机械振动知识点

合集下载

高中物理【机械振动】知识点、规律总结

高中物理【机械振动】知识点、规律总结
第 1 讲 机械振动
一、简谐运动 1.概念:质点的位移与时间的关系遵从_正__弦__函__数___的规律,即它的振动图象(x -t 图象)是一条_正__弦__曲___线__. 2.简谐运动的表达式 (1)动力学表达式:F=___-__k_x__,其中“-”表示回复力与__位__移__的方向相反. (2)运动学表达式:x=Asin(ωt+φ),其中 A 代表振幅,ω=__2_π_f___表示简谐运动的 快慢,(ωt+φ)代表简谐运动的_相__位___,φ 叫做初相.
3.做简谐运动的物体经过平衡位置时,回复力一定为零,但所受合外力不一定为 零,如单摆.
4.物体做受迫振动的频率一定等于驱动力的频率,但不一定等于系统的固有频率, 固有频率由系统本身决定.
考点一 简谐运动的特征
师生互动
受力特征 回复力 F=-kx,F(或 a)的大小与 x 的大小成正比,方向相反
靠近平衡位置时,a、F、x 都减小,v 增大;远离平衡位置时,a、F、x 运动特征
4.周期公式:T=2π
l g.
5.单摆的等时性:单摆的振动周期取决于摆长 l 和重力加速度 g,与振幅和振子(小
球)质量都没有关系.
四、受迫振动及共振
1.受迫振动 (1)概念:物体在_周__期__性___驱动力作用下的振动. (2)振动特征:受迫振动的频率等于_驱__动__力___的频率,与系统的_固__有__频__率___无关. 2.共振 (1)概念:当驱动力的频率等于_固__有__频__率___时,受迫振动的振幅最大的现象. (2)共振的条件:驱动力的频率等于_固__有__频__率___. (3)共振的特征:共振时_振__幅___最大.
受迫振动
共振
由驱动力提供
振动物体获得的能量 最大

大学物理-机械振动

大学物理-机械振动
交通工具的不舒适
机械振动也会影响交通工具的舒适 度,如火车、汽车等在行驶过程中 产生的振动,会让乘客感到不适。
机械振动在工程中的应用
振动输送
利用振动原理实现物料的输送,如振动筛、振动输送机等。
振动破碎
利用振动产生的冲击力破碎硬物,如破碎机、振动磨等。
振动减震
在建筑、桥梁等工程中,采用减震措施来减小机械振动对结构的影 响,提高结构的稳定性和安全性。
感谢您的观看
THANKS
机械振动理论的发展可以追溯到 古代,如中国的编钟和古代乐器 的制作。
近代发展
随着物理学和工程学的发展,人 们对机械振动的认识不断深入, 应用范围也不断扩大。
未来展望
随着科技的不断进步,机械振动 在新能源、新材料、航空航天等 领域的应用前景将更加广阔。
02
机械振动的类型与模型
简谐振动
总结词
简谐振动是最基本的振动类型,其运动规律可以用正弦函数或余弦函数描述。
机械振动在科研中的应用
振动谱分析
01
通过对物质在不同频率下的振动响应进行分析,可以研究物质
的分子结构和性质。
振动控制
02
通过控制机械振动的参数,实现对机械系统性能的优化和控制,
如振动减震、振动隔离等。
振动实验
03
利用振动实验来研究机械系统的动态特性和响应,如振动台实
验、共振实验等。
05
机械振动的实验与测量
根据实验需求设定振动频率、幅度和波形等 参数。
启动实验
启动振动台和数据采集器,开始记录数据。
数据处理
将采集到的数据导入计算机,进行滤波、去 噪和整理,以便后续分析。
绘制图表
将处理后的数据绘制成图表,如时域波形图、 频谱图等,以便观察和分析。

初中物理机械振动知识点详解

初中物理机械振动知识点详解

初中物理机械振动知识点详解1. 什么是机械振动机械振动指的是物体在受到外力作用后产生的周期性运动。

在机械振动中,物体会围绕某个平衡位置做往复运动。

2. 机械振动的基本特征机械振动具有以下基本特征:- 振动的物体有一个平衡位置,即物体在没有外力作用时所处的位置。

- 振动的物体围绕平衡位置做往复运动,即在两个极端位置之间来回运动。

- 振动是周期性的,即在一定的时间内重复发生。

- 振动的物体有一个振动的幅度,即离开平衡位置的最大距离。

3. 机械振动的分类机械振动可以分为以下几类:- 自由振动:物体在没有外力作用下的振动,例如摆钟。

- 强迫振动:物体在外力的作用下进行的振动,例如摩擦力使得弹簧振子振动。

- 受迫振动:物体在外力周期性作用下的振动,例如风吹树木摆动。

4. 机械振动的重要参数在机械振动中,有几个重要的参数需要了解:- 振动周期(T):振动完成一个往复运动所需的时间。

- 振动频率(f):振动完成一个往复运动所需的次数。

- 振动幅度(A):物体离开平衡位置的最大距离。

- 振动角频率(ω):振动频率与2π的乘积。

- 振动频率与周期的关系:f = 1 / T,频率和周期是倒数关系。

5. 机械振动的过程机械振动的过程包括以下几个阶段:- 起始阶段:物体受到外力的作用,开始从平衡位置偏离。

- 最大位移阶段:物体离开平衡位置,达到最大偏离距离。

- 回复阶段:物体开始回到平衡位置,速度逐渐减小。

- 平衡阶段:物体回到平衡位置,速度为零。

6. 机械振动的影响因素机械振动受以下几个因素影响:- 物体的质量:质量越大,振动的惯性越大。

- 物体的弹性恢复力:恢复力越大,振动的频率越高。

- 外力的大小和方向:外力的大小和方向会改变振动的幅度和方向。

- 空气阻尼:空气的阻力会减弱振动的幅度和周期。

7. 机械振动的应用机械振动在生活中有着广泛的应用,例如:- 摇篮摇晃:通过摇篮的周期性摆动,帮助婴儿入睡。

- 震动筛分:将颗粒品进行分离,根据颗粒的大小进行筛选。

机械振动和机械波知识点总结

机械振动和机械波知识点总结

机械振动和机械波知识点总结一、机械振动的基本概念1.简谐振动:具有恢复力的物体围绕平衡位置作周而复始的往复运动,其运动规律满足简谐振动的规律。

2.振幅:振动的最大偏离量,表示振动的幅度大小。

3.周期:振动完成一次往复运动所经历的时间。

4.频率:单位时间内振动的循环次数。

5.角频率:单位时间内振动的循环角度。

6.动能和势能:振动物体在做往复运动过程中,动能和势能不断转化。

7.谐振:当外力与物体的振动频率相同时,产生共振现象,能量传递效率最高。

二、机械振动的描述方法1.运动方程:描述物体随时间变化的位置。

2.振动曲线:以时间为横轴,位置或速度为纵轴,绘制出的曲线。

3.波形图:以距离为横轴,垂直方向的位移、压强或密度为纵轴,绘制出的曲线。

三、机械振动的特性1.振动的幅度、周期和频率可以通过测量来确定。

2.振动的速度和加速度随时间变化而变化,速度与位置之间呈正弦关系,加速度与位置之间呈负弦关系。

3.振动的能量在物体各个部分之间以波动形式传递,不断发生能量转化。

4.振动物体的相对稳定位置是平衡位置,物体相对平衡位置的偏离量越大,能量传递越快,振幅越大。

四、机械波的基本概念1.机械波是一种能量的传递方式,通过介质中的相互作用使得能量沿介质传播。

2.波的传播速度与介质的性质有关,弹性固体中传播速度最大,液体次之,气体最小。

3.机械波分为横波和纵波。

横波的传播方向与振动方向垂直,如水波;纵波的传播方向与振动方向一致,如声波。

五、机械波的描述方法1.波的频率、波长和传播速度之间存在关系:波速=频率×波长。

2.波谱分析:将波的复杂振动分解成一系列简单谐波的叠加。

3.波的传播可分为反射、折射、干涉、衍射和驻波等现象。

六、机械波的特性1.超前传播:波的传播速度比振动速度快。

2.波的干涉:两个波相遇时,根据叠加原理,产生增强或减弱的效果。

3.波的衍射:波通过孔隙或物体边缘时发生的现象。

4.驻波:两个等幅、频率相同的波在空间中相遇,发生干涉,形成波节和波腹。

高中物理机械振动知识点

高中物理机械振动知识点

高中物理机械振动知识点一:简谐振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。

机械振动产生的条件是:(1)回复力不为零。

(2)阻力很小。

使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。

2、简谐振动:在机械振动中最简单的一种理想化的振动。

对简谐振动可以从两个方面进行定义或理解:(1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。

(2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。

高中物理机械振动知识点二:简谐运动的描述1、位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。

位移是矢量,其最大值等于振幅。

2、振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。

振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。

3、周期T:振动物体完成一次余振动所经历的时间叫做周期。

所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。

4、频率f:振动物体单位时间内完成全振动的次数。

5、角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。

引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。

因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。

周期、频率、角频率的关系是:。

6、相位:表示振动步调的物理量。

现行中学教材中只要求知道同相和反相两种情况。

高中物理机械振动知识点三:简谐运动的处理1、研究简谐振动规律的几个思路:(1)用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。

机械振动知识点总结

机械振动知识点总结

机械振动知识点总结
机械振动是指物体在作无规则或规则周期性摆动时产生的现象。

以下是机械振动的一些知识点总结:
1. 振动的分类:机械振动可分为自由振动和受迫振动两种。

自由振动是指物体在没有外力作用下,由于初始条件引起的振动;受迫振动是指物体在外力作用下的振动。

2. 振动的标量与矢量表示:振动可以用标量表示,即描述物体在振动过程中的位置、速度和加速度等参数;也可以用矢量表示,即描述物体振动过程中的位移、速度和加速度等矢量量。

3. 振动的周期与频率:周期是指物体完成一次完整振动所需的时间;频率是指单位时间内振动次数的倒数。

两者之间满足 T = 1/f 的关系,其中 T 表示振动周期,f 表示振动频率。

4. 振动的幅度与相位:振动的幅度是指物体振动过程中,位移、速度或加速度的最大值;相位是指某一时刻物体振动状态相对于某一参考点的时间差。

5. 振动的简谐振动:简谐振动是指振动物体的加速度与其位移成正比,反向相反的振动。

在简谐振动中,振动物体的加速度与位移之间存在相位差的关系。

6. 振动的阻尼和共振:阻尼是指振动物体受到的摩擦力或阻尼力,使得振动过程中能量逐渐耗散的现象;共振是指外界周期性作用力与振动物体的固有频率相等或接近时,振动幅度会急
剧增大的现象。

7. 振动的能量:振动物体具有动能和势能两种能量形式。

在振动过程中,动能和势能会不断转换,总能量守恒。

8. 振动的叠加原理:当物体受到多个振动力的作用时,振动的总效果等于各个振动力分别作用时的效果之和。

这些是机械振动的一些基本知识点,深入研究机械振动还包括振动系统的建模与分析、振动的稳定性和控制等内容。

机械振动概念、知识点总结

机械振动概念、知识点总结

机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。

例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。

因为:乒乓球没有在平衡位置附近做往复运动。

(1)平衡位置:①物体所受回复力为零的位置。

②振动方向上,合力为零的位置。

③物体原来静止时的位置。

(2)机械振动的平衡位置不一定是振动范围的中心。

(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。

(4)回复力:沿振动方向,指向平衡位置的合力。

①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。

②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。

曲线振动(如单摆):回复力不一定等于振子的合外力。

③平衡位置,回复力为零。

例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。

答:错误。

正例:弹簧振子的平衡位置是合外力为零的位置。

反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。

(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。

(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。

振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。

正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。

第二章机械振动知识点清单-高二上学期物理鲁科版选择性

第二章机械振动知识点清单-高二上学期物理鲁科版选择性

新教材鲁科版2019版物理选择性必修第一册第2章知识点清单目录第2章机械振动第1节简谐运动第2节振动的描述第3节单摆第4节科学测量:用单摆测量重力加速度第5节生活中的振动第2章机械振动第1节简谐运动一、机械振动1. 定义:物理学中,将物体(或物体的某一部分)在某一位置附近的往复运动称为机械振动,简称振动。

2. 平衡位置:振动物体在某一位置附近做往复运动,这个位置称为平衡位置,也是物体所受回复力为零的位置。

3. 回复力(1)方向:总是指向平衡位置。

(2)作用效果:使物体总是在平衡位置附近振动。

(3)来源:回复力可由某一个力来提供,也可由振动物体受到的几个力的合力来提供。

二、简谐运动及其特征1. 弹簧振子(1)弹簧振子是一种理想模型。

(2)弹簧振子的组成:如图所示,弹簧一端固定,另一端连接一个可视为质点的物体,不计弹簧质量,物体置于光滑水平面上。

(3)弹簧振子的回复力:回复力由物体所受弹簧弹力提供,为F=-kx。

其中k等于弹簧劲度系数,x是物体相对平衡位置的位移,负号表示力与位移的方向相反。

2. 简谐运动(1)定义:物体所受回复力的大小与位移大小成正比,方向总是与位移方向相反的运动称为简谐运动。

(2)简谐运动的运动学特征:a=-kx。

m(3)弹簧振子能量特征:只有弹簧弹力做功,系统的动能和弹性势能相互转换,机械能守恒。

3. 易错警示(1)物体在平衡位置所受合力不一定为零,而是沿简谐运动方向的合力为零,且物体在平衡位置时速度最大。

(2)简谐运动的位移和一般运动的位移有很大区别,一般运动的位移都是由初位置指向末位置,而简谐运动的位移都是由平衡位置指向振动质点所在位置。

三、对简谐运动的位移、速度、回复力和加速度的理解1. 简谐运动三个物理量的特点(1)位移:以平衡位置为坐标原点,以振动所在的直线为坐标轴,规定正方向,则某一时刻物体的位移用该时刻物体所在位置的坐标来表示。

(2)速度:速度是描述物体在平衡位置附近运动快慢的物理量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简谐运动及其图象知识点一:弹簧振子(一)弹簧振子如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。

小球滑动时的摩擦力可以,弹簧的质量比小球的质量得多,也可忽略。

这样就成了一个弹簧振子。

注意:(1)小球原来的位置就是平衡位置。

小球在平衡位置附近所做的往复运动,是一种机械振动。

(2)小球的运动是平动,可以看作质点。

(3)弹簧振子是一个不考虑阻力,不考虑弹簧的,不考虑振子(金属小球)的的化的物理模型。

(二)弹簧振子的位移——时间图象(1)振动物体的位移是指由位置指向_的有向线段,可以说某时刻的位移。

说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于位置而言的,即初位置是位置,末位置是振子所在的位置。

(2)振子位移的变化规律曲线。

知识点二:简谐运动(一)简谐运动如果质点的位移与时间的关系遵从函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。

简谐运动是机械振动中最简单、最基本的振动。

弹簧振子的运动就是简谐运动。

(二)描述简谐运动的物理量(1)振幅(A)振幅是指振动物体离开位置的距离,是表征振动强弱的物理量。

一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是变的,而位移是时刻在变的。

(2)周期(T)和频率(f)振动物体完成一次所需的时间称为周期,单位是秒(s);单位时间内完成的次数称为频率,单位是赫兹(H Z)。

周期和频率都是描述振动快慢的物理量。

周期越小,频率越大,表示振动得越快。

周期和频率的关系是:(3)相位(φ)相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。

(三)固有周期、固有频率任何简谐运动都有共同的周期公式:2T=m是振动物体的,k是回复力系数,对弹簧振子来说k为弹簧的系数。

对一个确定的简谐运动系统来说,m和k都是恒量,所以T和f也是恒量,也就是说简谐运动的周期只由本身的特性决定,与振幅关,只由振子质量和回复力系数决定。

T叫系统的周期,f叫频率。

可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是2T=。

这个结论可以直接使用。

(四)简谐运动的表达式y=Asin(ωt+φ),其中A是,fTω==,φ是t=0时的相位,即初相位或初相。

知识点三:简谐运动的回复力和能量(一)回复力:使振动物体回到平衡位置的力。

(1)回复力是以命名的力。

性质上回复力可以是重力、弹力、摩擦力、电场力、磁场力等,它可能是几个力的合力,也可能是某个力或某个力的分力。

如在水平方向上振动的弹簧振子的回复力是弹簧在伸长和压缩时产生的力;在竖直方向上振动的弹簧振子的回复力是弹簧力和力的合力。

(2)回复力的作用是使振动物体回到平衡位置。

回复力的方向总是“平衡位置”。

(3)回复力是是振动物体在方向上的合外力,但不一定是物体受到的合外力。

(二)对平衡位置的理解(1)平衡位置是振动物体最终振动后振子所在的位置。

(2)平衡位置是回复力为的位置,但平衡位置是合力为零的位置。

(3)不同振动系统平衡位置不同。

竖直方向的弹簧振子,平衡位置是其弹力于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。

(三)简谐运动的动力学特征F回=,a回=-kx/m,其中k为比例系数,对于弹簧振子来说,就等于弹簧的系数。

负号表示回复力的方向与位移的方向。

也就是说简谐运动是在跟对平衡位置的位移大小成正比、方向总是指向平衡位置的力作用下的振动。

弹簧振子在平衡位置时F回= 。

当振子振动过程中,位移为x时,由胡克定律(弹簧不超出弹性限度),考虑到回复力的方向跟位移的方向相反,有F回= ,k为弹簧的劲度系数,所以弹簧振子做简谐运动。

(四)简谐运动的能量特征振动过程是一个动能和势能不断转化的过程,总的机械能。

振动物体总的机械能的大小与振幅有关,振幅越大,振动的能量越。

知识点四:简谐运动过程中各物理量大小、方向变化情况(一)全振动振动物体连续两次运动状态(位移和速度)完全相同所经历的的过程,即物体运动完成一次规律性变化。

(二)弹簧振子振动过程中各物理量大小、方向变化情况过程:物体从A由静止释放,从A→O→B→O→,经历一次全振动,图中O为平衡位置,A、B为最大位移处:(1)B 、O 、A 为三个特殊状态O 为平衡位置,即速度具有最大值v max ,而加速度a = A 为负的最大位移处,具有加速度最大值a max ,而速度v = B 为正的最大位移处,具有加速度最大值a max ,而速度v =(2)其运动为变加速运动与变减速运动的交替过程,在此过程中,机械能守恒,动能和弹性势能之间相互转化加速度a 与速度v 的变化 max max0v a a v =⎧⎪⎨=⎪⎩,而加速度,而速度(3)任一点C 的受力情况重力G 与弹力N 平衡;F 回=F 弹=kx ,可看出回复力方向始终与位移方向相反 知识点五:简谐运动图象的应用(一)简谐运动图象的物理意义图象描述了做简谐运动的质点的位移随时间变化的规律,即是位移——时间函数图象。

注意振动图象 质点的运动轨迹。

(二)简谐运动图象的特点简谐运动的图象是一条正弦(余弦)曲线。

(1)从平衡位置开始计时,函数表达式为sin x A t ω=,图象如图1。

(2)从最大位移处开始计时,函数表达式cos x A t ω=,图象如图2。

(三)简谐运动图象的应用(1)振动质点在任一时刻的位移。

如图中,对应t 1、t 2时刻的位移分别为x 1=+7cm 、x 2=-5cm 。

(2)确定振动的振幅、周期和频率。

图中 位移的值就是振幅,如图表示的振动振幅是10cm ;振动图象上一个完整的正弦(余弦)图形在时间轴上拉开的“长度”表示 。

由图可知,OD 、AE 、BF 的间隔都等于 =0.2s ;频率15Z f H T==。

(3)确定各时刻质点的速度、加速度(回复力)的方向。

加速度方向总与位移方向相 。

只要从振动图象中认清位移的方向即可。

例如在图中t 1时刻质点位移x 1为正,则加速度a 1为负,两者方向相反;t 2时刻,位移x 2为负,则a 2便为正;判定速度的方向的方法有:①位移——时间图象上的斜率代表速度。

某时刻的振动图象的斜率大于0,速度方向与规定的正方向 ;斜率小于0,速度的方向与规定的正方向 ;②将某一时刻的位移与相邻的下一时刻的位移比较,如果位移 ,振动质点将远离平衡位置;反之将靠近平衡位置。

例如图中在t 1时刻,质点正远离平衡位置运动;在t 3时刻,质点正向着平衡位置运动。

(4)比较不同时刻质点的速度、加速度、动能、势能的大小。

加速度与 的大小成正比。

如图中|x 1|>|x 2|,所以|a 1|>|a 2|;而质点的位移越大,它所具有的势能越 ,动能、速度则越 。

如图中,在t 1时刻质点的势能E P1大于t 2时刻的势能E P2,而动能则E k1<E k1,速度v 1<v 1。

小结:若某段时间内质点的振动速度指向平衡位置(可为正也可为负),则质点的速度、动能均变 ,回复力、加速度、势能均变 ,反之则相反。

凡图象上与t 轴距离 的点,振动质点具有相同的动能和势能。

单摆 外力作用下的振动知识点一:单摆(一)单摆如图所示,一条 的细线下端拴一小球,上端固定,如果细线的质量与 相比可以忽略,球的直径与 的长度相比可以忽略,这样的装置叫单摆。

单摆是实际摆的理想化模型。

(二)在摆角较小的条件下,单摆的振动是 运动证明:将摆球由平衡位置O 点拉开一段距离,然后由静止释放,摆球在摆线拉力T 和重力G 共同作用下,沿圆弧在其平衡位置O 点左右往复运动。

当它摆到位置P时,摆线与竖直夹角为θ,将重力沿圆周切线方向和法线方向(半径方向)分解成两个分力G1与G2,其中G1=mgsinθ,G2=mgcosθG2与T在一条直线上,它们的合力是维持摆球做圆周运动的力。

它改变了摆球的运动,而不改变其速度的大小。

而G1不论摆球在平衡位置O点左侧还是右侧,始终沿圆弧切线方向平衡位置O,正是在G1的作用下摆球才在平衡位置附近做往复运动,所以G1是摆球振动的力。

即:F回= 。

在摆角较小的条件下,≈=≈OP xsinl lθθ在考虑了回复力F回的方向与位移x方向间的关系,回复力可表示为:F回=-⋅mgxl。

对一个确定的单摆来说,m、l都是确定值,所以mgl为常数,即满足F回=-kx。

所以在摆角较小的条件下,使摆球振动的回复力跟位移大小成,而方向与位移的方向,故单摆的振动是简谐运动。

(三)几种常见的单摆模型知识点二:探究单摆的周期与摆长的关系(一)探究思路探究影响单摆周期的因素可以从单摆的装置入手,单摆的装置包括细绳和小球。

因此影响单摆周期的因素可能有:细绳的长度、小球的质量、摆角等。

在这里只探究单摆的周期与摆长的关系。

a单摆的周期与摆长的平方根成正比。

知识点三:单摆的周期(一)单摆的周期公式实验证明单摆的周期与振幅A 关,与质量m 关,随摆长的增大而增大,随重力加速度g 的增大而减小。

荷兰物理学家惠更斯总结出单摆周期公式:=T(二)单摆的等时性在小振幅摆动时,单摆的振动周期与 无关的性质称为单摆的等时性利用单摆振动周期与振幅无关的等时性,可制成计时仪器,如摆钟等。

由单摆周期公式知道,调节 即可调节钟表的快慢。

(三)等效摆长与等效重力加速度在有些振动系统中l 不一定是绳长,g 也不一定为9.8m /s 2,因此出现了等效摆长和等效重力加速度的问题。

(1)等效摆长如图所示,三根等长的绳123l l l 、、共同系住一密度均匀的小球m ,球直径为d 。

23l l 、与天花板的夹角030<α。

若摆球在纸面内做小角度的左右摆动,则摆动圆弧的圆心在1O 处,故等效摆长 ,周期1=T ;若摆球做垂直纸面的小角度摆动,则摆动圆弧的圆心在O 处,故等效摆长为 ,周期2=T 。

(2)等效重力加速度①公式中的g 由单摆所在的空间位置决定。

由2=MGg R 知,g 随地球表面不同位置、不同高度而变化,在不同星球上也不相同,因此应求出单摆所在处的 'g 代入公式,即g 不一定等于9.8 m /s 2。

②g 还由单摆系统的运动状态决定。

单摆处在向上加速发射的航天飞机内,设加速度为a ,此时摆球处于超重状态,沿圆弧切线方向的回复力变大,摆球质量不变,则重力加速度的等效值'=g 。

若单摆若在轨道上运行的航天飞机内,摆球完全失重,回复力为零,则等效值'=g ,所以周期为无穷大,即单摆不摆动了。

当单摆有水平加速度a 时(如加速运动的车厢内),等效重力加速'=g ,平衡位置已经改变。

③g 还由单摆所处的物理环境决定。

如带电小球做成的单摆在竖直方向的匀强电场中,回复力应是 力和 力的合力在圆弧切线方向的分力,所以也有等效值'g 的问题。

相关文档
最新文档