含答案

第27章相似单元检测一、选择题1. 将下图中的箭头缩小到原来的12,得到的图形是( )A. B.C. D.2. 如图,AB //EF //CD ,BC 、AD 相交于点O ,F 是AD 的中点,则下列结论中错误的是( )A. AO AD =BO BCB. OB CE =OA DFC. EF CD =OE BED. 2BE AD =OE OF3. 下列各组数中,成比例的是( )A. −6,−8,3,4B. −7,−5,14,5C. 3,5,9,12D. 2,3,6,124. 不为0的四个实数a 、b ,c 、d 满足ab =cd ,改写成比例式错误的是( )A. a c =d bB. c a =b dC. d a =b cD. a b =c d5. 如图,点P 在△ABC 的边AC 上,要判断△ABP∽△ACB ,添加一个条件,不正确的是( )A. AB BP =AC CBB. ∠APB =∠ABCC. APAB =ABACD. ∠ABP=∠C6.已知C是线段AB的黄金分割点(AC>BC),则AC:AB=( )A. (−1):2B. (+1):2C. (3−:2D. (3+:27.对于平面图形上的任意两点P,Q,如果经过某种变换得到新图形上的对应点P′,Q′,保持PQ=P′Q′,我们把这种变换称为“等距变换”,下列变换中不一定是等距变换的是( )A. 平移B. 旋转C. 轴对称D. 位似8.已知两个相似多边形的面积比是9:16,其中较小多边形的周长为36cm,则较大多边形的周长为( )A. 48 cmB. 54 cmC. 56 cmD. 64 cm9.下列各组图形不一定相似的是( )A. 两个等腰直角三角形B. 各有一个角是100∘的两个等腰三角形C. 各有一个角是50∘的两个直角三角形D. 两个矩形10.如图所示,△ABC中,DE//BC,AD=5,BD=10,DE=6,则BC的值为( )A. 6B. 12C. 18D. 24二、填空题11.如果两个相似三角形对应角平分线的比是4:9,那么它们的周长比是______ .12.如图,已知AD//BE//CF,它们依次交直线l1、l2于点A、B、C和点D、E、F.如果AB=6,BC=10,那么DEDF的值是______ .13.如果线段a、b、c、d满足ab =cd=13,那么a+cb+d=______ .14.已知线段a=3,b=6,那么线段a、b的比例中项等于______ .15.在△ABC中,点D、E分别在边AB、AC上,如果ADAB =23,AE=4,那么当EC的长是______ 时,DE//BC.三、解答题16.已知△ABC,作△DEF,使之与△ABC相似,且S△DEFS△ABC=4.要求:(1)尺规作图,保留作图痕迹,不写作法.(2)简要叙述作图依据.17. 如图,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE //BC ,已知AE =6,AD BD =34,求CE 的长.18. 如图,在平行四边形ABCD 中,DE ⊥AB 于点E ,BF ⊥AD 于点F .(1)AB ,BC ,BF ,DE 这四条线段能否成比例?如不能,请说明理由;如能,请写出比例式;(2)若AB =10,DE =2.5,BF =5,求BC 的长.19.已知a3=b4=c5≠0,求2a−b+ca+3b的值.20.作图题用圆规、直尺作图,不写作法,但要保留作图痕迹.如图,在△ABC中,AB>AC,点D位于边AC上.求作:过点D、与边AB相交于E点的直线DE,使以A、E为顶点的三角形与原三角形相似.【答案】1. A2. C3. A4. D5. A6. A7. D8. A9. D10. C11. 4:912. 3813. 1314. 315. 616. 解:(1)如图所示:△DEF即为所求;(2)∵△DEF∽△ABC,且S△DEFS△ABC=4,∴DEAB =DFAC=EFBC=12,∴作AB,AC的垂直平分线,进而得出AB,AC的中点,即可得出ED,EF,DF的长.17. 解:∵DE//BC,∴AEEC =ADBD=34,∵AE=6,∴CE=8.18. 解:(1)(1)证明:∵在▱ABCD中,DE⊥AB,BF⊥AD,∴S▱A BCD=AB⋅DE=AD⋅BF,∴ADDE =ABBF;(2)∵AB⋅DE=AD⋅BF,∴10×2.5=5BC,解得:BC=5.19. 解:设a3=b4=c5=k,所以,a=3k,b=4k,c=5k,则2a−b+ca+3b =6k−4k+5k3k+12k=715.20. 解:如图1所示:△AED∽△ABC,如图2所示:△ADE∽△ABC,综上所述:直线DE即为所求.。
第27章相似测试题

D B C A N M O 第27章《相似》单元测试题 一、选择题(每小题3分,共30分)1、如图,已知AB ∥CD ∥EF ,那么下列结论正确的是( )A .AD DF =BC CEB .BC CE =DF ADC .CD EF =BC BE D .CD EF =AD AF2、已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为( )(A)1:2 (B)1:4 (C)2:1 (D)4:13、如图,小正方形的边长均为1,则下列图中的三角形(阴影部份)与ABC △相似的是( )4、如图,△ABC 中,A ,B 两个极点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原先的2倍,记所得的像是△A ′B ′C .设点B 的对应点B ′的横坐标是a ,则点B 的横坐标是( )A .12a -B .1(1)2a -+ C .1(1)2a -- D .1(3)2a -+ 5、如图,在长为8 cm 、宽为4 cm 的矩形中,截去一个矩形,使得留下的矩形(图中阴影部份)与原矩形相似,则留下矩形的面积是( )A .2 cm 2B .4 cm 2C . 8 cm 2D .16 cm 2六、如图,菱形ABCD 中,对角线AC 、BD 相交于点O ,M 、N 别离是边AB 、AD 的中点,连接OM 、ON 、MN ,则下列叙述正确的是( ) A .△AOM 和△AON 都是等边三角形 B .四边形MBON 和四边形MODN 都是菱形 C .四边形AMON 与四边形ABCD 是位似图形D .四边形MBCO 和四边形NDCO 都是等腰梯形7、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =, AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32B .76C .256D .2 八、美是一种感觉,当人体下半身长与身高的比值越接近时,越给人一种美感.如图,某女士身高165cm ,下半身长x 与身高l 的比值是,为尽可能达到好的成效,她应穿的高跟鞋的高度大约为( )A .4cmB .6cmC .8cmD .10cm 九、如图正方形ABCD 中,E 为AB 的中点,AF ⊥DE 于点O , 则 AO DO 等于( ) A .2 5 3 B .13 C .23 D .12 10、一张等腰三角形纸片,底边长l5cm ,底边上的高长22.5cm .现沿底边依次从下往上裁剪宽度均为3cm 的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )A .第4张B .第5张C .第6张D .第7张二、填空题(每小题3分,共18分)B .C .D . AB C A .A B F C D E O1一、在□ABCD 中,E 在DC 上,若:1:2DE EC =,则:BF BE = .1二、如图,在ABC △中,DE BC ∥,若123AD DE BD ===,,,则BC = .13、在平面直角坐标系中,△ABC 极点A 的坐标为(2,3),若以原点O 为位似中心,画△ABC 的位似图形A B C '''△,使△ABC 与A B C '''△的相似比等于12,则点A ′的坐标为 . 14、如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CF AD= . 1五、将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为极点的三角形与△ABC 相似,那么BF 的长度是 . 1六、如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号).三、(本大题共3小题,第17题6分,第17、18题各7分,共20分)17、如图,在△ABC 中,DE ∥BC ,EF ∥AB ,求证:△ADE ∽△EFC .1八、如图,在矩形ABCD 中,点E F 、别离在边AD DC 、上,ABE DEF △∽△,692AB AE DE ===,,,求EF 的长.【关键词】矩形的性质1九、如图,△ABC 内接于⊙O ,AD 是△ABC 的边BC 上的高,AE 是⊙O 的直径,连接BE ,△ABE 与△ADC 相似吗?请证明你的结论.A D E CB 第12题 第14题 E (第15题图) A B ′ CF B四、(本大题共3小题,每小题8分,共24分)20、小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发觉对面墙上有这栋楼的影子,针对这种情形,他设计了一种测量方案,具体测量情形如下:如示用意,小明边移动边观看,发觉站到点E 处时,能够使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.现在,测得小明落在墙上的影子高度CD =,CE =,CA =30m (点A E C 、、在同一直线上). 已知小明的身高EF 是,请你帮小明求出楼高AB (结果精准到).2一、如图,网格中的每一个小正方形的边长都是1,每一个小正方形的极点叫做格点.△ACB 和△DCE 的极点都在格点上,ED 的延长线交AB 于点F .(1)求证:△ACB ∽△DCE ;(2)求证:EF ⊥AB .2二、如图,△ABC 在方格纸中(1)请在方格纸上成立平面直角坐标系,使A (2,3),C (6,2),并求出B 点坐标;(2)以原点O 为位似中心,相似比为2,在第一象限内将△ABC 放大,画出放大后的图形△A ′B ′C ′;(3)计算△A ′B ′C ′的面积S .五、(本大题共2小题,每小题9分,共18分)23、如图,△ABC 中,∠C =90°,AC =4,BC =3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第27章《相似》单元测试卷
(时间45分钟,满分100分)
一.选择题(每题4分,共24分)
1.用一个2倍的放大镜照一个ΔABC ,下列命题中正确的是( )
A.ΔABC 放大后角是原来的2倍
B.ΔABC 放大后周长是原来的2倍
C.ΔABC 放大后面积是原来的2倍
D.以上的命题都不对
2.如图,小芳和爸爸正在散步,爸爸身高1.8m ,他在地面上的影长为2.1m .若小芳比爸爸
矮0.3m ,则她的影长为( ).
A .1.3m
B .1.65m
C .1.75m
D .1.8m
3.如图所示,图中共有相似三角形( )
A .2对
B .3对
C .4对
D .5对
4.如图,△ABC 中,∠B=900
,AB=6,BC=8,将△ABC 沿DE 折叠,使点C 落在AB 边上的C ´处,
并且C´D∥BC,则CD 的长是( )
A.409 B.509 C.154 D.254
5.如图,在正方形网格上,若使△ABC ∽△PBD ,则点P 应在( )
A .P 1处
B .P 2处
C .P 3处
D .P 4处
6.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且1
4
CF CD =
,下列结论:①30BAE ∠=,②A B E A E F △∽△
,③AE EF ⊥,④A D F E C F △∽△.其中正确的个数为( )
A.1 B.2 C.3 D.4 二.填空题(每题4分,共24分)
7.有一张比例尺为1∶4000的地图上,一块多边形地区的周长是60cm ,面积是250cm 2
,则这
个地
O D
C
B A P A B
C F
D E
(第5题) (第6题) (第3题) (第4题)
C (第2题)
区的实际周长_________m ,面积是___________m 2
8.如图,在Rt △ABC 中,∠C=90°,点D 是AB 边上的一定点,点E 是AC 上的一个动点,若再
增加一个
条件就能使△ADE 与△ABC 相似,则这个条件可以是________________________.
9.在平面直角坐标系中,已知A(6,3)、B(10,0)两点,以坐标原点O 为位似中心,相似比
为
13
, 把线段AB 缩小后得到线段A /B /,则A /B /的长度等于____________.
10.如图,矩形ABCD 中,AE ⊥BD 于E ,若BE=4,DE=9,则矩形的面积是______________.
11.如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔
50米有
一根电线杆.小丽站在离南岸边15米的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南
岸的两
棵树遮住,并且在这两棵树之间还有三棵树,则河宽为 米.
12.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图).则小鱼上的点(a,b)对应大鱼上的点是____________________. 三.解答题(每题10分,共40分)
13.如图,图中的小方格都是边长为1的正方形, △ABC 与△A ′ B ′ C ′是关于点0为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心点0;
(2)求出△ABC 与△A ′B ′C ′的位似比;
(3)以点0为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的位似比等于1.5.
E
D C B A (第8题)
(第10题) (第10题)
14.在ABC △和DEF △中,90A D ==∠∠,3AB DE ==,24AC DF ==. (1)判断这两个三角形是否相似?并说明为什么?
(2)能否分别过A D ,在这两个三角形中各作一条辅助线,使ABC △分割成的两个三角形与DEF △分割成的两个三角形分别对应相似?证明你的结论.
15.如图,已知⊙O 的弦CD 垂直于直径AB ,点E 在CD 上,且EC = EB .
(1)求证:△CEB ∽△CBD ;
(2)若CE = 3,CB=5 ,求DE 的长.
16.如图,把菱形ABCD 沿着BD 的方向平移到菱形A /B /C /D /′
的位置, (1)求证:重叠部分的四边形B /EDF /是菱形
(2)若重叠部分的四边形B /EDF /面积是把菱形ABCD 面积的一半,且BD=
2,求则此菱形移
动的距离.
F
D
/
C
/
B
四. 探究题: (12分)
17.如图,在Rt ABC △中,90C =∠,1
2BC AC ==,,把边长分别为123n x x x x ,,,,的n 个正方形依次放入ABC △中,请回答下列问题:
(1
(2)第n 个正方形的边长n ;
(3)若m n p q ,,,是正整数,且m n p q x x x x =,试判断m n
p q ,,,的关系.
B C A
答案或提示
1.B 2.C 3.C 4.A 5.C 6.B 7.2400,4⨯105
8.∠AED=90°, ∠ADE=90°,AE ∶AC=AD ∶AB,AE ∶AB=AD ∶AC 9.
5
3
10.78 11.22.5 12.(-2a,-2b) 13.(1)提示:位似中心在各组对应点连线的交点处.(2)位似比为1:2.(3)略. 14.(1)不相似.∵在Rt BAC △中,90A ∠=°,34AB AC ==,;在Rt EDF △中,
90D ∠=°,32DE DF ==,,12AB AC DE DF ==∴,.AB AC
DE DF
≠∴.Rt BAC ∴△与Rt EDF △不相似.
(2)能作如图所示的辅助线进行分割.
N
M F
E D
C B
A
具体作法:作BAM E ∠=∠,交BC 于M ;作NDE B ∠=∠,交EF 于N .
由作法和已知条件可知BAM DEN △≌△.
BAM E ∠=∠∵,NDE B ∠=∠,AMC BAM B ∠=∠+∠,FND E NDE ∠=∠+∠, AMC FND ∠=∠∴.90FDN NDE ∠=-∠∵°,90C B ∠=-∠°,FDN C ∠=∠∴. ∴AMC FND △∽△. 15.(1)证明:∵弦CD 垂直于直径AB ∴BC=BD ∴∠C =∠D 又∵EC = EB ∴∠C =∠CBE ∴∠D =∠CBE 又∵∠C =∠C ∴△CEB ∽△CBD
(2)解:∵△CEB ∽△CBD ∴CE CB CB CD
=
∴CD=2
252533CB CE == ∴DE = CD -CE =253-3 =
16
3
16.(1)有平移的特征知A ´
B ´
∥AB,又CD ∥AB ∴A ´B ´
∥CD,同理B ´
C ´
∥AD ∴四边形BEDF 为平行四边形
∵四边形ABCD 是菱形 ∴AB=AD ∴∠ABD=∠ADB 又∠A ´B ´D=∠ABD ∴∠A ´B ´
D=∠ADB ∴FB ´
=FD
∴四边形B ´
EDF 为菱形.
(2)∵菱形B ´
EDF 与菱形ABCD 有一个公共角 ∴此两个菱形对应角相等 又对应边成比例 ∴此两个菱形相似
∴B D BD '=
,
∴1B D '== ∴平移的距离BB ´
=BD –B ´
1
17.(1)2483927,, (2)23n
⎛⎫
⎪⎝⎭.(3)
m n p q x x x x = 22223333m n p q
⎛⎫⎛⎫⎛⎫⎛⎫
∴= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
2233m n
p q
++⎛⎫⎛⎫∴= ⎪ ⎪⎝⎭
⎝⎭
.m n p q ∴+=+。