精选-机械振动公式
振动分析中常用的计算公式

振动台在使用中经常运用的公式1、 求推力(F )的公式F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N )m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg )m 2—试件(包括夹具、安装螺钉)质量(kg )A — 试验加速度(m/s 2)2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2)V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz )2.2 V=ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“2.1”中同义D —位移(mm 0-p )单峰值2.3 A=ω2D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为:A=D f ⨯2502式中:A 和D 与“2.3”中同义,但A 的单位为g1g=9.8m/s 2所以: A ≈D f ⨯252,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式f A-V =VA28.6 ………………………………………公式(5)式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。
3.2 速度与位移平滑交越点频率的计算公式DV f DV 28.6103⨯=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。
3.3 加速度与位移平滑交越点频率的计算公式f A-D =DA ⨯⨯23)2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。
五、机械振动

第一节、 第一节、简谐振动
一、简谐振动(simple harmonic vibration )的基本特征 简谐振动 的基本特征 以弹簧振子为例讨论, 以弹簧振子为例讨论, 弹簧振子是典型的简谐 振动 弹簧的弹力
O
x
M x
F = -kx
根据牛顿第二定律有 所以 其解
医学物理学
x = Acos(ωt +ϕ)
二、同一直线上两个频率相近的简谐振动的合成 两简谐振动分别为
x1 = A1 cos( ω 1t + ϕ 1 )
x 2 = A2 cos( ω 2 t + ϕ 2 )
y
ω1
合振动 x = x1 + x2 = A1 cos(ω1t + ϕ1 ) + A2 cos(ω 2t + ϕ 2 ) 合振动不再是简谐振动, 合振动不再是简谐振动, 而是一种复杂振动 如图] 矢量图解法 [如图 如图 由矢量图得合振动的振幅为
一、同一直线上两个同频率简谐振动的合成 设有两个同频率的简谐振动 x1 = A1 cos(ωt + ϕ1 ) x2 = A2 cos(ωt + ϕ 2 ) 合振动 x = x1 + x2 = A1 cos(ωt + ϕ1 ) + A2 cos(ωt + ϕ 2 ) 由矢量图得 而
仍为同频率谐振动) x = A cos( ω t + ϕ ) (仍为同频率谐振动)
医学物理学
v A2 v A1
v A
• 推广:多个同方向同频率简谐振动的合成 推广: 合振动仍是简谐振动。
x = Acos(ω⋅t +ϕ)
tgϕ =
∑ A sinϕ
i =1 n i i =1 i
高中物理振动和波公式总结

高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相页 1 第近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振页2 第动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效页3 第重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.页 4 第②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.页 5 第⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
振动计算力学公式

振动计算力学公式一、简谐振动(Simple Harmonic Motion)简谐振动指的是一个物体在一个平衡位置附近做低幅度的周期性振动。
简谐振动的一些重要的力学公式如下:1. 位移(Displacement):x = A * cos(ωt + φ)其中,x表示位移,A表示振幅,ω表示角频率,t表示时间,φ表示相位。
2. 速度(Velocity):v = -A * ω * sin(ωt + φ)其中,v表示速度。
3. 加速度(Acceleration):a = -A * ω^2 * cos(ωt + φ)其中,a表示加速度。
4. 动能(Kinetic Energy):K = 0.5 * m * v^2其中,K表示动能,m表示质量。
5. 势能(Potential Energy):P = 0.5 * k * x^2其中,P表示势能,k表示弹性系数。
6. 总机械能(Total Mechanical Energy):E = K + P其中,E表示总机械能。
7. 振动周期(Vibration Period):T = 2π/ω其中,T表示振动周期。
二、阻尼振动(Damped Vibration)阻尼振动指的是振动过程中受到了阻尼力的影响,导致振幅逐渐减小。
阻尼振动的一些重要的力学公式如下:1. 位移(Displacement):x = A * e^(-βt) * cos(ωdt + φ)其中,x表示位移,A表示振幅,β表示阻尼系数,ωd表示阻尼角频率,t表示时间,φ表示相位。
2. 速度(Velocity):v = -A * β * e^(-βt) * cos(ωdt + φ) - A * ωd * e^(-βt) * sin(ωdt + φ)其中,v表示速度。
3. 加速度(Acceleration):a = A * (β^2 * e^(-βt) *cos(ωdt + φ) + 2β * ωd * e^(-βt) * sin(ωdt + φ)) - A *ωd^2 * e^(-βt) * cos(ωdt + φ)其中,a表示加速度。
高中物理振动和波公式总结

高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。
在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。
对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。
介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。
6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。
振动计算公式

振动计算公式好的,以下是为您生成的关于“振动计算公式”的文章:在我们学习物理的过程中,振动计算公式就像是一把神奇的钥匙,能帮我们打开理解物体振动奥秘的大门。
先来说说简谐振动,这可是振动里的“常客”。
对于一个做简谐振动的物体,它的位移随时间的变化可以用公式x = A sin(ωt + φ) 来表示。
这里的 A 呢,代表振幅,也就是振动的最大偏离程度;ω 是角频率,它和振动的周期 T 以及频率 f 有着密切的关系,ω = 2πf = 2π/T 。
记得有一次,我在课堂上给学生们讲解这个公式。
有个调皮的小家伙举起手问我:“老师,这公式有啥用啊?感觉好复杂!”我笑了笑,从讲台上拿起一个小弹簧,一端固定在桌子上,另一端挂了一个小砝码。
我轻轻地拉动砝码,让它开始上下振动。
然后我问同学们:“你们看,砝码的运动是不是有规律的呀?”大家都点头。
我接着说:“那我们就可以用这个公式来描述它的运动呢。
”我指着砝码告诉他们,“这个砝码振动的最大距离就是振幅 A ,而它来回振动一次所用的时间就是周期 T 。
”再来说说受迫振动。
当一个振动系统受到周期性外力作用时,就会发生受迫振动。
受迫振动的频率等于驱动力的频率,其振幅大小则与驱动力的频率以及系统的固有频率有关。
给大家讲个有意思的事儿。
有一回,我带着学生们去工厂参观,正好看到一台大型机器在运转。
机器运转时发出的“嗡嗡”声引起了同学们的注意。
有个同学好奇地问:“老师,这机器的振动也是有公式能算的吗?”我回答说:“当然啦,虽然这台机器的振动比较复杂,但原理还是和我们学的振动公式相关的。
”还有阻尼振动,由于阻力的存在,振动的能量会逐渐减少,振幅也会逐渐减小。
在日常生活中,振动无处不在。
比如我们坐的汽车在行驶过程中的颠簸,手机的振动模式,甚至我们说话时声带的振动。
回到振动计算公式,掌握这些公式,不仅能让我们在考试中取得好成绩,更重要的是,能让我们更深入地理解这个世界的运行规律。
就像通过弹簧和砝码的小实验,我们能真切地感受到振动的存在和规律。
机械振动总结要点

基本概念:1.机械振动:物体(或物体的某部分)在某位置附近沿直线或圆弧作往复运动。
2.产生机械振动的条件:(1)当物体离开平衡位置就受到回复力作用;(2)物体在振动过程中所受到的阻力足够小。
3.简谐运动:物体在受到大小与位移成正比,方向总跟位移的方向相反的力的作用下,物体就作简谐运动。
F=-kx.4.振幅(A):振动物体离形平衡位置的最大距离。
5.周期(T):物体完成一次全振动所需的时间。
6.频率(f):振动物体在单位时间内完成全振动的次数,单位:赫兹(1/秒)7.单摆是简谐振动,其周期T=2πl。
g知识详解:1.简谐振动的图象:表示了做简谐运动的质点的位移随时间变化的规律。
简谐运动的图象是一条正弦(或余弦)曲线,从该图象上可看出,质点在振动过程中各个时刻的离平衡位置的位移。
在图象中还可看出振幅和周期。
2.简谐运动的能量:某时刻做简谐运动的系统总能量等于该时刻的动能与势能的和。
简谐运动的总能量是一个恒量,不随时间而改变,它等于最大位移处的势能,或在平衡位置时的动能。
单摆的总能量可用E = mgl(1-cosα)来计算。
一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
一、关于回复力的问题。
1、回复力应满足: F=-kX (判断简谐振动的条件)2、回复力可能由某个力提供、可能由合力提供、可能由某个力的分力提供。
例如:弹簧振子的回复力由弹力提供;单摆的回复力由重力的切向分力提供;竖直方向振动的:弹簧振子的回复力由弹力和重力的合力来提供。
(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最基本的振动。
机械振动概念、知识点总结

机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。
例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。
因为:乒乓球没有在平衡位置附近做往复运动。
(1)平衡位置:①物体所受回复力为零的位置。
②振动方向上,合力为零的位置。
③物体原来静止时的位置。
(2)机械振动的平衡位置不一定是振动范围的中心。
(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。
(4)回复力:沿振动方向,指向平衡位置的合力。
①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。
②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。
曲线振动(如单摆):回复力不一定等于振子的合外力。
③平衡位置,回复力为零。
例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。
答:错误。
正例:弹簧振子的平衡位置是合外力为零的位置。
反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。
(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。
(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。
振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。
正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹簧串并联
单自由度无阻尼自由振动
单自由度有阻尼自由振动
单自由度有阻尼强迫振动 简谐力直接激励
2
1212
121,111k k k k k k
k k k k k +=+=+=并联
串联),(,)3(;,1,2)2(;
0)()1()(,)(),sin(,
sin cos ,,0,0002012
020
0022x x A g
T f T m k dt E E d x
x tg x x A t A x t x t x x m k x x kx x m st
n n n p k n n n n n n n n &&&&&&&&θδωωπωωθωθωωωωωω求响应:静变形法,求固有频率:定义法能量法求微分方程:定理法,=====+=+=+=+===+=+-2
0012002
020
00212ln 1)
(,)(),sin(,1,sin cos )1(,2,2,02,0ζπζζωδζωωθωζωθωωζωωωζωωζωωζωζωζω-=
==+=++=+=-=++=====++=+++--d n j i i n d d n d t n d d d
n d n cr cr n n n T A A j x x x tg x x x A t Ae x t x x t x x m c c c m c x x x kx x c x m n &&&π&&&&&&λβζλλβλωω
λλζλαζλλαωω-=+-==-=
=-=+-=-==++-,,)
2()1(11,,12,)2()1(),sin(,sin 2
22221222k
F x x x k F B tg k F B t B x t F kx x c x m st st
n 无阻尼时,&&&
单自由度有阻尼强迫振动
偏心激励
单自由度有阻尼强迫振动
支承运动激励
单自由度有阻尼强迫振动
周期激励
单自由度有阻尼强迫振动任意激励
λ
βζλλλβζλλλζλλωαωωω-+-==+-=
+-=
-==++,)
2()1(,
)
2()1()
2()1(),sin(,sin 222202
2
22
02
2
22
020e m mx m e m k e m B t B x t e m kx x c x m &&&隔振要有适当阻尼
,1,2,)
2()1()2(1,
)
2()1()2(1)
2()1()()12(
),sin(),2(),
sin()(22222
2
222
2
2222
112
2πφ
&&&&βλζλλζλβζλλζλζλλωλ
ζλ
ααθωζλθθωω+-+==+-+=
+-+=
-=-+==++=+=++--g g g g g g X B
X k c k X B tg t B x tg t c k X kx x c kx x c x m 1212
()()mx cx kx f t f t x x x ++=+=+&&&叠加原理傅立叶级数展开
()0
2211
()sin ()21
()()()(),()
1
(),(),()
31
()()(),(),n t
t d d
x F e t d m X F H F Z Z k m jc H Z X s G s F s G s ms cs k
ζωττωττ
ωωωωωωωωωωω--=
-=
==-+===
++⎰
()时域求解:杜哈美积分()频域求解:傅立叶变换机械阻抗,机械导纳,频响函数,()拉氏域求解:拉普拉斯变换传递函数。
两个自由度振动 系统微分方程建立
两个自由度无阻尼自由振动
为自由度数;
为广义激振力;位移;分别为广义速度,广义散逸函数和系统势能;分别为系统动能,能量式中:
拉格郎日法
n Q q q E E E n i Q q E q E q E q E dt d i i i u d k i i u i d i k i k
&&&),...,2,1()(==∂∂+∂∂+∂∂-∂∂再改写。
程组拉格朗日法导出微分方一般矩阵方程可以先用激振力向量;加速度、速度、位移和分别为为刚度矩阵;为阻尼矩阵;为质量矩阵;式中:矩阵法
⎭
⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=⎥⎦
⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+--+=⎥⎦⎤⎢⎣⎡=⎥⎦⎤
⎢⎣
⎡=⎥⎦⎤⎢⎣⎡==++)()()(,,,,,,,,,,,,00,,,)
(2121212132222122211211322221222112112122211211t f t f t f x x x x x x x x x k k k k k k k k k k K c c c c c c c c c c C m m m m m m M t f Kx x C x M &&&&&&&&&&&&
[]
振型中有一个节点。
阶
画振型图,在第两个固有振型,两个固有频率,的一元两次方程),
,特征方程(关于有要次代数方程),
状态方程(两元一次齐代入得为振幅向量,
设,2,,,);
(,,,,,240,0,0),sin(02112
11
2112,1112222112
12121121212
2
222212,12
1r r k m k r k m k m b k k k K c m m M a a
ac b b M K A A M K A A A t A x x
K x M n n n n n n n n --=
+-=-====--==-≠=-⎭
⎬⎫
⎩⎨⎧=+==+ωωωωωωωθωμ&&&
4
32124212124123211312010201024232121112242312111432120100201002)2(11)1(122)2(1211)1(11)2(2)1(2222)2(111)1(1)2(1)1(11,,0,0,0,,0),sin cos ()sin cos (,sin cos sin cos ,),
sin()sin(),
sin()sin(D D D D v D r D r D D D r D r D D v x x x x t D t D r t D t D r x t D t D t D t D x D D D D x
x x x x x A A t A r t A r x x x t A t A x x x n n n n n n n n n n n n n n n n 易求则如件时:
零初始条比较方便,特别有较多一般用下式求,初速度向量初位移向量可由初始条件求出;,,,四个未知量主振动的迭加,
求响应,响应应为两个=+=+=+=+====+++=+++=⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧=+++=+=+++=+=ωωωωωωωωωωωωθθθωθωθωθω&&&&&
两个自由度无阻尼强迫振动
多自由度系统振动
坐标,模态分析法振型矩阵,解耦,模态刚度矩阵的正交性;振型向量对质量矩阵和法标准特征值问题的迭代;
1
,,0;,,0212
1
i n
i i n
i i
i A DA M K D Kx x M A DA K M D Kx x M A DA ω
ωλ=
==+===+=--&&&&
(注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。
可复制、编制,期待你的好评与关注)
[][]时有两个共振点;
或当即
程,两元一次非齐次代数方代入得:
设为力幅向量;
21212112
11211222222211
2
2
21,,,,,,sin ,sin n n F F M K m k k k m k A A F M K A F A M K t A x F F F t F Kx x M ωωωωωωωωωωω==⎭
⎬⎫⎩⎨⎧-⎥⎥⎦⎤⎢⎢⎣⎡----=⎭⎬⎫⎩⎨⎧-==-=⎭
⎬⎫
⎩⎨⎧==+-&&。