机械振动 知识点总结

合集下载

机械基础振动笔记

机械基础振动笔记

机械基础振动笔记一、振动的基本概念。

1. 定义。

- 机械振动是指物体在平衡位置附近做往复运动。

例如,钟摆的摆动,汽车在不平整路面行驶时车身的上下晃动等。

2. 振动系统的组成要素。

- 质量(惯性元件)- 是振动系统中具有惯性的部分。

质量的存在使得物体在受力时不能立即改变运动状态,而是按照牛顿第二定律产生加速度。

例如,在弹簧 - 质量系统中,质量块就是提供惯性的部分。

- 弹簧(弹性元件)- 它能够储存和释放能量,提供弹性恢复力。

当弹簧被拉伸或压缩时,会产生与变形量成正比的力,遵循胡克定律 F = kx(k为弹簧刚度,x为弹簧变形量)。

- 阻尼器(阻尼元件)- 阻尼器的作用是消耗振动系统的能量。

它产生的阻尼力与物体的运动速度有关,常见的有粘性阻尼,其阻尼力F_d = c ẋ(c为阻尼系数,ẋ为速度)。

二、简谐振动。

1. 运动方程。

- 简谐振动是最简单、最基本的振动形式。

其运动方程为x = Asin(ω t+φ)。

- 其中,x表示振动体偏离平衡位置的位移;A为振幅,它表示振动的最大位移;ω为角频率,ω=√(frac{k){m}}(对于弹簧 - 质量系统,k为弹簧刚度,m为质量),单位是rad/s;t为时间;φ为初相位,它决定了振动的初始状态。

2. 速度和加速度。

- 速度。

- 对位移方程求导可得速度方程:ẋ=Aωcos(ω t +φ)。

速度的最大值为v_max=Aω。

- 加速度。

- 对速度方程求导可得加速度方程:ẍ=-Aω^2sin(ω t+φ)。

加速度的最大值为a_max=Aω^2。

三、自由振动。

1. 无阻尼自由振动。

- 对于弹簧 - 质量系统,无阻尼自由振动的运动方程为m ẍ+kx = 0。

- 其解为x = Asin(ω t+φ),其中ω=√(frac{k){m}},振动周期T=(2π)/(ω)=2π√(frac{m){k}},频率f=(1)/(T)=(1)/(2π)√(frac{k){m}}。

高二物理机械振动知识点总结

高二物理机械振动知识点总结

高二物理机械振动知识点总结高二物理“机械振动和机械波”这一章是非重点章,下面是店铺给大家带来的高二物理机械振动知识点总结,希望对你有帮助。

高二物理机械振动知识点一、机械振动:物体在平衡位置附近所做的往复运动,叫机械振动。

1、平衡位置:机械振动的中心位置;2、机械振动的位移:以平衡位置为起点振动物体所在位置为终点的有向线段;3、回复力:使振动物体回到平衡位置的力;(1)回复力的方向始终指向平衡位置;(2)回复力不是一重特殊性质的力,而是物体所受外力的合力;4、机械振动的特点:(1)往复性; (2)周期性;二、简谐运动:物体所受回复力的大小与位移成正比,且方向始终指向平衡位置的运动;(1)回复力的大小与位移成正比;(2)回复力的方向与位移的方向相反;(3)计算公式:F=-Kx;如:音叉、摆钟、单摆、弹簧振子;三、全振动:振动物体如:从0出发,经A,再到O,再到A/,最后又回到0的周期性的过程叫全振动。

例1:从A至o,从o至A/,是一次全振动吗?例2:振动物体从A/,出发,试说出它的一次全振动过程;四、振幅:振动物体离开平衡位置的最大距离。

1、振幅用A表示;2、最大回复力F大=KA;3、物体完成一次全振动的路程为4A;4、振幅是表示物体振动强弱的物理量;振幅越大,振动越强,能量越大;五、周期:振动物体完成一次全振动所用的时间;1、T=t/n (t表示所用的总时间,n表示完成全振动的次数)2、振动物体从平衡位置到最远点,从最远点到平衡为置所用的时间相等,等于T/4;六、频率:振动物体在单位时间内完成全振动的次数;1、f=n/t;2、f=1/T;3、固有频率:由物体自身性质决定的频率;七、简谐运动的图像:表示作简谐运动的物体位移和时间关系的图像。

1、若从平衡位置开始计时,其图像为正弦曲线;2、若从最远点开始计时,其图像为余弦曲线;3、简谐运动图像的作用:(1)确定简谐运动的周期、频率、振幅;(2)确定任一时刻振动物体的位移;(3)比较不同时刻振动物体的速度、动能、势能的大小:离平衡位置跃进动能越大、速度越大,势能越小;(4)判断某一时刻振动物体的运动方向:质点必然向相邻的后一时刻所在位置运动4、作受迫振动的物体的振动频率等于驱动力的频率与其固有频率无关;物体发生共振的条件:物体的固有频率等于驱动力的频率;八、单摆:用一轻质细绳一端固定一小球,另一端固定在悬点的装置。

第二章机械振动章节知识点总结(无实验)-2024-2025学年高二上学期物理人教版选择性

第二章机械振动章节知识点总结(无实验)-2024-2025学年高二上学期物理人教版选择性

简谐运动知识点汇总第一节 简谐运动一、弹簧振子1、定义:我们把小球(物块)和弹簧组成的系统统称为弹簧振子。

2、理想化条件:忽略摩擦力等各种阻力、小球看成质点、忽略弹簧质量、弹簧始终在弹性限度内3、平衡位置:振子在振动方向上合理为零的点,速度最大,振动位移、回复力、回复加速度为零4、振动位移:由平衡位置指向振子位置的有向线段。

5、振动图像(xt 图像)图像信息:① 横坐标 —— 时间(周期)② 纵坐标 —— 位移和路程③ 斜率 —— 速度④ 平衡位置 —— 位移为0,速度最大⑤ 最大位移处 —— 位移最大,速度为0二、简谐运动1、定义:如果物体的位移与时间的关系遵从正弦函数的规律,即它的振动图像(xt 图像)是一条正弦曲线)sin(ϕω+=t A x ,这样的振动是一种简谐运动。

简谐运动是最基本的振动2、对称性: 关于平衡位置对称的两点位移大小相等,方向相反速度大小相等,方向可同可反时间对称第二节 简谐运动的描述一、振幅1、定义:振动物体离开平衡位置的最大距离,叫做振动的振幅,常用字母A 表示、是个标量。

2、说明:振子振动范围的大小是振幅的两倍2A;振幅的大小直接反映了振子振动能量(E=EK+EP)的高低,振子质量一定时,振幅越大,振动系统能量越大。

二、周期频率三、圆频率:是一个与周期成反比,与频率成正比的量,叫作简谐运动的“圆频率”。

它也表示简谐运动的快慢f T ππω22== 四、相位、初相第三节 简谐运动的回复力和能量一、回复力1、定义:指向平衡位置使振子回到平衡位置的力2、特点:(1)回复力是效果力,由性质力充当,可以是一个力,可以是一个力的分力,可以是几个力的合力(2)回复力一定指向平衡位置且与位移方向相反3、公式F=KX4、简谐运动定义2: 如果质点所受的力与它偏离平衡位置的位移大小成正比,即 F =k x ,质点的运动就是简谐运动.第四节 单摆一、单摆:1、定义:细线一端固定在悬点,另一端系一个小球,如果细线的质量与小球相比可以忽略;球的直径与线的长度相比也可以忽略,这样的装置就叫做单摆2、特点(1)摆球:体积小,质量大可视为质点;(2)摆线:细长,不可伸长,质量忽略;(3)不计一切阻力(4)单摆是理想化模型(5)摆角一般小于5°3、回复力x L mg F -=回4、周期公式gl T π2=(注意等效摆长和等效重力加速度的换算)4、说明:单摆在平衡位置合力不为零(合力等于向心力),回复力为零第六节 受迫振动 共振一、固有振动和固有频率1、定义:振动系统在没有外力干预下的振动称为固有振动,也称自由振动,其频率称为固有频率。

高中物理【机械振动】知识点、规律总结

高中物理【机械振动】知识点、规律总结
第 1 讲 机械振动
一、简谐运动 1.概念:质点的位移与时间的关系遵从_正__弦__函__数___的规律,即它的振动图象(x -t 图象)是一条_正__弦__曲___线__. 2.简谐运动的表达式 (1)动力学表达式:F=___-__k_x__,其中“-”表示回复力与__位__移__的方向相反. (2)运动学表达式:x=Asin(ωt+φ),其中 A 代表振幅,ω=__2_π_f___表示简谐运动的 快慢,(ωt+φ)代表简谐运动的_相__位___,φ 叫做初相.
3.做简谐运动的物体经过平衡位置时,回复力一定为零,但所受合外力不一定为 零,如单摆.
4.物体做受迫振动的频率一定等于驱动力的频率,但不一定等于系统的固有频率, 固有频率由系统本身决定.
考点一 简谐运动的特征
师生互动
受力特征 回复力 F=-kx,F(或 a)的大小与 x 的大小成正比,方向相反
靠近平衡位置时,a、F、x 都减小,v 增大;远离平衡位置时,a、F、x 运动特征
4.周期公式:T=2π
l g.
5.单摆的等时性:单摆的振动周期取决于摆长 l 和重力加速度 g,与振幅和振子(小
球)质量都没有关系.
四、受迫振动及共振
1.受迫振动 (1)概念:物体在_周__期__性___驱动力作用下的振动. (2)振动特征:受迫振动的频率等于_驱__动__力___的频率,与系统的_固__有__频__率___无关. 2.共振 (1)概念:当驱动力的频率等于_固__有__频__率___时,受迫振动的振幅最大的现象. (2)共振的条件:驱动力的频率等于_固__有__频__率___. (3)共振的特征:共振时_振__幅___最大.
受迫振动
共振
由驱动力提供
振动物体获得的能量 最大

机械振动知识点

机械振动知识点

机械振动知识点引言:机械振动是工程学中一个重要的研究领域,涉及到许多基础概念和技术。

在现代工程中,机械振动的理论和应用广泛存在于各个行业,为我们理解和应对振动问题提供了重要的参考。

本文将探讨机械振动的一些基本概念和相关知识点。

一、振动的定义和分类机械振动是指物体在受到外力作用后,发生周期性的来回运动。

振动可以分为自由振动和受迫振动两种形式。

自由振动是指系统在无外力作用下的振动,主要受到初始条件的影响。

受迫振动则是在外力作用下发生的振动,外力可能是周期性的或非周期性的,对物体的振动状态有影响。

二、振动的参数和描述方法了解机械振动的参数和描述方法对于研究和分析振动问题至关重要。

常见的振动参数包括振幅、周期、频率和相位等。

振幅是指物体在振动过程中达到的最大位移距离;周期是指物体完成一个完整振动周期所用的时间;频率是指单位时间内振动完成的周期数;相位表示物体当前位置相对于某一特定位置的相对位置关系。

通过这些参数的描述,我们能够更加准确地刻画振动的特征和性质。

三、单自由度系统的振动在机械振动研究中,单自由度系统是最基本的模型。

它是指一个物体在沿一个特定方向上的振动,如弹簧和质点的振动。

对于单自由度系统,可以通过求解微分方程来获得振动的解析解,进一步揭示振动的特性和规律。

其中,阻尼和劲度是单自由度振动最关键的参数,影响着振动的衰减和频率等特性。

四、多自由度系统的振动除了单自由度系统,还存在着多自由度系统的振动。

这类系统包含有多个振动部件,相互之间有耦合关系,振动会以不同的模态和频率发生。

因此,研究多自由度系统的振动需要考虑更多的因素和参数。

通过模态分析和矩阵计算等方法,我们可以得到多自由度系统的共振频率、模态形式和振动特性等信息。

五、振动控制和减振对于某些工程应用来说,振动可能是不可避免的,但我们可以采取一些措施来控制和减小振动的影响。

振动控制技术包括主动控制、被动控制和半主动控制等,通过对系统施加合适的力或刚度,可以改变振动的状态和特性。

机械振动知识点总结.

机械振动知识点总结.

机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。

特征是:F=-kx,a=-kx/m.要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。

然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。

2、简谐运动中各物理量的变化特点简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系:如果弄清了上述关系,就很容易判断各物理量的变化情况3、简谐运动的对称性简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。

运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。

理解好对称性这一点对解决有关问题很有帮助。

4、简谐运动的周期性5、简谐运动图象简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。

6、受迫振动与共振(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。

位移x回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。

机械振动知识点总结

机械振动知识点总结

机械振动知识点总结
机械振动是指物体在作无规则或规则周期性摆动时产生的现象。

以下是机械振动的一些知识点总结:
1. 振动的分类:机械振动可分为自由振动和受迫振动两种。

自由振动是指物体在没有外力作用下,由于初始条件引起的振动;受迫振动是指物体在外力作用下的振动。

2. 振动的标量与矢量表示:振动可以用标量表示,即描述物体在振动过程中的位置、速度和加速度等参数;也可以用矢量表示,即描述物体振动过程中的位移、速度和加速度等矢量量。

3. 振动的周期与频率:周期是指物体完成一次完整振动所需的时间;频率是指单位时间内振动次数的倒数。

两者之间满足 T = 1/f 的关系,其中 T 表示振动周期,f 表示振动频率。

4. 振动的幅度与相位:振动的幅度是指物体振动过程中,位移、速度或加速度的最大值;相位是指某一时刻物体振动状态相对于某一参考点的时间差。

5. 振动的简谐振动:简谐振动是指振动物体的加速度与其位移成正比,反向相反的振动。

在简谐振动中,振动物体的加速度与位移之间存在相位差的关系。

6. 振动的阻尼和共振:阻尼是指振动物体受到的摩擦力或阻尼力,使得振动过程中能量逐渐耗散的现象;共振是指外界周期性作用力与振动物体的固有频率相等或接近时,振动幅度会急
剧增大的现象。

7. 振动的能量:振动物体具有动能和势能两种能量形式。

在振动过程中,动能和势能会不断转换,总能量守恒。

8. 振动的叠加原理:当物体受到多个振动力的作用时,振动的总效果等于各个振动力分别作用时的效果之和。

这些是机械振动的一些基本知识点,深入研究机械振动还包括振动系统的建模与分析、振动的稳定性和控制等内容。

机械振动概念、知识点总结

机械振动概念、知识点总结

机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。

例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。

因为:乒乓球没有在平衡位置附近做往复运动。

(1)平衡位置:①物体所受回复力为零的位置。

②振动方向上,合力为零的位置。

③物体原来静止时的位置。

(2)机械振动的平衡位置不一定是振动范围的中心。

(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。

(4)回复力:沿振动方向,指向平衡位置的合力。

①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。

②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。

曲线振动(如单摆):回复力不一定等于振子的合外力。

③平衡位置,回复力为零。

例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。

答:错误。

正例:弹簧振子的平衡位置是合外力为零的位置。

反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。

(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。

(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。

振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。

正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械振动
1、判断简谐振动的方法
简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。

特征是:F=-kx,a=-kx/m.
要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。

然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。

2、简谐运动中各物理量的变化特点
简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系:
如果弄清了上述关系,就很容易判断各物理量的变化情况
3、简谐运动的对称性
简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。

运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。

理解好对称性这一点对解决有关问题很有帮助。

4、简谐运动的周期性
5、简谐运动图象
简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。

6、受迫振动与共振
(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。

位移x
回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K
2
(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。

○2产生共振的条件:驱动力频率等于物体固有频率。

○3共振的应用:转速计、共振筛。

(3)理解共振曲线的意义
单摆
考点分析:
周期公式的理解
1、周期与质量、振幅无关
2、等效摆长
3、等效重力加速度
摆钟快慢问题
利用周期公式求重力加速度,进而求高度
单摆与其他力学知识的综合
机械波
二、考点分析:
①.波的波速、波长、频率、周期和介质的关系:
②.判定波的传播方向与质点的振动方向
方法一:同侧原理
波的传播方向与质点的振动方向均位于波形的同侧。

方法二:逆描波形法
用笔沿波形逆着波的传播方向描,笔势向上该处质点振动方向即向
③、已知波的图象,求某质点的坐标,波速,振动图象等
④已知波速V和波形,作出再经Δt时间后的波形图
方法一、平移法:先算出经Δt时间波传播的距离Δx=VΔt,再把波形沿波的传播方向平移Δx即可。

因为波动图象的重复性,若已知波长λ,则波形平移n个λ时波形不变,当Δx=n λ+x时,可采取去nλ留零x的方法,只需平移x即可。

方法二、特殊点法:在波形上找两特殊点,如过平衡位置的点和与它相邻的峰(谷)点,先确定这两点的振动方向,再看Δt=nT+t,由于经nT波形不变,所以也采取去整nT留零t的
方法,分别作出两特殊点经t后的位置,然后按正弦规律画出新波形。

⑤已知某质点的振动图象和某时刻的波动图象进行分析计算
⑥已知某两质点的振动图象进行分析计算
⑦已知某两时刻的波动图象进行分析计算。

相关文档
最新文档