金属基复合材料
[材料科学]金属基复合材料
![[材料科学]金属基复合材料](https://img.taocdn.com/s3/m/bd12e168f121dd36a22d8208.png)
33
三种热等静压工艺
• 先升压后升温:其特点是无需将工作压力 开到最高压力,随着温度升高,气体膨胀, 压力不断升高,直至达到需要压力,适用 于金属包套的工艺制备;
• 先升温后升压:适用于玻璃包套制备复合 材料;
• 同时升温升压:适合于低压成形、装入量 大、保温时间长的工件制备。
34
热等静压工艺优缺点
混合
热压 冷压-烧结
坯或零件
封装除氧
挤压
粉末冶金法的工艺流程
23
粉末冶金法的优缺点
• 粉末冶金复合法的工艺主要优点是:基体金属或合金 的成分可自由选择,基体金属与强化颗粒之间不易发 生反应;可自由选择强化颗粒的种类、尺寸,还可多 种颗粒强化;强化颗粒添加量的范围大;较容易实现 颗粒均匀化。
• 但材料的成本较高,制备大尺寸的零件和坯料有一定 困难,而且粉末混合和防止氧化是工艺的关键,必须 采取有效措施加以控制,以及微细强化颗粒的均匀分 散困难;颗粒与基体的界面不如铸造复合材料等。
密封袋材的设计较困难
(HIP)
温下,高压气体加压烧结
超高压烧结 用超高压装置在高温下加压 可不用烧结助剂
制品尺寸不能过大
(UHP)
烧结
冲击加压烧结 置粉末于容器中,利用机械 短时间内可以烧结
不易控制
(Dina-Pac) 或炸药产生瞬时高温高压
液相烧结 烧结助剂发挥烧结作用
较低温度下可以进行高密度 若液相以玻化状态残留,
19
不连续增强相复合材料的制备工艺
颗粒 晶须 短纤维
铝合金—固态、液态、原位生长、喷射成型法 镁合金—液态法 钛合金—固态、液态法、原位生长法 高温合金—原位生长法 金属间化合物—粉末冶金、原位生长法
金属基复合材料

四、挤压铸造法
挤压铸造法是制造金属基复合材料较理 想的途径,此工艺先将增强体制成预成型 体,放入固定模型内预热至一定温度,浇 人金属熔体,将模具压下并加压,迅速冷 却得到所需的复合材料。
挤压铸造法特点:可以制备出增强相非常 高体积分数(40 %~50 %)的金属基复合 材料,由于在高压下凝固,既改善了金属 熔体的浸润性,又消除了气孔等缺陷,因 此,挤压铸造法是制造金属基复合材料质 量较好,可以一次成型。
六、熔体浸渗法
熔体浸渗工艺包括压力浸渗和无压浸渗。 当前是利用惰性气体和机械装置作为压力 媒体将金属熔体浸渗进多气孔的陶瓷预制 块中,可制备体积分数高达50 %的复合材 料,随后采用稀释的方法降低体积分数。
三、原位生成法
原位生成法指增强材料在复合材料制造 过程中,并在基体中自己生成和生长的方 法,增强材料以共晶的形式从基体中凝固 析出,也可与加入的相应元素发生反应、 或者合金熔体中的某种组分与加入的元素 或化合物之间的反应生成。前者得到定向 凝固共晶复合材料,后者得到反应自生成 复合材料。
原位生成复合材料的特点:增强体是 从金属基体中原位形核、长大的热力学稳 定相,因此,增强体表面无污染,界面结 合强度高。而且,原位反应产生的增强相 颗粒尺寸细小、分布均匀,基体与增强材 料间相容性好,界面润湿性好,不生成有 害的反应物,不须对增强体进行合成、预 处理和加入等工序,因此,采用该技术制 备的复合材料的综合性能比较高,生产工 艺简单,成本较低。
一、搅拌铸造法
搅拌铸造法制备金属基复合材料起源于 1968年,由S.Ray在熔化的铝液中加入氧化 铝,并通过搅拌含有陶瓷粉末的熔化状态 的铝合金而来的。
搅拌铸造法的特点是:工艺简单,操作 方便,可以生产大体积的复合材料(可到 达500 kg),设备投入少,生产成本低, 适宜大规模生产。但加入的增强相体积分 数受到制,一般不超过20 %,并且搅拌后 产生的负压使复合材料很容易吸气而形成 气孔,同时增强颗粒与基体合金的密度不 同易造成颗粒沉积和微细颗粒的团聚等现 象。
金属基复合材料

现代科学的发展和技术的进步,对材料性能提出了更高的要求,往往希望材料具有某些特殊性能的同时,又具备良好的综合性能。
传统的单一材料已经很难满足这种需要。
因此,人们将注意力转向复合材料,复合材料是指由两种或两种以上成分不同,性质不同,有时形状也不同的相容性材料以物理方式合理的进行复合而制成的一种材料。
其以最大限度的发挥各种材料的特长,并赋予单一材料所不具备的优良性能,复合材料的性能还具有可设计性的重要特征。
作为复合材料重要分支的金属基复合材料(MMCs),发展于20世纪50年代末期或60年代初期。
现代材料方面不但要求强度高,还要求其重量要轻,尤其是在航空航天领域。
金属基复合材料正是为了满足上述要求而诞生的。
1.金属基复合材料的分类金属基复合材料(Metal matrix Composite,简称MMCs)是以陶瓷(连续长纤维、短纤维、晶须及颗粒)为增强材料,金属(如铝、镁、钛、镍、铁、桐等)为基体材料而制备的。
金属基复合材料分为宏观组合型和微观强化型两大类。
前者指其组分能用肉眼识别和具备两组分性能的材料(如双金属、包履板等);后者需显微观察分辨组分以改善成分来提高强度为主要目标的材料。
根据用途分类:(1)结构复合材料:高比强度、高比模量、尺才稳定性、耐热性等是其主要性能特点。
用于制造各种航天、航空、汽车、先进武器系统等高性能结构件。
(2)功能复合材料:高导热、导电性、低膨胀、高阻尼、高耐磨性等物理性能的优化组合是其主要特性,用于电子、仪器、汽车等工业。
强调具有电、热、磁等功能特性。
(3)智能复合材料:强调具有感觉、反应、自监测、自修复等特性。
根据复合材料基体可划分为铝基、镁基、钢基、钛基、高温合金基、金属间化合物基及耐热金属基复合材料等。
按按增强体分类划分为颗粒增强金属基复合材料、层状增强金属基复合材料和纤维增强金属基复合材料。
2.金属基复合材料的性能特点与传统的金属材料相比,金属基复合材料具有较高的比强度与比刚度,而与高分子基复合材料相比,它又具有优良的导电性而耐热性,与陶瓷材料相比,它又具有较高的韧性和较高的抗冲击性能。
金属基复合材料的主要特点

金属基复合材料的主要特点金属基复合材料(Metal Matrix Composites, MMCs)是一种由金属或合金作为基体,与一种或多种其他材料(如陶瓷、石墨、碳纤维等)作为增强相组成的复合材料。
这种材料结合了金属和非金属材料的优点,具有许多独特的性能特点。
以下将详细阐述金属基复合材料的主要特点,包括其力学性能、热稳定性、耐磨性、抗腐蚀性以及设计灵活性等方面。
一、优异的力学性能金属基复合材料最显著的特点之一是其优异的力学性能。
由于金属基体具有良好的韧性和塑性,而增强相则具有高强度和高刚度,因此金属基复合材料在保持金属基体良好塑性的同时,能够显著提高材料的强度和刚度。
这种优异的力学性能使得金属基复合材料在航空航天、汽车、机械等领域具有广泛的应用前景。
二、良好的热稳定性金属基复合材料通常具有良好的热稳定性,能够在高温环境下保持较好的力学性能。
这是因为金属基体本身具有较好的导热性和热膨胀性,而增强相则能够有效地阻碍热裂纹的扩展。
因此,金属基复合材料在高温环境下具有较好的结构稳定性和耐久性,适用于高温工况下的结构件和零部件。
三、出色的耐磨性由于增强相的加入,金属基复合材料的硬度和耐磨性得到了显著提高。
在摩擦过程中,增强相能够有效地承受和分散载荷,减少磨损和剥落。
因此,金属基复合材料在摩擦磨损严重的场合(如轴承、齿轮等)具有广泛的应用前景。
四、优异的抗腐蚀性金属基复合材料中的增强相通常具有较好的化学稳定性,能够有效地提高材料的抗腐蚀性能。
此外,通过合理的成分设计和表面处理,还可以进一步提高金属基复合材料的耐腐蚀性能。
这使得金属基复合材料在化工、海洋等腐蚀环境中具有广阔的应用前景。
五、设计灵活性高金属基复合材料的设计灵活性较高,可以通过调整基体和增强相的成分、含量和分布来实现对材料性能的定制和优化。
例如,通过改变增强相的种类、形状和取向,可以调整材料的强度和刚度;通过调整基体的成分和处理工艺,可以改善材料的塑性和韧性。
金属基复合材料

压铸成型法的具体工艺
将包含有增强材料的金属 熔体倒入预热摸具中后,迅 速加压,压力约为70-100MPa, 使液态金属基复合材料在压 力下凝固。 复合材料完全固化后顶出, 制得所需形状及尺寸的复合 材料的坯料或压铸件。
31
压铸成型法的特点
压铸工艺中,影响金属基复合材料性能的工艺因素主要 有四个:①熔融金属的温度、 ②模具预热温度、 ③使用的 最大压力、 ④加压速度。 在采用预制增强材料块时,为了获得无孔隙的复合材料, 一般压力不低于50MPa,加压速度以使预制件不变形为宜, 一般为1-3cm/s。 对于铝基复合材料,熔融金属温度一般为700-800℃,预 制件和模具预热温度一般可控制在500-800℃,并可相互补 偿,如前者高些,后者可以低些,反之亦然。 采用压铸法生产的铝基复合材料的零部件,其组织细化、 无气孔,可以获得比一般金属模铸件性能优良的压铸件。 与其他金属基复合材料制备方法相比,压铸工艺设备简 单,成本低,材料的质量高且稳定,易于工业化生产。 32
20
粉末冶金法的优点
① 热等静压或烧结温度低于金属熔点,由于高温引起的增 强材料与金属基体的界面反应少,减小了界面反应对复合材 料性能的不利影响。同时可以通过热等静压或烧结时的温度、 压力和时间等工艺参数来控制界面反应。 ② 可根据性能要求,使增强材料(纤维、颗粒或晶须)与 基体金属粉末以任何比例混合,纤维含量最高可达75%,颗粒 含量可达50%以上,这是液态法无法达到的。 ③ 降低增强材料与基体互相湿润及密度差的要求,使颗粒 或晶须均匀分布在金属基复合材料的基体中。 ④ 采用热等静压工艺时,其组织细化、致密、均匀,一般 不会产生偏析、偏聚等缺陷,可使孔隙和其他内部缺陷得到 明显改善,提高复合材料的性能。 ⑤ 金属基复合材料可通过传统的金属加工方法进行二次加 21 工,得到所需形状的复合材料构件毛坯。
金属基复合材料

金属基复合材料的制备
(一)粉末冶金复合法 粉末冶金复合法基本原理与常规的粉末冶金法相同,包括烧结成形法、烧结制坯加塑法加工成形法等适合于分散强化型复合 材料(颗粒强化或纤维强化型复合材料)的制备与成型。 粉末冶金复合法的工艺主要优点是:基体金属或合金的成分可自由选择,基体金属与强化颗粒之间不易发生反应;可自由选 择强化颗粒的种类、尺寸,还可多种颗粒强化;强化颗粒添加量的范围大;较容易实现颗粒均匀化。 缺点是:工艺复杂,成本高;制品形状、尺寸受限制;微细强化颗粒的均匀分散困难;颗粒与基体的界面不如铸造复合材料 等。
(二)铸造凝固成型法 铸造凝固成型法是在基体金属处于熔融状态下进行复合。主要方法有搅拌铸造法、液相渗和法和共喷射 沉积法等。铸造凝固成型铸造复合材料具有工艺简单化、制品质量好等特点,工业应用较广泛。
1、原生铸造复合法 原生铸造复合法(也称液相接触反应合成技术Liquid Contact Reaction:LCR)是将生产强化颗粒的原料 加到熔融基体金属中,利用高温下的化学反应强化相,然后通过浇铸成形。这种工艺的特点是颗粒与基体材料之间的结合状态良 好,颗粒细小(0.25~1.5μm),均匀弥散,含量可高达40%,故能获得高性能复合材料。常用的元素粉末有钛、碳、硼等,化 合物粉末有Al2O3、TiO2、B2O3等。该方法可用于制备A1基、Mg基、Cu基、Ti基、Fe基、Ni基复合材料,强化相可以是硼化 物、碳化物、氮化物等。 2、搅拌铸造法 搅拌铸造法也称掺和铸造法等,是在熔化金属中加入陶瓷颗粒,经均匀搅拌后浇入铸模中获得制品或二次加工 坯料,此法易于实现能大批量生成,成本较低。该方法在铝基复合材料的制备方面应用较广,但其主要缺点是基体金属与强化颗 粒的组合受限制。原因有两方面:①强化颗粒与熔体基本金属之间容易产生化学反应;②强化颗粒不易均匀分散在铝合金一类的 合金熔体中,这是由于陶瓷颗粒与铝合金的润滑性较差,另一个问题是陶瓷颗粒容易与溶质原子一起在枝晶间产生偏析。 3、半固态复合铸造法 半固态复合铸造法是从半固态铸造法发展而来的。通常金属凝固时,初生晶以枝晶方式长大,固相率达 0.2%左右时枝晶就形成连续网络骨架,失去宏观流动性。如果在液态金属从液相到固相冷却过程中进行强烈搅拌则使树枝晶网 络骨架被打碎而保留分散的颗粒状组织形态,悬浮于剩余液相中,这种颗粒状非枝晶的微组织在固相率达 0.5%~0.6%仍具有一 定的流变性。液固相共存的半固态合金因具有流变性,可以进行流变铸造;半固态浆液同时具有触变性,可将流变铸锭重新加热 到固、液相变点软化,由于压铸时浇口处及型壁的剪切作用,可恢复流变性而充满铸型。强化颗粒或短纤维强化材料加入到受强 烈搅拌的半固态合金中,由于半固态浆液球状碎晶粒对添加颗粒的分散和捕捉作用,既防止颗粒的凝聚和偏析,又使颗粒在浆液 中均匀分布,改善了润湿性并促进界面的结合。 4、含浸凝固法(MI技术) 含浸凝固法是一种将预先制备的含有较高孔隙率的强化相成形体含浸于熔融基体金属之中,让基体 金属浸透预成型体后,使其凝固以制备复合材料的方法。有加压含浸和非加压含浸两种方法。含浸法适合于强化相与熔融基体金 属之间润湿性很差的复合材料的制备。强化相含量可高达30%~80%;强化相与熔融金属之间的反应得到抑止,不易产生偏折。 但用颗粒作强化相时,预成形体的制备较困难,通常采用晶须、短纤维制备预成形体。熔体金属不易浸透至预成形体的内部,大 尺寸复合材料的制备较困难。
金属基复合材料

金属基复合材料颗粒增强前言金属基复合材料(MMC)是多功能复合材料的一种。
它是一类以金属或合金为基体,以金属或非金属线、丝、纤维、晶须或颗粒状组分为增强相的非均质混合物,其共同点是具有连续的金属基体[1]。
金属基复合材料集高比模量、高比强度、良好的导热导电性、可控的热膨胀系数以及良好的高温性能于一体,成为当代发展迅速的重要先进材料之一.目MMCs按基体不同可分为黑色金属基(如钢、铁)和有色金属基(如铝、镁、钛、镍等)两大类.按照增强相的形态不同又可分为分散强化型、颗粒增强型和纤维增强型三大类.分散强化型MMCs强化相的平均尺寸小于0.1μm,强化相的容积比Vf只有千分之几,通过强化相阻止基体中位错运动而强化基体.颗粒增强型MMCs颗粒平均尺寸在1μm以上,Vf最大可达90%,靠颗粒自身强度强化,基体作用是把颗粒组合在一起.纤维增强型MMCs是利用纤维(或金属细线)的极高强度来增强金属,纤维可以是长纤维,也可以是短纤维或者是晶须,纤维直径从3μm到150μm(晶须直径小于1μm),长度与直径比在100以上.目前,MMCs中的增强相已有多种,重要的有氧化铝纤维、硼纤维、石墨(碳)纤维、SiC纤维、SiC晶须;颗粒型的有SiC、碳化硼、图化钛等;丝状的有钨、铍、硼、钢等.[2]前在MMCs中仍以SiC和Al2O3颗粒增强铝为主,其次为短纤维增强和连续纤维增强的MMCs。
颗粒增强型MMCs以其高耐磨、高强度、低成本等优点受到广泛关注。
目前已具备批量生产条件,具有良好的发展及应用前景[3]。
1 金属基复合材料的沿革与发展现代金属基复合材料是从20 世纪60 年代初发展起来的。
60 年代初分别以美苏为首的两大阵营在宇宙空间开展的竞争推动了航空航天技术的发展,促进了定向凝固复合材料、难熔金属丝增强高温合金材料的研究与开发。
由于硼纤维的研制成功,并应用于环氧树脂基复合材料,因此出现了硼纤维增强铝基复合材料,并得到成功的应用。
金属基复合材料简介及研究现状

3D打印技术
02
利用3D打印技术,实现金属基复合材料的定制化、高效制造
。
多尺度复合技术
03
发展多尺度复合技术,实现金属基复合材料的多层次结构设计
。
05
结论与展望
研究成果总结
金属基复合材料的制备技术得到改进,包括粉末冶金法、喷射沉积法、机械合金 化法等复合材料的应用领域不断扩大,涉及到能源、环保、医疗、航空航天等领 域,且在各个领域中都有显著的应用成果。
02
金属基复合材料的性能与 特点
力学性能
01
02
03
强度与硬度
金属基复合材料具有较高 的强度和硬度,能够承受 较大的应力和压力。
韧性
金属基复合材料的韧性比 金属单质更强,能够吸收 更多的能量,抵抗冲击和 振动。
疲劳性能
金属基复合材料的疲劳性 能较好,能够在反复应力 作用下保持稳定的性能。
物理性能
由于金属基复合材料具有高强度、高刚性和 轻质等优点,因此在航空航天领域得到广泛 应用,如飞机结构件、卫星部件等。
金属基复合材料在汽车工业中也有广泛应用 ,如汽车发动机部件、变速器齿轮等。
能源领域
生物医学领域
金属基复合材料在能源领域也有广泛应用, 如太阳能电池板支架、核反应堆结构件等。
金属基复合材料在生物医学领域也有广泛应 用,如人工关节、牙科种植体等。
扩散法
将增强体和金属基体在高温下进行扩散处理,使两者相互 渗透、结合,形成复合材料。该方法适用于制备连续或非 连续增强金属基复合材料。
喷射沉积法
将增强体和金属熔体通过喷射、雾化等方法制备成复合材 料。该方法适用于制备连续或非连续增强金属基复合材料 。
金属基复合材料的应用领域
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝的基本特点:熔点660℃ ,密度 2.7g/cm3
具有面心立方结构.所以其塑性优异,适 合各种形式的冷、热加工 导电、导热性能好,约为铜的60%左右 化学活性高,在大气中铝表面与氧形成一 层薄而又致密的氧化铝膜,防止铝继续氧 化 强度低
1.颗粒增强铝基复合材料
颗粒(晶须)增强铝基复合材料的制备 方法可用固态法也可用液态法。
2)界面的形成及机制,界面产物的控制及界面设计; 3)增强剂在基体中的均匀分布: 在选择制备方法时,应选择那些使得增强剂更均匀、均质排 布(分布)的方法。在这方面,液态法与固态法相比较差。 4)制备工艺方法及参数的选择和优化; 5)制备成本的控制和降低,工业化应用的前景。
金属基复合材料制备工艺的分类:
金属基复合材料制备工艺的分类: 1)固态法:真空热压扩散结合、超塑性 成型 / 扩散结合、模压、热等静压、粉末 冶金法。 2)液态法:液态浸渗、真空压铸、反压 铸造、半固态铸造。 3)喷射成型法:等离子喷涂成型、喷射 成型。 4)原位生长法。
固态法 主要为扩散结合和粉末治金两种方法。
扩散结合(Diffusion Bonding)
在制造铝基复合材料时,通常并不是使用纯铝而是用 各种铝合金。这主要是由于与纯铝相比,铝合金具有更好 的综合性能。至于选择何种铝合金做基体,则根据实际中 对复合材料的性能需要来决定。
在制造铝基复合材料时,通常并不是使 用纯铝而是用各种铝合金。
这主要是由于与纯铝相比,铝合金具有 更好的综合性能。至于选择何种铝合金做 基体,则根据实际中对复合材料的性能需 要来决定。
典型金属基复合材料性能与应用
5.2 金属基复合材料的制造工艺
1 金属基复合材料制备工艺概述 1 - 1 金属基复合材料制备工艺的研究内容以及选择原则:
1)基体与增强剂的选择,基体与增强剂的结合: 增强剂与基体之间应具有良好的物理相容性和化学相容性。 另外,如果在复合材料中使用高强度的纤维,就必须寻找具 有高断裂功的基体材料。在这方面,固态法制备方法更好一 些,因铸造合金一般具有较低的断裂韧性。
是一种制造连续纤维增强金属基复合材料的传 统工艺方法。早期研究与开发的硼纤维增强铝或 钛基复合材料和钨丝增强镍基高温合金等都是采 用扩散结合方式制备的。
扩散结合工艺是传统金属材料一种固态焊接技 术。在一定的温度和压力下,把新鲜清洁表面的 相同或不相同的金属原子,通过互相扩散而连接 在一起。
粉末冶金(Powder Metallurgy)
喷射成型法
喷射成型法是由金属材料表面强化处理方法衍 生而来。
喷射成型(Spray Depostion)主要原理是以等 离子体或电弧加热金属粉末或金属线、丝,甚至 增强材料的粉末,通过喷涂气体喷涂沉积到沉积 基板上。喷射成型主要应用于纤维增强金属基复 合材料的预制层的制备,也可以获得复合层状复 合材料的坯料,所形成的复合层状金属基复合材 料往往还需要采用热压来提高增强材树与基体的 结合。
金属基复合材料
化学工程学院
材料化学071 050713115
5.1 金属基复合材料的种类和性能
1 金属基复合材料的分类 1 - 1 按增强体类型分类:
— 颗粒增强复合材料 — 层状复合材料 — 纤维增强复合材料 1 - 2 按基体类型分类: — 铝基复合材料 — 镁基复合材料 — 钛基复合材料 — 镍基复合材料 1 - 3 按用途分类 — 结构复合材料 — 功能复合材料
既可适用于连续、长纤维增强.又可用于短纤 维、颗粒或晶须增强的金属基复合材料。
短纤维、颗粒或晶须增强金属基复合材料的粉 末冶金工艺主要分为二部分,首先将增强材料(短 纤维、颗粒或晶须)与金属粉末混合均匀,大多是 采用机械混合方式;然后进行封装、除气或采用 冷等静压(CIP),再进行热等静压或热压烧结法 提高复合材料致密性。
目前开发的原位生长法主要有共晶合金定向凝固法、 直接金属氧化法(DIM()XTM)和反应生成法(XDTM)、械合 金化(MA)等。
5.3 铝基复合材料
这是在金属基复合材料中应用得最广的一种。由于铝 的基体为面心立方结构,因此具有良好的塑性和韧性,再 加之它所具有的易加工性、工程可靠性及价格低廉等优点, 为其在工程上应用创造了有利的条件。
2 金属基复合材料的性能特征
1 高比强度、比模量 2 导热、导电性能 3 热膨胀系数小、尺度稳定性好 4 良好的高温性能 5 良好的耐磨性 6 良好的断裂韧性和抗疲劳功能 7 不吸潮、不老化、气密性好
总之,金属基复合 材料具有高比强度、 比模量,良好的导热、 导电性、耐磨性、高 温性能,较低的热膨 胀系数,高的尺度稳 定性等优点,它在航 空、航天、电子、汽 车、轮船、先进武器 等方面均具有广泛的 应用前景。
原位生长法
在金属基复合材料制备过程中,增强材料与金属基体 之间的相容性,即增强材料与金属基的润湿性,往往影响 到金属基复合材料在高温制备和高温应用中的性能和性能 稳定性。如果增强材料(纤维、颗粒或晶须)能从金属基体 中直接(即原位)生成,则相容性问题就会得到较好的解决。 因为原位生成的增强相与金属基体界面结合良好,生成相 的热力学稳定性好,也不存在基体与增强相之间的润湿和 界面反应等问题。这就是原位生长法。
液态法
是目前制备颗粒、晶须和短纤维增强金属基复 合材料的主要工艺方法。
与固态法相比、液态法的工艺及设备相对简便 易行,和传统金属材料的成型工艺,如铸造,压 铸等方法非常相似、制备成本较低、因此液态法 得到较快的发展。
液态法亦可称为熔铸法,持点是金属基体在制 备复合材料时均处于液态,包括压铸,半固态复 合铸造、液态渗透以及搅拌法和无压渗透法等。
固态法:粉末冶金法制备SiC颗粒火和 晶须增强铝基复合材料、挤压法制备SiC和 Al2O3颗粒增强复合材料。 S法 基iO和复2液搅合颗态材拌粒法料法增:。制强挤S基iC压复、铸合A造材l2法料O3制,、BS真CiC空4、颗压粒A力l2增O浸强3渍、铝
SiC晶须增强基复合材料
SiC颗粒增强铝基复合材料具有良 好的力学性能和耐磨性能。随着SiC含 量的增加,其热膨胀系数降低,并低 于基体,韧性也低于基体,由于SiC 得硬度很高,使其耐磨性也相应大大 提高。