金属基复合材料界面表征及其进展

金属基复合材料界面表征及其进展
金属基复合材料界面表征及其进展

第14卷第3期V o l.14N o.3

材 料 科 学 与 工 程

M aterials Science&Engineering

总第55期

Sep t.1996金属基复合材料界面表征及其进展

梅 志 顾明元 吴人洁

上海交通大学 上海 200030

【摘 要】 界面是复合材料极其重要的组成部分,全面而确切地表征界面是控制和改善复合材料的最重要基础之一。本文从界面组成及成分变化、界面区的位错分布、界面残余应力的测定和

界面结构的高分辨观察及其原子模拟等四个方面综述了金属基复合材料界面表征的方法及其最新

进展。

【关键词】 金属基复合材料 界面表征

Character ization of M etal M atr ix Com posite I n terface

and Its Advances

M e i Zh i Gu M i ngyuan W u Ren j ie

Shangha i J i ao-tong Un iversity,Shangha i 200030

【Abstract】 A s interface is very i m po rtant in compo site m aterial,characterizing interface all2 sidedly and exactly is one of the mo st i m po rtant bases of contro lling and i m p roving compo site m a2

terials.In th is paper the m ethods and its latest developm ents of the characterizati on ofM M C′s in2

terface are review ed.there are four m ain m ethods to characterize the interface;(1)to analyse

phase structure、compo siti on of interface;(2)to deter m ine dislocati on distributi on in the interface

regi o;(3)to m easure interface residual stress;(4)to m anifest the interfacial structure w ith h igh

reso luti on observati on and w ith atom ic si m ulati on of interface structure.T hey are introduced in o r2

der.

【Key words】 M etal m atrix compo site,Interface characterizati on.

一、引 言

界面是复合材料特有的而且是极其重要的组成部分,复合材料的性能与界面性质密切相关。由于界面的原子结构、化学成分和原子键合不同于界面两侧的增强体和基体,界面的性质与界面两侧有很大的差别,而且在界面上更容易发生化学反应,所以界面对复合材料的性能起着极其重要的作用,有时甚至能起控制作用。因此,只有深入了解界面的几何特征、化学键合、界面结构、界面的化学缺陷与结构缺陷、界面稳定性与界面反应及其影响因素,才能在更深的层次上理解界面与材料性能之间的关系,进一步达到利用“界面工程”发展新型高性能复合材料的目的。与此同时,界面研究的成果不仅会给复合机理的研究带来促进作用,而且这项工作的深入开展还关系到研究物质表面结构与性能的现代新技术和新仪器的进展。

界面结构的研究是当前材料科学的前沿课题,人们对界面的相组成和结构、界面区的成分及其分布、近界面基体一侧的位错密度及其分布等以及它们与材料总体性能之间的关系进行了广泛研究。然而,过去由于实验手段的限制,以往的研究工作大部分停留在微米尺度,而大量

的精细结构被掩盖。近年来,随着高分辨电子显微术(HR E M)及分析电子显微术(如EEL S、A P2F I M等)的发展,使得在原子尺度研究界面结构、界面化学及界面缺陷成为可能,再配合以其它微区形貌、结构和成分分析的手段,并加以综合应用,相互补充,使得对界面结构有了更深入的了解,取得了一些令人鼓舞的进展。下面将从四个方面加以介绍。

二、界面层相组成及成分变化

确定界面上有无新相形成是界面表征的主要内容之一。这种析出物可能是增强体与基体通过扩散反应而在界面处形成的新相,也可能是基体组元与相界处杂质元素反应在界面处优先形核而成为新相。

一般情况下常用明场像或暗场像对界面附近区域形貌进行观察,通过选区衍射和X射线能谱进行微区结构和成分分析。当析出物十分细小时,可采用微衍射和电子能量损失谱来分析其结构和成分,电子能量损失谱尤其适合于对C、O等轻元素的分析。这种综合分析可以准确判知界面析出物的结构、成分和形貌特征,如文献[1]中就用X射线能谱、电子能量损失谱和微衍射等分析手段确认界面上存在细小M gO相,就是一个很好的实例。

界面上析出相不可避免地会对复合材料性能产生影响,有时甚至直接影响到材料性能的高低。例如文献[2]在研究A l Si Cw界面组织与复合材料力学性能关系时,运用修正的混合规则(ROM)来研究拉伸强度的计算值与实验值的对比符合情况,结果发现对A l2Cu基体两者符合很好,而对A l2Cu2M g基体两者有较大偏差。经显微组织观察,发现该偏差是由于界面上形成氧化物和尖晶石而造成晶须强度下降所致。因此应用混合规则时必须考虑界面相对复合材料强度的影响,从而为今后复合材料基体合金的设计提供参考。

除此之外,增强体的加入也会影响到复合材料基体合金中固溶原子的分布,从而也会对复合材料性能产生影响,例如,用液体金属浸渗法制造纤维增强复合材料时,由于纤维排列对金属凝固的限制,导致基体中合金成分变化,甚至有未预料到的第二相形成在纤维 基体界面上,结果基体中合金元素浓度降低。而起硬化作用析出物的形成,又要求有一活泼合金元素的临界值,所以以上成分变化会显著改变基体合金的时效硬化响应[3]。

大量报导证明,陶瓷增强体的存在会影响A l合金中固溶原子的分布,Strangw ood等[4]在研究Si C2A l合金界面上的固溶偏析时发现,在欠时效15V o l%Si C-2XXXA l(1.45at%Cu, 1.67at%M g,0.12at%Zr,0.1at%M n)的Si C 基体界面上的固溶偏析可达4.5at%M g和9at%Cu,而M g和Cu偏析都可降低界面区域附近A l基体的局部熔点,因此,尽管当温度似乎仍处于2124A l的固态范围时,固溶偏析可能严重到引起Si C2A l界面局部熔化的程度,从而可以解释该材料在高应变速率超塑性试验中的一些令人困惑的现象[4]。

我校金属基复合材料国家重点实验室利用电子能量损失谱仪,研究了T i C粒子强化I M I2 829T i合金,结果发现T i C粒子表面存在一明显的碳浓度梯度,贫碳区厚度与材料制备工艺和热处理过程有关,结合C2T i相图分析,提出基体和增强体之间C和T i的互相扩散,形成一理想的溶解型结合是该复合材料性能良好的原因[5]。

三、界面区的位错分布

界面区近基体侧的位错分布是界面表征的又一重点,它有助于了解复合材料的强化机制。

经验表明,为了能更清晰地显示出位错分布的特征并便于定量测定位错密度,采用弱束成象效果较好。

过去,人们一直认为复合材料强度提高(实验强度值高于理论预测值)是由于位错使基体强化所致,并且在许多实验中也确实观察到了增强体周围较高的位错密度。虽然后来发现,基体中亚晶尺寸减小也是复合材料强化的一个重要原因,但位错强化仍然是复合材料强化的重要机制之一。

采用高压电镜对A l Si Cw复合材料界面的原位观测证明:由于两种异质材料热膨胀系数不同,在复合制备冷却中界面处形成的位错,在加热到一定温度后会自行消失,但在重新冷却下来时又会再次产生。这种复合材料中,位错密度可高达1013~1014m-2,是造成这类复合材料高强度的重要原因之一[6]。

近来,有人[7]对不连续碳化硅增强A l合金屈服应力增加的原因进行了定量研究,发现屈服应力增加幅度明显与Si C体积分数和颗粒大小有关。实验结果表明,位错密度随Si C体积分数增加而增加、随粒子尺寸增加而减少。亚晶尺寸随碳化硅体积分数和颗粒尺寸变化的趋势正好与位错密度相反。

林君山等[8]在研究铸造Si Cp 2024合金材料微观结构与强化机制时认为,由增强相导致的应力集中和基体形变的高约束度,是控制Si Cp 2024复合材料形变与强化的两个主要因素。

可以预料,今后对界面区位错分布的观察重点将转到研究位错产生、发展的影响因素上来,并有从定性发展到定量研究的趋势,并在可能的条件下,尽量采用高压电镜来观察较厚的薄膜试样,以尽可能真实地反映位错密度大小。另外,对复合材料强化机制的研究也开始注意全面考察基体中组织变化带来的变化,而不再只考虑位错密度变化所造成的强化,表明人们对复合材料的强化机制有了一个更深刻的认识。

四、界面残余应力的测定

复合材料的界面结合与该处的残余应力密切相关。对界面处内应力的测量,除了我们所熟知的沿用非破坏性测量材料残余应力的X射线方法外,还有用中子衍射测残余应力的方法,近年来又发展了用会聚束电子衍射及同步辐射连续X射线测残余应变的方法。

目前对金属基复合材料来说,残余应力的测定主要还是采用单一波长的特征X射线的sin2?法[9]。它所测出的是界面两侧一定厚度范围内的平均残余应力,而要确知在界面处的应力仍较困难,尤其是对增强体附近急剧变化的应变场的测量无能为力。

中子衍射[10]则利用中子对材料的高穿透性来测量残余应力。这种方法虽能测量材料内部的应变,但它所测的是体积平均应力,所以它也不能解决增强体周围急剧变化应力的测量问题。

为解决这个问题,Todd等[11]采用高强度的同步辐射连续X射线,利用其能量色散衍射同时兼有较好穿透性(例如可穿透钛数毫米)和对残余应变梯度具有的高空间分辨率,测定了金属基复合材料内部连续增强体附近的残余应变梯度,其精度可达10-3到10-4,取得了满意的效果。但这种方法的致命缺点是成本太高。

另外一些研究者则试图用会聚束电子衍射的方法来测定界面残余应力,并取得了可喜的进展。如王仁卉[12]利用大角度会聚束电子衍射(LA CB ED)研究了A l A l2O3复合材料界面应力场,发现由于界面处存在应力场,引起界面附近的高阶劳厄线(HOL Z线)发生明显的弯曲和

分裂并变得模糊,目前作者正通过对LA CB ED花样的动力学模拟来对界面处的应力场作进一步的研究。

S.J.Rozeveld及其合作者[13]则通过在电镜内对薄膜试样原位冷却来引入残余应变,用会聚束电子衍射方法测量了A l Si Cw界面附近的残余应变,并与有限元计算结果进行对照,证实了此方法的可行性。这种方法的突出优点是它所具有的数十纳米的空间分辨率,这对于界面附近急剧变化的残余应力来说是非常有意义的。但遗憾的是,它还不是一种无损检测的方法,实验时制备电镜薄膜试样,必然会破坏材料的原始应力状态,因此目前尚只能用来研究由于温度变化所造成的残余应力。

五、界面结构的高分辨观察及其原子模拟

高分辨电子显微术用于界面研究可以提供原子尺度的细节信息,其研究目标是在分子、原子尺度揭示材料界面的原子种类及排布规律。高分辨结构象对样品的制备要求很高,加上界面组成复杂多变,界面结合也并非处处均匀完整,因而对界面结构的高分辨观察十分困难。近年来,随着复合工艺的完善而能获得更均匀完整的界面,再加上试样制备技术的提高[14],国内外已开展了一些对某些金属基复合材料界面结构的高分辨直接观测工作。与此同时,界面结构的计算机原子模拟研究也正在逐步开展。这些工作必将深化人们对界面的认识,并有助于控制和改善复合材料的性能。

利用高分辨象可得到界面的直观图象,与成分分析的信息配合,可进一步阐明界面的原子结构、化学键合、缺陷结构,阐明界面几何结构与界面能量的关系;阐明界面的原子结构、物理化学特性与材料性能之间的关系等,并为新材料的研究发展、改善材料性能及使用寿命提供理论依据。这方面已经取得了一些有意义的成果。

姚忠凯和耿林[15]用高分辨电镜和微衍射技术研究了压铸Si Cw A l复合材料中晶须与铝界面处两者间的晶体位向关系,并从金属结晶理论出发,分析了这种晶体位向关系的形成原因,建立了半共格界面结构模型,很好地解释了这种材料界面结合良好的原因。

潘进等[16]在研究硼酸铝晶须增强A l复合材料的界面结构时发现,T6处理后界面上存在着严重的化学反应,反应物为A l2M gO4,通过高分辨电镜观察,始终未发现A l2O3相的存在,从而说明界面反应并非是晶须先分解成A l2O3而后与M g反应所致,而是由材料制造过程中基体合金中的M g在界面上原子偏聚造成的,弄清了反应物的形成机理,也找出了T6处理后9A l2O3?2B2O3w 6061A l复合材料力学性能不能提高的原因。

在界面结构的计算机原子模拟研究方面,戴吉岩[17]利用高分辨电子显微镜对几种有代表性的内生复合材料的界面结构进行了深入细致的研究。因为沿某一方向观察的高分辨象只能提供界面原子结构的二维投影,为了测定界面的三维结构特征,还需要沿另一方向观察的高分辨象。作者根据沿两个互为正交方向观察的界面的高分辨象,设计了界面的结构模型,根据这个模型从两个互为垂直方向进行高分辨象模拟计算并与实验中获得的高分辨象对比,经反复调整原子坐标,最后提出了比较合理的界面原子结构模型。这一技术被成功地应用于T i (CN) T i B2和T i B2 N i A l界面原子结构的研究,从而可以获得界面原子排列的信息,这是其它技术无法替代的。

高分辨电子显微术用于界面研究虽然可以提供原子尺度的细节信息,但不能取代衍射衬度电子显微术的界面研究。因为前者要求的条件比较严格,样品的制备难度大,能进行界面研

究的范围比较局限;后者尽管分辨能力差一些,但适用范围较大,又可以提供界面的三维结构,所以仍有广泛的用途。

六、结束语

全面而确切地表征界面是了解界面性质并进而控制和改善复合材料的最重要基础之一,广大研究工作者在这方面作出了巨大努力并取得了重要进展。但由于界面或界面层是亚微米以下的极薄的一层物质,而且其组成相当复杂,金属基复合材料尤为如此,因而迄今为止,对复合材料的界面认识还是很不充分的,更谈不到建立完整的理论。尽管存在极大的困难,但由于其重要性,所以还是吸引着大量研究者致力于认识界面和掌握其规律。可以预料,随着现代分析技术和仪器的不断改进和人们对界面认识的不断深化,人们最终必将会对复合材料界面结构有一个深入全面的认识,并将它用于指导和控制界面和材料性能,达到优化材料设计的目的,以最大限度地发挥出复合材料的长处。

参 考 文 献

1 S.R.N utt,and R.W.Carpenter,M aterials Science and Engineering,1985;75:169.

2 B.R.H enrik sen and T.E.Johnsen,M aterials Science and T echno logy,1990;6:857.

3 C.M.F riend,I.Ho rsfall,S.D.L uxton,R.J.Young,Cast R einfo rced M etal Compo sites,PP309-315(P roceedings of the Internati onal Sympo sium on A dvances in Cast R einfo rced M etal Compo site,A S M Internati onal).

4 M Strangwood,C A H i pp sley and J J L ew andow sk i,Scri p ta M etallurgica et M aterialia,1990;24:1483.

5 M ingyuan Gu,W eijie J iang and Guoding Zhang,M etallurgical and M aterials T ransacti ons A,June1995,26A:1595. 6 M ary V ogelsang,R.J.A rsenault,and R.M.F isher,M etall.T rans.,1986;17A:379.

7 R.J.A rsenault,L.W ang and C.R.Feng,A cta m etall.m ater,1991;39(1):47.

8 林君山,沙民,沈文荣,李鹏兴,吴人洁,金属学报,1993;29(9):B417.

9 蔡宏伟,博士论文,上海交通大学材料科学系,1992.

10 G.L.Povirk,M.G.Stout,M.Bourke,A.Go ldstone,Scri p ta M etallurgica et M aterialia,1991;25:1883.

11 Todd A.Kuntz,H aydn N.G.W adley,and D avid R.B lack,M etallurgical T ransacti ons A,1993;24A:1117.

12 王仁卉,鄢炎发,邹化民,戴明显,冯江林,电子显微学报,1993;12(2):157.

13 S.J.Rozeveld,J.M.How e and S.Schm auder,A cta m etall,m ater.1992;40(Supp l.):S173.

14 陶景光,理化检验2物理分册,1993;29(2):24.

15 姚忠凯,耿林,自然科学进展——国家重点实验室通讯,1993,3(3):233.

16 潘进,宁小光,胡魁毅,叶恒强,金属学报,1993;29(6):B280.

17 戴吉岩,博士论文,中国科学院金属研究所,1994

金属基复合材料的现状与展望

金属基复合材料的现状与 展望 学院:萍乡学院 专业:无机非金属材料 学号:13461001 姓名:蒋家桐

摘要综述了金属基复合材料的进展情况,重点阐述了颗粒增强金属基复合材料和金属基复合 涂层的进展,包括其性能、现有品种、制备工艺、应用情况. 同时报道了目前本领域研究存在的问 题,如:力学问题、界面问题、热疲劳问题,并在此基础上展望发展前景. 关键词颗粒增强金属基复合材料,复合涂层材料,界面,热疲劳,功能梯度材料 随着近代高新技术的发展,对材料不断提出多方面的性能要求,推动着材料向高比强度、高比刚度、高比韧性、耐高温、耐腐蚀、抗疲劳等多方面发展[1 ] . 复合材料的出现在很大程度上解决了材料当前面临的问题,推进了材料的进展.金属基复合材料(MMC) 是以金属、合金或金属间化合物为基体,含有增强成分的复合材料. 这种材料的主要目标是解决航空、航天等高技术领域提高用材强度、弹性模量和减轻重量的需要,它在60 年代末才有了较快的发展,是复合材料一个新的分支. 目前尚远不如高聚物复合材料那样成熟,但由于金属基复合材料比高聚物基复合材料耐温性有所提高,同时具有弹性模量高、韧性与耐冲击性好、对温度改变的敏感性很小、较高的导电性和导热性,以及无高分子复合材料常见的老化现象等特点,成为用于宇航、航空等尖端科技的理想结构材料. 1 进展情况 目前,金属基复合材料基本上可分为纤维增强和颗粒增强两大类,所用的基体包括Al , Mg ,Ti 等轻金属及其合金以及金属间化合物等,也有少量以钢、铜、镍、钴、铅等为基体. 增强 纤维主要有碳及石墨纤维、碳化硅纤维、硼纤维、氧化铝纤维等,增强颗粒有碳化硅、氧化铝、硼 化物和碳化物等. 用以上的各种基体和增强体虽可组成大量金属基复合材料的品种,但实际上 只有极少几种有应用前景,多数仍处在研究开发阶段,甚至也有不少品种目前尚看不到其应用 前景[2 ] . 1. 1 纤维增强金属基复合材料 纤维增强金属基复合材料,由于具有高温性能好、比强度、比模量高、导电、导热性好等优 点,而成为复合材料的主要类型. 1. 2 颗粒增强金属基复合材料 由于纤维增强金属基复合材料存在上述缺点,从而未能得以大规模工业应用,只有美国、 日本等少数发达国家用于军事工业. 为此,近年来国际上又将注意力逐渐转移到颗粒增强金属 基复合材料的研究上. 这一类金属基复合材料与纤维增强金属基复合材料相比制备工艺简单, 成本低,可采用常规金属加工设备来制造,这样有利于其开发和应用. 可见,颗粒增强金属基复 合材料是非常有发展前途的. 金属基颗粒复合材料通常是作为耐磨、耐热、耐蚀、高强度材料开发的,目前用于颗粒增强

金属基复合材料的种类与性能

金属基复合材料的种类与性能 摘要:金属基复合材料科学是一门相对较新的材料科学,仅有40余年的发展历史。金属基复合材料的发展与现代科学技术和高技术产业的发展密切相关,特备是航天、航空、电子、汽车以及先进武器系统的迅速发展对材料提出了日益增高的性能要求,除了要求材料具有一些特殊的性能外,还要具有优良的综合性能,有力地促进了先进复合材料的迅速发展。单一的金属、陶瓷、高分子等工程材料均难以满足这些迅速增长的性能要求。金属基复合材料正是为了满足上述要求而诞生的。 关键词:金属;金属基复合材料;种类;性能特征;用途 1. 金属基复合材料的分类 1.1按增强体类型分 1.1.1颗粒增强复合材料 颗粒增强复合材料是指弥散的增强相以颗粒的形式存在,其颗粒直径和颗粒间距较大,一般大于1μm。 1.1.2层状复合材料 这种复合材料是指在韧性和成型性较好的金属基材料中含有重复排列的高强度、高模量片层状增强物的复合材料。片曾的间距是微观的,所以在正常比例下,材料按其结构组元看,可以认为是各向异性的和均匀的。 层状复合材料的强度和大尺寸增强物的性能比较接近,而与晶须或纤维类小尺寸增强物的性能差别较大。因为增强物薄片在二维方向上的尺寸相当于结构件的大小,因此增强物中的缺陷可以成为长度和构件相同的裂纹的核心。 由于薄片增强的强度不如纤维增强相高,因此层状结构复合材料的强度受到了限制。然而,在增强平面的各个方向上,薄片增强物对强度和模量都有增强,这与纤维单向增强的复合材料相比具有明显的优越性。 1.1.3纤维增强复合材料 金属基复合材料中的一维增强体根据其长度的不同可分为长纤维、短纤维和晶须。长纤维又叫连续纤维,它对金属基体的增强方式可以以单项纤维、二维织物和三维织物存在,前者增强的复合材料表现出明显的各向异性特征,第二种材料在织物平面方向的力学性能与垂直该平面的方向不同,而后者的性能基本是个向同性的。连续纤维增强金属基复合材料是指以高性能的纤维为增强体,金属或他们的合金为基体制成的复合材料。纤维是承受载荷的,纤维的加入不但大大改变了材料的力学性能,而且也提高了耐温性能。 短纤维和晶须是比较随机均匀地分散在金属基体中,因而其性能在宏观上是各向同性的;在特殊条件下,短纤维也可以定向排列,如对材料进行二次加工(挤压)就可达到。 当韧性金属基体用高强度脆性纤维增强时,基体的屈服和塑性流动是复合材料性能的主要特征,但纤维对复合材料弹性模量的增强具有相当大的作用。 1.2按基体类型分 主要有铝基、镁基、锌基、铜基、钛基、镍基、耐热金属基、金属间化合物基等复合材料。目前以铝基、镁基、钛基、镍基复合材料发展较为成熟,已在航天、航空、电子、汽车等工业中应用。在这里主要介绍这几种材料 1.2.1铝基复合材料 这是在金属基复合材料中应用最广的一种。由于铝合金基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利条件。再制造铝基复合材料时通常并不是使用纯铝而是铝合金。这主要是由于铝合金具有更好的综合性能。

金属基复合材料综述

金属基复合材料综述 专业: 学号: 姓名: 时间:

金属基复合材料综述 摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。 关键词:金属基复合材料;分类;性能;应用;制备;发展趋势 Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development. Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend. 1.引言 复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

金属基复合材料的制备方法

金属基复合材料的制备方 法 Newly compiled on November 23, 2020

金属基复合材料的制备技术 摘要:现代科学技术的发展和工业生产对材料的要求日益提高,使普通的单一材料越来越难以满足实际需要。复合材料是多种材料的统计优化,集优点于一身,具有高强度、高模量和轻比重等一系列特点。尤其是金属基复合材料(MMCs)具有较高工作温度和层间剪切强度,且有导电、导热、耐磨损、不吸湿、不放气、尺寸稳定、不老化等一系列的金属特性,是一种优良的结构材料。 Abstract: The development of modern science and technology and industrial production of materials requirements increasing, the ordinary single material is more and more difficult to meet the actual needs. Composite material is a variety of statistical optimization, set merit in a body, has the advantages of high strength, high modulus and light specific gravity and a series of characteristics. Especially the metal matrix composite ( MMCs ) has the high working temperature and interlaminar shear strength, and a conductive, thermal conductivity, wear resistance, moisture, do not bleed, dimensional stability, aging and a series of metal properties, is a kind of structural material. 关键词:复合材料(Composite material)、发展概况(Development situation)、金属基复合材料(Metal base composite materia l)、发展前景(Development prospect) 正文: 一:复合材料简介 复合材料是由两种或两种以上不同物理、化学性质的物质以微观或宏观的形式复合而成的多相材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。复合材料按其组成分为金属与金属复合材料、非金属与金属复合材料、非金属与非金属复合材料。按其结构特点又分为:①纤维复合材料。②夹层复合材料。③细粒复合材料。④混杂复合材料。[1] 二:金属基复合材料简介

金属基复合材料的研究进展

金属基复合材料的研究进展 姓名:@@@ 学号:@@@@ 学院:@@@@ 专业:@@@@

目录 1金属基复合材料发展史 (1) 2金属基复合材料的制造方法 (1) 2.1扩散法 (1) 2.1.1扩散粘结法 (1) 2.1.2无压力金属渗透法 (2) 2.1.3预制体压力浸渗法 (2) 2.2沉积法 (2) 2.2.1反应喷射沉积法(RAD) (2) 2.2.2溅射沉积法 (2) 2.2.3化学气象沉积法 (2) 2.3液相法 (2) 2.4熔体搅拌法 (3) 3金属基复合材料的应用概况 (3) 3.1金属基复合材料的范畴界定 (3) 3.2金属基复合材料全球市场概况 (3) 3.2.1MMCs在陆上运输领域的应用 (4) 3.2.2MMCs在电子/热控领域的应用 (4) 3.2.3MMCs在航空航天领域的应用 (5) 3.2.4MMCs在其它领域的应用 (5) 3.3中国的金属基复合材料研究现状 (7) 4金属基复合材料研究的前沿趋势 (7) 4.1金属基复合材料结构的优化 (7) 4.1.1多元/多尺度MMCs (8) 4.1.2微结构韧化MMCs (8) 4.1.3层状MMCs (8) 4.1.4泡沫MMCs (8) 4.1.5双连续/互穿网络MMCs (8) 4.2结构-功能一体化 (8) 4.2.1高效热管理MMCs (8) 4.2.2低膨胀MMCs (9) 4.2.3高阻尼MMCs (9) 4.3碳纳米管增强金属基纳米复合材料 (9) 5总结与展望 (9) 参考文献 (10)

金属基复合材料的研究进展 摘要:在过去的三十年里,金属基复合材料凭借其结构轻量化和优异的耐磨、热学和电学性能,逐渐在陆上运输(汽车和火车)、热管理、民航、工业和体育休闲产业等诸多领域实现商业化的应用,确立了作为新材料和新技术的地位。本文概述了金属基复合材料的发展历史和制造方法。并且在综述金属基复合材料的研究与应用现状的基础上,对其研究的前沿趋势进行了展望。 关键词:金属基复合材料;制造方法;性能;应用;前沿展望 金属基复合材料(MMCs),是在各金属材料基体内用多种不同复合工艺,加进增强体,以改进特定所需的机械物理性能。金属基复合材料在比强度、比钢度、导电性、耐磨性、减震性、热膨胀等多种机械物理性能方面比同性材料优异得多。因此,金属基复合材料在新兴高科技领域,宇航、航空、能源及民用机电工业、汽车、电机、电刷、仪器仪表中日益广泛应用。 1金属基复合材料发展史 近代金属基复合材料的研究始于1924年Schmit[1]关于铝/氧化铝粉末烧结的研究工作。在30年代,又出现了沉淀强化理论[2,3],并在以后的几十年中得到了很快地发展。到了60年代,金属基复合材料已经发展成为复合材料的一个新的分支。到了80年代,日本丰田公司首次将陶瓷纤维增强铝基复合材料用于制造柴油发动机活塞,从此金属基复合材料的研制与开发工作得到了飞快地发展。土耳其的S.Eroglu等用离子喷涂技术制得了NiCr-Al/MgO-ZrO2功能梯度涂层。目前,金属基复合材料已经引起有关部门的高度重视,特别是航空航天部门推进系统使用的材料,其性能已经接近了极限。因此,研制工作温度更高、比钢度、比强度大幅度增加的金属基复合材料,已经成为发展高性能材料的一个重要方向。1990年美国在航天推进系统中形成了3 250万美元的高级复合材料(主要为MMC)市场,年平均增长率为16%,远远高于高性能合金的年增长率[4]。到2000年,金属基复合材料的市场价值达到了1.5亿美元,国防/航空用金属基复合材料已占市场份额的80%[5]。预计到2005年市场对金属基复合材料的需求量将达161 t,平均年增长率为4.4%。 2金属基复合材料的制造方法 金属基复合材料的种类繁多,制造方法多样,但总体上可以归纳为4种生产方法。2.1扩散法 扩散法是将作为基本的金属粉末与裸露或有包覆层的纤维在一起压型和烧结,或在基体金属的薄箔之间置入增强剂进行冷压或热压制成金属基复合材料的方法[6]。 2.1.1扩散粘结法 这种方法常用于粉末冶金工业。对于颗粒、晶须等增强体可以采用成熟的粉末冶金法,即把增强体与金属粉末混合后冷压或热压烧结,也可以用热等压工艺。对于连续增强体比较复杂,需先将纤维进行表面涂层以改善它与金属的润湿性并起到阻碍与金属反应的作用,再浸入液态金属中制成复合丝,最后把复合丝排列并夹入金属薄片后热压烧结,对于难熔金属

先进金属基复合材料制备科学基础

项目名称:先进金属基复合材料制备科学基础首席科学家:张荻上海交通大学 起止年限:2012.1-2016.8 依托部门:上海市科委

一、关键科学问题及研究内容 针对国家空天技术、电子通讯和交通运输领域等对先进金属基复合材料的共性重大需求和先进金属基复合材料的国内外发展趋势,本项目以克服制约国内先进金属复合材料制备科学的瓶颈问题为出发点,针对下列三个关键科学问题开展先进金属基复合材料制备科学基础研究: (1). 先进金属基复合材料复合界面形成及作用机制 界面是是增强相和基体相连接的“纽带”,也是力学及其他功能,如导热、导电、阻尼等特性传递的桥梁,其构造及其形成规律将直接影响复合材料的最终的组织结构和综合性能。因此,界面结构、界面结合及界面微区的调控是调控金属复合材料性能的最为关键的一环。揭示基体成分、添加元素、增强体特性复合工艺对复合过程中的界面的形成、加工变形、服役过程中的界面结构、特征的演变规律和效应,以及在多场下的组织演变规律和对复合材料的性能变化极为关键。复合效应的物理基础正是源于金属基体与增强体的性质差异,而在金属基复合材料复合制备过程中,二者的差异无疑会直接或间接地影响最终的复合组织和界面结构。因此,要想建立行之有效的金属基复合材料组分设计准则和有效调控先进金属基复合材料的结构与性能,就必须从理论上认识先进金属基复合材料的复合界面形成及作用机制。 (2). 先进金属基复合材料复合制备、加工成型中组织形成机制及演化规律 金属基复合材料的性能取决于其材料组分和复合结构,二者的形成不仅依赖于复合制备过程,还依赖于包括塑性变形、连接、热处理等后续加工和处理过程。只有在掌握金属基复合材料的组织结构演变规律的基础上,才有可能通过优化工艺参数精确调控微观组织,进而调控复合材料的性能。 (3). 使役条件下复合材料界面、组织与性能耦合响应机制 先进金属基复合材料中,由于增强体与金属基体的物理和力学性能之间存在巨大差异,造成在界面点阵分布不均匀,同时近界面基体中由于热错配,残余应力等导致晶体学缺陷含量较高。因此,在使役过程中,先进金属基复合材料的力学性能不仅取决于其材料组分,更加取决于增强体在基体中的空间分布模式、界面结合状态和组织与性能之间的耦合响应机制。只有揭示使役条件下复合材料界面、组织与性能耦合响应机制,才能真正体现先进金属基复合材料中增强体与基体的优势互补,充分利用其巨大潜力,也才可能优化复合和界面结构设计。

金属基复合材料界面

华东理工大学2012-2013学年第二学期 《金属基复合材料》课程论文2013.6班级复材101 学号10103638 温乐斐开课学院材料学院任课教师麒成绩

浅谈金属基复合材料界面特点、形成原理及控制方法 摘要 金属基复合材料都要在基体合金熔点附近的高温下制备,在制备过程中纤维、晶须、颗粒等增强体与基体将发生程度不同的相互作用和界面反应,形成各种结构的界面。界面结构和性能对金属基复合材料的性能起着决定性作用。深入研究和掌握界面反应和界面影响性能的规律,有效地控制界面的结构和性能,是获得高性能金属基复合材料的关键。本文简单讨论一下金属基复合材料的界面反应、界面对性能的影响以及控制界面反应和优化界面结构的有效途径等问题。 前言 由高性能纤维、晶须、颗粒与金属组成的金属基复合材料具有高比强度、高比模量、低热膨胀、耐热耐磨、导电导热等优异的综合性能有广阔的应用前景,是一类正在发展的重要高技术新材料。 随着金属基复合材料要求的使用性能和制备技术的发展,界面问题仍然是金属基复合材料研究发展中的重要研究方向。特别是界面精细结构及性质、界面优化设计、界面反应的控制以及界面对性能的影响规律等,尚需结合材料类型、使用性能要求深入研究。金属基复合材料的基体一般是金属、合金和金属间化合物,其既含有不同化学性质的组成元素和不同的相,同时又具有较高的熔化温度。因此,此种复合材料的制备需在接近或超过金属基体熔点的高温下进行。金属基体与增强体在高温复合时易发生不同程度的界面反应;金属基体在冷凝、凝固、热处理过程中还会发生元素偏聚、扩散、固溶、相变等。这些均使金属基复合材料界面区的结构十分复杂,界面区的结构及组成明显不同于基体和增强体,其受到金属基体成分、增强体类型、复合上艺参数等多种因素的影

金属基复合材料复习大纲(完整版)

金属基复合材料复习大纲 一.内生增强的金属基复材的特点. 答:1.增强体试从金属体中原位形核、长大的热力学稳定相,因此,增强体表面无污染,避免了与基体相容性不良的问题,且界面结合强度高。 2.通过合理选择反应元素(或化合物)的类型、成分及其反应性,可有效地控制原位生成增强体的种类、大小、分布和数量。 3.省去了增强体单位合成、处理和加入等工序,因此其工艺简单,成本较低。 4.从液态金属基体中原位形成增强体的工艺,可用铸造方法制备形状复杂、尺寸较大的近净成形构件。 5.在保证材料具有较好的韧性和高温性能的同时,可较大程度地提高材料的强度和弹性模量。 补:外加增强的金属基复材的特点:1.颗粒表面有污染;2.界面结合差;3.润湿性。 二.金属基复材的特点. 答:1.高比强度、高比模量;2.导热、导电性能;3.热膨胀系数小,尺寸稳定性好;4.良好的高温性能;5.耐磨性好;6.良好的疲劳性能和断裂韧度;7.不吸潮,不老化,气密性好。 三.增强体的作用. 答:传递作用承受力,提高金属基体的强度、模量、耐热性、耐磨性等性能。 四.金属基复材增强体应有的基本特性. 答:1.增强体具有能明显提高金属基体某种所需特性的性能;2.增强体应具有良好的化学稳定性;3.与金属有良好的浸润性。 五.选择增强体的原则. 答:1.力学性能:杨氏模量和塑性强度;2.物理性能:密度和热扩散系数;3.几何特性:形貌和尺寸;4.物理化学相容性;5.成本因素。 六.碳纤维制造的过程. 答:1.拉丝:可用湿法、干法或者熔融状态三种中任意一种方法进行; 2.牵伸:在室温以上,通常是在100~300℃范围内进行,W.Watt 首先发现结晶定向纤维的拉伸效应,而且这效应控制着最终纤维的模量; 3.稳定:通过400℃加热氧化的方法。这显著地降低所有的热失重,并因此保证高度石墨化和取得更好的性能。 4.碳化:在1000~2000℃范围内进行; 5.石墨化:在2000~3000℃范围内进行。 七.先驱体转化法工艺流程图. 答:二氯二甲基硅烷 脱氢 裂解 纺丝 不熔化处理 金属钠 缩合 重排 八.氧化铝纤维的制备. 答:1.淤浆法:以氧化铝粉末为主要原料,同时加入分散剂、流变助剂、烧结助剂,分散于水中,制成可纺浆料,经挤出成纤,再经干燥、烧结得到直径在200μm 左右的氧化铝纤维; 烧成 聚硅烷 聚碳硅烷 聚碳硅烷纤维 不熔化聚碳硅烷纤维 碳化烷纤维

金属基复合材料

14.3.2金属-非金属复合材料 14.3.2.1金属基复合材料的性能特征 金属基复合材料与一般金属相比,具有耐高温、高比强度、高的比弹性模量、小的热膨胀系数和良好的抗磨损性能。与聚合物基复合材料相比,不仅剪切强度高、对缺口不敏感,而且物理和化学性能更稳定,如不吸湿、不放气、不老化、抗原子氧侵蚀、抗核、抗电磁脉冲、抗阻尼,膨胀系数低、导电和导热性好。由于上述特点,使金属基复合材料更适合空间环境使用,是理想的航天器材料,在航空器上也有潜在的应用前景。 14.3.2.2金属基复合材料的研究与应用 表14.101 和表14.102简要概述了各类金属基复合材料在航空航天领域的应用概况。金属基复合材料(MMC)的研究始于20世纪60年代,美国和俄罗斯在航空航天用金属基复合材料的研究应用方面处于领先的地位。20世纪70年代,美国把B/Al复合材料应用到航天飞机轨道上,该轨道器的主骨架是采用89种243根重150g的B/Al管材制成,比原设计的铝合金主骨架减重145g。美国还用B/Al复合材料制造了J-79和F-100发动机的风扇和压气机叶片,制造了F-106、F-111飞机和卫星构件,并通过了实验,其减重效果达20%~66%。苏联的B/AL复合材料与80年代达到实用阶段,研制了多种带有接头的管材和其他型材,并成功地制造出能安装三颗卫星的支架。由于B纤维的成本高,因此自70年代中期美国和苏联又先后开展C/AL复合材料的研究,在解决了碳纤维与铝之间不湿润的问题以后,C/AL复合材料得到应用。美国用C/AL制造的卫星用波导管具有良好的刚性和极低的热膨胀系数,比C/环氧复合材料轻30%.。随着SiC纤维和Al2O3纤维的出现,连续纤维增强的金属基复合材料得到进一步发展,其中研究和应用较多的是SiC/AL 复合材料。连续纤维增强金属基复合材料的制造工艺复杂、成本高,因此美国又率先研究发展晶须增强的金属基复合材料,主要用于对刚度和精度要求较高的航天构件上。美国海军武器中心研制的SiC p/Al复合材料导弹翼面已经进行了发射试验,卫星的抛物面天线、太空望远镜的光学系统支架也采用了SiC p/Al复合材料,其刚度比铝大70%,显著提高了构件的精度。 MMC对航天器的轻质化、小型化和高性能化正在发挥越来越重要的作用。 MMC在航空器上的应用也有很大潜力,英国研制了SCS-6/Ti的发动机叶片,大幅度提高了其承载能力和刚度,优化了气动载荷下的翼型。用SCS-6/Ti代替耐热钢制造的RB211发动机的压气机静子,可使该构件减重40%;采用SCS-6/Ti代替镍基高温合金制作压气机叶环结构转子,可是该部件减重80%;SiC f/Ti 也可望代替不锈钢在F-22试验型飞机制作活塞杆。 表14.101 B/Al复合材料的应用 表14.102 其他MMC的应用背景

金属基复合材料的应用及前景

附录: 题目:金属基复合材料的应用级展望 院(系)轻纺工程系 专业高分子材料加工技术 届别2012届 学号0919080102 姓名汪振峰 指导老师袁淑芳老师 黎明职业大学 2011年12月

金属基复合材料的应用及展望 汪振峰 (黎明大学,福建泉州,362000) 摘要:金属基复合材料是近几年来复合材料研究中的热点。本文综述了金属基复合材料的分类、性能特点、制备方法,总结了其主要进展及应用。 关键词:金属基复合材料;特点;应用 1、前言 随着近代高新技术的发展,对材料不断提出多方面的性能要求,推动着材料向高比强度、高比刚度、高比韧性、耐高温、耐腐蚀、抗疲劳等多方面发展。复合材料的出现在很大程度上解决了材料当前面临的问题,推进了材料的进展。 复合材料(Composite Materials)是为达到预期的使用特性将不同性质的两种或两种以上材料结合为一体而设计制造的新材料。金属基复合材料(MMCs即Metal matrix composites)是以金属、合金或金属间化合物为基体,含有增强成分的复合材料。其目标是解决航空、航天、电子、汽车、先进武器系统等高技术领域提高用材强度、弹性模量和减轻重量的需要,它在60年代末才有了较快的发展,是复合材料一个新的分支.目前尚远不如高聚物复合材料那样成熟,但由于金属基复合材料比高聚物基复合材料耐温性有所提高,同时具有弹性模量高、韧性与耐冲击性好、对温度改变的敏感性很小、较高的导电性和导热性以及无高分子复合材料常见的老化现象等特点,成为用于宇航、航空等尖端科技的理想结构材料。 金属基复合材料集高比模量、高比强度、良好的导热导电性、可控的热膨胀系数以及良好的高温性能于一体,成为当代发展迅速的重要先进材料之一。 2、金属基复合材料的分类 金属基复合材料是以金属为基体,以高强度的第二相为增强体而制得的复合材料。因此,对这种材料的分类既可按基体来进行、也可按增强体来进行。 2.1按基体分类: 2.1.1铝基复合材料 这是在金属基复合材料中应用得最广的一种。由于铝的基体为面心立方结构,因此具有良好的塑性和韧性,再加之它所具有的易加工性、工程可靠性及价格低廉等优点,为其在工程上应用创造了有利的条件。 在制造铝基复合材料时,通常并不是使用纯铝而是用各种铝合金。这主要是由于与纯铝相比,铝合金具有更好的综合性能。至于选择何种铝合金做基体,则根据实际中对复合材料的性能需要来决定。

金属基复合材料

1、复合材料的定义和分类是什么? 定义:是由两种或多种不同类型、不同性质、不同相材料,运用适当的方法,将其组合成具有整体结构、性能优异的一类新型材料体系。 分类:按用途可分为:功能复合材料和结构复合材料。结构复合材料占了绝大多数。 按基体材料类型分类可分为:聚合物基复合材料、金属基复合材料、无机非金属基复合材料(包括陶瓷基复合材料、水泥基复合材料、玻璃基复合材料) 按增强材料形态可分为:纤维增强复合材料(包括连续纤维和不连续纤维)、颗粒增强复合材料、片材增强复合材料、层叠式复合材料。 3、金属基复合材料增强体的特性及分类有哪些? 增强物是金属基复合材料的重要组成部分,具有以下特性:1)能明显提高金属基体某种所需特性:高的比强度、比模量、高导热性、耐热性、耐磨性、低热膨胀性等,以便赋予金属基体某种所需的特性和综合性能;2)具有良好的化学稳定性:在金属基复合材料制备和使用过程中其组织结构和性能不发生明显的变化和退化;3)有良好的浸润性:与金属有良好的浸润性,或通过表面处理能与金属良好浸润,基体良好复合和分布均匀。此外,增强物的成本也是应考虑的一个重要因素。分类:纤维类增强体(如:连续长纤维、短纤维)、颗粒类增强体、晶须类增强体、其它增强体(如:金属丝)。 4、金属基复合材料基体的选择原则有哪些? 1)、金属基复合材料的使用要求;2)、金属基复合材料组成的特点;3)、基体金属与增强物的相容性。 5、金属基复合材料如何设计? 复合材料设计问题要求确定增强体的几何特征(连续纤维、颗粒等)、基体材料、增强材料和增强体的微观结构以及增强体的体积分数。一般来说,复合材料及结构设计大体上可分为如下步骤:1)对环境与负载的要求:机械负载、热应力、潮湿环境 2)选择材料:基体材料、增强材料、几何形状 3)成型方法、工艺、过程优化设计 4)复合材料响应:应力场、温度场等、设计变量优化 5)损伤及破坏分析:强度准则、损伤机理、破坏过程 6、金属基复合材料制造中的关键技术问题有哪些? 1)加工温度高,在高温下易发生不利的化学反应。在加工过程中,为了确保基体的浸润性和流动性,需要采用很高的加工温度(往往接近或高于基体的熔点)。在高温下,基体与增强材料易发生界面反应,有时会发生氧化生成有害的反应产物。这些反应往往会对增强材料造成损害,形成过强结合界面。过强结合界面会使材料产生早期低应力破坏。高温下反应产物通常呈脆性,会成为复合材料整体破坏的裂纹源。因此控制复合材料的加工温度是一项关键技术。 2)增强材料与基体浸润性差是金属基复合材料制造的又一关键技术,绝大多数的金属基复合材料如:碳/铝、碳/镁、碳化硅/铝、氧化铝/铜等,基体对增强材料浸润性差,有时根本不发生润湿现象。 3)按结构设计需求,使增强材料按所需方向均匀地分布于基体中也是金属基复合材料制造中的关键技术之一。增强材料的种类较多,如短纤维、晶须、颗粒等,也有直径较粗的单丝,直径较细的纤维束等。在尺寸形态、理化性能上也有很大差异,使其均匀地、或按设计强度的需要分布比较困难。 7、金属基复合材料的成形加工技术有哪些? 1)铸造成型,按增强材料和金属液体的混合方式不同可分为搅拌铸造成型、正压铸造成型、铸造成型。2)塑性成形,包括铝基复合材料的拉伸塑性、金属基复合材料的高温压缩变形、铝基复合材料的轧制塑性、铝基复合材料的挤压塑性、金属基复合材料的蠕变性能、非连续增强金属基复合材料的超塑性(包括组织超塑性、相变超塑性、其他超塑性)。3)连接,具体又可分为:应用于MMCs 的常规连接技术(包括熔融焊接、固相连接、钎焊、胶粘),新型MMCs 连接技术(包括等离子喷涂法、快速红外连接法(RIJ )),机械切削加工(包括5.4.1 SiCw/Al复合材料的切削加工、(Al3Zr+Al2O3)P/ZL101A原位复合材料的切削加工)。

金属基复合材料性能的影响因素

金属基复合材料性能的影响因素 摘要:金属基复合材料具有高比强度、高比模量、低热膨胀系数等优点,近年来发展非常迅速。但其性能一致性差的问题制约了其应用,因此复合材料的性能设计受到了普遍的关注。本文综述了基体、增强体、基体与增强体相容性、工艺、界面等因素对金属基复合材料性能的影响。 关键词:金属基复合材料性能影响因素设计 1 引言 金属基复合材料被誉为21世纪的材料, 它兼有金属的塑性和韧性,以及其它材料如陶瓷的高强度和高刚度,而且比重小,因此具有较高的比强度、比刚度和更好的热稳定性、耐磨性以及尺寸稳定性等优点,从而在机械、汽车、航空航天、兵器、电子等许多领域得到了应用[1~3]。 尽管金属基复合材料在过去的30年里在世界范围内得到了广泛的研究和发展,但是还没有在工业上得到广泛的应用,其原因主要在于它的成本高、性能低于期望值、相对较低的稳定性和大的性能波动、不可回收利用、环境污染等几个障碍[4~5]。目前在国内发展复合材料,关键是要实现低成本、高性能、一致性好、稳定的制备技术和根据力学原理以及使用者的期望设计出令用户满意的性价比的材料。这就涉及到复合材料的设计问题,而性能决定了复合材料在工程上的应用,所以性能的影响因素一直是研究的热点。但是由于金属基复合材料的强化机理不明确,至今在金属基复合材料的设计理论上还存在着较大的盲目性。因此对复合材料性能的影响因素的研究是一个使金属基复合材料走出低谷获得突破的重要课题。 2 影响金属基复合材料的因素 2.1 基体的影响 不同的基体对复合材料的抗拉强度、屈服强度、结合强度有较大的影响。但并不是基体强度越高,复合材料的强度越高,而是存在一个最佳匹配[6]。姜龙涛等[7]对AlN颗粒在不同铝合金中的增强行为的研究表明,在低强度的L3纯铝上可以得到最大的增强率,而在高强度的LY12合金上没有得到高的增强率,相比之下具有良好塑性和较高强度的LD2合金作为基体时,具有较高的强度。而康国政等[8]认为基体本身的强度较低时,复合材料中基体的强度将有较大幅度的提高,因此对基体本身强度较低的复合材料通过基体原位性能的大幅度提高使复合材料抗拉强度的提高十分明显。这些研究都说明基体同增强体之间存在着优化选择、合理匹配的问题。

金属基复合材料知识讲解

金属基复合材料

1、复合材料的定义和分类是什么? 定义:是由两种或多种不同类型、不同性质、不同相材料,运用适当的方法,将其组合成具有整体结构、性能优异的一类新型材料体系。 分类:按用途可分为:功能复合材料和结构复合材料。结构复合材料占了绝大多数。 按基体材料类型分类可分为:聚合物基复合材料、金属基复合材料、无机非金属基复合材料(包括陶瓷基复合材料、水泥基复合材料、玻璃基复合材料)按增强材料形态可分为:纤维增强复合材料(包括连续纤维和不连续纤维)、颗粒增强复合材料、片材增强复合材料、层叠式复合材料。 3、金属基复合材料增强体的特性及分类有哪些? 增强物是金属基复合材料的重要组成部分,具有以下特性:1)能明显提高金属基体某种所需特性:高的比强度、比模量、高导热性、耐热性、耐磨性、低热膨胀性等,以便赋予金属基体某种所需的特性和综合性能;2)具有良好的化学稳定性:在金属基复合材料制备和使用过程中其组织结构和性能不发生明显的变化和退化;3)有良好的浸润性:与金属有良好的浸润性,或通过表面处理能与金属良好浸润,基体良好复合和分布均匀。此外,增强物的成本也是应考虑的一个重要因素。分类:纤维类增强体(如:连续长纤维、短纤维)、颗粒类增强体、晶须类增强体、其它增强体(如:金属丝)。 4、金属基复合材料基体的选择原则有哪些? 1)、金属基复合材料的使用要求;2)、金属基复合材料组成的特点;3)、基体金属与增强物的相容性。 5、金属基复合材料如何设计?

复合材料设计问题要求确定增强体的几何特征(连续纤维、颗粒等)、基体材料、增强材料和增强体的微观结构以及增强体的体积分数。一般来说,复合材料及结构设计大体上可分为如下步骤:1)对环境与负载的要求:机械负载、热应力、潮湿环境 2)选择材料:基体材料、增强材料、几何形状 3)成型方法、工艺、过程优化设计 4)复合材料响应:应力场、温度场等、设计变量优化 5)损伤及破坏分析:强度准则、损伤机理、破坏过程 6、金属基复合材料制造中的关键技术问题有哪些? 1)加工温度高,在高温下易发生不利的化学反应。在加工过程中,为了确保基体的浸润性和流动性,需要采用很高的加工温度(往往接近或高于基体的熔点)。在高温下,基体与增强材料易发生界面反应,有时会发生氧化生成有害的反应产物。这些反应往往会对增强材料造成损害,形成过强结合界面。过强结合界面会使材料产生早期低应力破坏。高温下反应产物通常呈脆性,会成为复合材料整体破坏的裂纹源。因此控制复合材料的加工温度是一项关键技 术。 2)增强材料与基体浸润性差是金属基复合材料制造的又一关键技术,绝大多数的金属基复合材料如:碳/铝、碳/镁、碳化硅/铝、氧化铝/铜等,基体对增强材料浸润性差,有时根本不发生润湿现象。 3)按结构设计需求,使增强材料按所需方向均匀地分布于基体中也是金属基复合材料制造中的关键技术之一。增强材料的种类较多,如短纤维、晶须、颗粒等,也有直径较粗的单丝,直径较细的纤维束等。在尺寸形态、理化性能上也有很大差异,使其均匀地、或按设计强度的需要分布比较困难。 7、金属基复合材料的成形加工技术有哪些? 1)铸造成型,按增强材料和金属液体的混合方式不同可分为搅拌铸造成型、正压铸造成型、铸造成型。2)塑性

金属基复合材料在航空领域的应用与发展

材料表面与界面 题目:金属基复合材料在航空领域的应用与发展 学院:化学与化工 专业及班级:无机121 年级: 2012级 学生姓名:严红梅 学号: 1208110439 教师:张煜 2014 年12 月9 日

金属基复合材料在航空领域的应用与发展 严红梅 (贵州大学无机121班) 【摘要】:介绍了金属基复合材料的构成、分类,以及性能特点分析了铝合金和钛合金复合材料的性能。讨论了金属基复合材料在航天器结构材料、热管理系统、电子封装、惯性器件、光学仪器和液体发动机中的典型应用。 【关键字】复合材料,金属基,性能,应用。 引言 金属基复合材料(简称 MMC)是以金属、合金或金属间互化物为基体、用各类增强相进行增强的复合材料。它是复合材料的一个分支。近代科学高新技术的迅速发展,特别是航空和航天应用技术的发展,对材料的要求越来越高。除了要求材料具有高强度、高模量、耐辐射、低热胀、低密度、可加工性外,还对材料的韧性、耐磨、耐腐蚀及抗蠕变等理化性能提出种种特殊要求,这对单一的某种材料来说是很难都具备的。必须采用复合技术,把一些不同的材料复合起来,取其所长来满足这些性能要求。金属基复合材料就是在这样的前提下产生的。这些年来 MMC得到了广泛关注,并在航空和航天工程中取得了应用的成果。据美国航天局预测:金属基复合材料将成为本世纪空间战、卫星和空间飞行器的主要结构材料[1]。正文 1金属基复合材料的分类 MMC 通常按增强相形态分为连续纤维增强 MMC 和非连续增强(颗粒、晶须、短切纤维)MMC两大类,最常用的增强纤维为碳纤维(Gr)、硼纤维、碳化硅(SiC)纤维、氧化铝(Al2O3)纤维。晶须和颗粒增强体有碳化硅、氧化铝、碳化钛(TiC)、氮化硅(Si3N4)等。MMC 也可以按金属基体类型分类,分为铝基、镁基、铜基、钛基、钛铝互化物基等 MMC。其中铝基镁基 MMC 使用温度在 450℃以下、钛基和钛铝互化物基 MMC 使用温度 450~700℃,镍基钴基 MMC 可在 1200℃下使用。铝基 MMC 是各国开发的重点,我国亦已列入相关计划。连续纤维增强 MMC 中由于纤维是主要承力组元,而且这些纤维在高温下强度很少下降,因此具有很高的比强度和比刚度,在单向增强情况下具有很强的各向异性。其中连续纤维增强钛合金基复合材料,已成为竞争力很强的高温结构材料。由于制造工艺复杂,且有些长纤维(如硼纤维)价格十分昂贵,基体仍起到主要作用,其强度与基体相近,但刚度、耐磨性、高温性能、热物理性能明显增强,制造工艺也相对简单,技术难度较小,可以在现有冶金加工设

金属基复合材料界面表征及其进展

第14卷第3期V o l.14N o.3 材 料 科 学 与 工 程 M aterials Science&Engineering 总第55期 Sep t.1996金属基复合材料界面表征及其进展 梅 志 顾明元 吴人洁 上海交通大学 上海 200030 【摘 要】 界面是复合材料极其重要的组成部分,全面而确切地表征界面是控制和改善复合材料的最重要基础之一。本文从界面组成及成分变化、界面区的位错分布、界面残余应力的测定和 界面结构的高分辨观察及其原子模拟等四个方面综述了金属基复合材料界面表征的方法及其最新 进展。 【关键词】 金属基复合材料 界面表征 Character ization of M etal M atr ix Com posite I n terface and Its Advances M e i Zh i Gu M i ngyuan W u Ren j ie Shangha i J i ao-tong Un iversity,Shangha i 200030 【Abstract】 A s interface is very i m po rtant in compo site m aterial,characterizing interface all2 sidedly and exactly is one of the mo st i m po rtant bases of contro lling and i m p roving compo site m a2 terials.In th is paper the m ethods and its latest developm ents of the characterizati on ofM M C′s in2 terface are review ed.there are four m ain m ethods to characterize the interface;(1)to analyse phase structure、compo siti on of interface;(2)to deter m ine dislocati on distributi on in the interface regi o;(3)to m easure interface residual stress;(4)to m anifest the interfacial structure w ith h igh reso luti on observati on and w ith atom ic si m ulati on of interface structure.T hey are introduced in o r2 der. 【Key words】 M etal m atrix compo site,Interface characterizati on. 一、引 言 界面是复合材料特有的而且是极其重要的组成部分,复合材料的性能与界面性质密切相关。由于界面的原子结构、化学成分和原子键合不同于界面两侧的增强体和基体,界面的性质与界面两侧有很大的差别,而且在界面上更容易发生化学反应,所以界面对复合材料的性能起着极其重要的作用,有时甚至能起控制作用。因此,只有深入了解界面的几何特征、化学键合、界面结构、界面的化学缺陷与结构缺陷、界面稳定性与界面反应及其影响因素,才能在更深的层次上理解界面与材料性能之间的关系,进一步达到利用“界面工程”发展新型高性能复合材料的目的。与此同时,界面研究的成果不仅会给复合机理的研究带来促进作用,而且这项工作的深入开展还关系到研究物质表面结构与性能的现代新技术和新仪器的进展。 界面结构的研究是当前材料科学的前沿课题,人们对界面的相组成和结构、界面区的成分及其分布、近界面基体一侧的位错密度及其分布等以及它们与材料总体性能之间的关系进行了广泛研究。然而,过去由于实验手段的限制,以往的研究工作大部分停留在微米尺度,而大量

相关文档
最新文档