第四章 因式分解 公式法(第二课时)优秀教案

合集下载

数学八年级下册《 公式法》省优质课一等奖教案

数学八年级下册《 公式法》省优质课一等奖教案

《因式分解》教学设计4.3公式法(一)一、教材依据北师大版八年级数学下册第四章因式分解3.公式法(一)平方差公式二、设计思路1、从教材的地位与作用看:(1)本节课的主要内容是运用平方差公式进行因式分解。

(2)它是在学生学习了整式乘法和乘法公式以及实数的基础上,学习了提取公因式法分解因式的基础上,运用逆向思维把平方差公式逆过来,应用到特殊两项式的因式分解上。

(3)是对因式分解中出现的特殊两项式的归纳总结。

从一般到特殊的认识过程的范例。

(4)它在应用过程中的几种特殊形式是培养学生探索、合作、观察、分析和创新能力,以及深化逆向思维能力,数学应用意识和整体思想的很好载体。

2、从学生学习过程的角度看(1)学生七年级下半年学习了整式乘法和乘法公式,八年级上学期学习了实数。

具备了学习用平方差公式进行特殊两项式的因式分解的知识结构。

(2)由于学生初次学习用公式法因式分解,认清公式的结构和符号特征是难点,因此不宜延伸拔高太大(比如:公式中的字母a、b为复杂三项式、多次幂、以及无理数等),以防干扰学生的正常思维,造成对平方差公式因式分解的错误认识。

不能急于求成一步到位,指望把所有问题都在这一节课里解决。

要遵循循序渐进的原则,拔高内容可以作为有余力学生的研究题目。

(3)学生本课学习过程中出现的错误,迸发出的思维火花,情感等都是本节课较好的教学资源。

3、从学法和教法的角度看(1)本节课的教学方法涉及思路是要改变长期以来主宰课堂的“以教师讲为中心”的教法为“以学生的学为中心”的教学法,主要体现以学生自主、合作、探究为主的教学思想。

让学生真正成为课堂的主人。

(2)把竞争机制引入课堂,调动学生学习的积极性。

以小组为单位回答问题,做题都累计加分,开展竞赛活动,调动学生的积极性。

(3)让学生在亲自体验知识的发生发展过程中去学习知识。

掌握知识、从而达到不仅知其然还要知其所以然。

避免学生死记硬背套公式,一问“为什么这样做?”便不知所措。

因式分解公式法(二)

因式分解公式法(二)

因式分解公式法第2课时课题:3.3公式法(二) 课型:新授 备课人:唐思梁 教学目标: A 层、领会运用完全平方公式进行因式分解的方法,发展推理能力。

B 层、经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤。

C 层、培养良好的推理能力,体会“化归”与“换元”的思想方法,形成灵活的应用能力。

教学重点:理解完全平方公式因式分解,并学会应用。

教学难点: 灵活地应用公式法进行因式分解。

教学过程:一、自主学习1、写出完全平方公式。

2、阅读教材第65面的“动脑筋”。

3、你能利用公式将下面的式子分解因式吗?222xy y x ++ 227624- 222xy y x -+21x -4、利用完全平方公式,可以将某些多项式因式分解。

如221294ab a b -+= -2· · + =22(1)(1)x x -+--=( )( )=前²-后² = ( 前 + 后 )( 前 - 后 )=二、师生共探1、学习例5. 根据2222()ab a b a b -+=-来变形例5原式=前项²-2·前项·后项+后项²=(前项-后项)²=2212321(3)()2x x -∙∙+ = 21(3)2x - 2、根据 前项²-2·前项·后项 + 后项²=(前项-后项)²分解因式.m ²-8mn+16n ² 4a ²-12ab+9b ²3、根据 前项²+ 2·前项·后项 + 后项²=(前项+后项)²分解因式.25a ²+20ab+4b ² 36m ²+48mn+16n ²三、合作交流1、检验例6. -4x ²+12xy-9y ²首项为负,先提出负号 解:原式=-(4x ²-12xy+9y ²)前项²-2·前项·后项 + 后项² =-[(2x )²-2·2x ·3y +(3y) ²] 前项²-2·前项·后项 +后项²=(前项-后项)² =-(2x-3y )²2、检验例7. 4222b a a b ++ 变形 解:原式=(a ²)²+2a ²b+ b ²前项²+ 2·前项·后项 + 后项² =(a ²)² +2· a ²·b + b ² 前项²+ 2·前项·后项 + 后项²=(前项-后项)² =(a ²+b )²3、检验例8. 4221x x -+ 变形 解:原式=(x ²)²-2x ²+ 1前项²- 2·前项·后项 + 后项² =(x ²)² - 2·x ²·1 + 1 前项²- 2·前项·后项 + 后项²=(前项-后项)² =(x ²-1)²四、总结归纳在运用公式因式分解时,要注意:1、每个公式的形式与特点,通过对多项式的项数、•次数等的总体分析来确定,是否可以用公式分解以及用哪个公式分解,通常是,当多项式是二项式时,考虑用平方差公式分解;当多项式是三项时,应考虑用完全平方公式分解;2、•在有些情况下,多项式不一定能直接用公式,需要进行适当的组合、变形、代换后,再使用公式法分解;3、当多项式各项有公因式时,应该首先考虑提公因式,•然后再运用公式分解.五、课堂练习A 层、完成第66面习题A 组。

湘教版七年级数学下册 《公式法(第二课时)》精品教案

湘教版七年级数学下册 《公式法(第二课时)》精品教案

巩固提升
1.下列各式能用完全平方公式进行因式分解的是
()
A.x2+1 B.x2+2x-1
C.x2+x+1 D.x2+4x+4
答案:D
2.把 x2y-2y2x+y3 因式分解正确的是( )
A.y(x2-2xy+y2) B.x2y-y2(2x-y)
C.y(x-y)2
D.y(x+y)2
答案:C
学 生 自 主 解 通过这几道题目 答,教师讲解 来反馈学生对本
3.因式分解:mn2+6mn+9m= 答案: m(n+3)2
.
答案。
节所学知识的掌
握程度,落实基
础。学生刚刚接
4.已知正方形的面积是 9x2+6xy+y2(x>0,y>0),利
用因式分解,写出表示该正方形的边长的代数

.
触到新的知识需 要一个过程,也 就是对新知识从
答案: 3x+y 5、如图所示在一个边长为 a 的正方形木板上,锯掉 边长为 b 的四个小正方形,计算当 a=18dm,b=6dm 时 剩余部分的面积.
(1)x2y2+10xy+25.
流。
分解因式的综合
(2)(a+b)2-4(a+b)+4.
3.师生共同 运用以及分解因
总结:
结,达成共识。 式应进行到每一
用完全平方公式分解因式的要点:
个多项式因式不
1、先找平方项;平方项同号,确定 a,b 两数
能再分解为止的
2、再看中间项是否是 2ab
原则
例 3、把
因式分解

初中数学_因式分解——公式法(2)教学设计学情分析教材分析课后反思

初中数学_因式分解——公式法(2)教学设计学情分析教材分析课后反思

14.3 因式分解(第三课时)14.3.2 公式法(2)一、教学目标(一)学习目标1.掌握完全平方公式的特点.2.会运用完全平方公式因式分解.3.能熟练运用公式法和提公因式法分解因式.(二)学习重点掌握完全平方公式的特点,运用完全平方公式分解因式.(三)学习难点灵活运用公式分解分解因式.二、教学设计(一)课前设计1.自学反馈请同学们根据爱作业在线预习的情况组内交流,有困惑的地方组长帮忙解决。

公式法:把乘法公式的等号两边 互换位置 ,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫公式法. 如:利用平方差公式和完全平方公式分解因式都属于公式法.(二)课堂展示探究一 剖析完全平方公式活动1 剖析完全平方公式问题 :我们将形如222a ab b ++和222a ab b -+的式子叫完全平方式.完全平方式有哪些特点呢?学生思考后分小组讨论,再归纳总结:完全平方式的特点是:①完全平方式是一个二次三项式;②首末两项是两个数(或整式)的 平方,而且符号相同,中间相是这两个数(或整式)的积的2倍 ,符号正负均可. 口诀:首平方,末平方,首末积的2倍中间放.追问:平方差公式中的a 、b 可代表多项式,类似地,完全平方公式中的a 、b 是否也可以代表一个多项式呢?【设计意图】类比平方差公式分解因式的学习过程,剖析完全平方式的特点,为熟练运用完全平方公式分解因式奠定基础.●活动2 辨析完全平方公式问题 :下列多项式中,哪些是完全平方式?若是完全平方式,请指出谁相当于公式中的a 、b .(1)224129x xy y ++ ;(2)244x x -++ ;(3)2269x xy y -+- ;(4)221x x +- 学生独立思考后,集体订正.【设计意图】通过辨析完全平方式,为运用完全平方式分解因式作准备.尤其是对于(2)、(3)这种形式的完全平方式,学生辨析较困难,关键是掌握:完全平方式首末两项是两个数(或整式)的平方,而且符号相同,各项的位置是可以调换的,为本节课突破难点奠定基础.探究二 直接运用完全平方公式因式分解●活动1 公式中的a 、b 代表单项式的因式分解例1 分解因式:(1)216249x x ++ ;(2)2244x xy y -+- 【知识点】运用完全平方公式分解因式【解题过程】解:(1)222216249(4)2433(43)x x x x x ++=++=+;(2)222222244(44)22(2)(2)x xy y x xy y x x y y x y ⎡⎤-+-=--+=--+=--⎣⎦ 【思路点拨】(1)先将原多项式变形为22(4)2433x x ++,认清谁是公式中的a 、b ,再进行因式分解 ;(2)可将负号提出是本题的关键,变形为2222(44)22(2)x xy y x x y y ⎡⎤--+=--+⎣⎦,再因式分解. 【答案】 (1)2(43)x +;(2)2(2)x y --.练习:因式分解(1)2242025x xy y -+ (2)221294xy x y -- 【知识点】运用完全平方公式分解因式【解题过程】解:(1)2222242025(2)225(5)(25)x xy y x x y y x y -+=-+=-;(2)22222221294(9124)(3)232(2)(32)xy x y x xy y x x y y x y ⎡⎤--=--+=--+=--⎣⎦【思路点拨】(1)先将原多项式变形为22(2)225(5)x x y y -+,辨析公式中的a 、b ,再进行因式分解 ;(2)将负号提出是本题的关键,变形为22(3)232(2)x x y y ⎡⎤--+⎣⎦,再因式分解.【答案】 (1)2(25)x y -;(2)2(32)x y --.●活动2 公式中的a 、b 代表多项式的因式分解例2 分解因式:(1)2()12()36a b a b +-++ ;(2)22()4()4m n m m n m +-++ . 【知识点】运用完全平方公式分解因式【数学思想】整体思想【解题过程】解:(1)2222()12()36()2()66(6)a b a b a b a b a b +-++=+-++=+-;(2)222222()4()4()2()2(2)(2)()m n m m n m m n m n m m m n m n m +-++=+-++=+-=-.【思路点拨】此类题的关键是整体思想的运用,(1)中将a+b 看成一个整体,设a+b =m ,则原多项式就化为21236m m -+ ,可用完全平方公式分解因式;(2)类似,注意分解后有同类项还需合并同类项.【答案】 (1)2(6)a b +-;(2)2()n m -.练习:因式分解(1)222()()a a b c b c -+++ ;(2)2222(1)4(1)4x x x x ++++【知识点】运用完全平方公式分解因式【数学思想】整体思想【解题过程】解:(1)[]22222()()()()a a b c b c a b c a b c -+++=-+=--; (2)22222222224(1)4(1)4(1)2(21)(1)(1)x x x x x x x x x x ⎡⎤⎡⎤++++=++=++=+=+⎣⎦⎣⎦. 【思路点拨】解此类题的关键是整体思想的运用,(1)中将b+c 看成一个整体,设b+c =m ,则原多项式就化为222a am m -+ ,可用完全平方公式分解因式;(2)类似,注意分解后还需继续利用完全平方公式分解彻底.【答案】 (1)2()a b c --;(2)4(1)x +.探究三 综合应用●活动1例3 分解因式: 22363ax axy ay ++ ;【知识点】运用提公因式法、公式法分解因式【解题过程】解:222223633(2)3()ax axy ay a x xy y a x y ++=++=+;3. 课堂总结知识梳理(学生自己总结梳理)(1)完全平方式:形如222a ab b ++和222a ab b -+的式子叫完全平方式.(2)用完全平方公式分解因式:文字语言:两个数的平方和加上或减去这两个数的积的2倍,等于这两个数的和(或差)的平方.符号语言:2222()a ab b a b ++=+;2222()a ab b a b -+=-.(3)公式法:把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫公式法. 如:利用平方差公式和完全平方公式分解因式都属于公式法.重难点归纳(1)完全平方公式使用的条件是:①多项式是一个二次三项式;②首末两项是两个数(或整式)的平方,而且符号相同,中间项是这两个数(或整式)的积2倍,符号正负均可.(2)分解因式的一般步骤:一提,二套,三检查①观察多项式的各项是否有公因式,若有,应先提公因式;②再观察多项式是否可以用平方差公式或完全平方公式进行分解因式;③检查每个多项式是否分解彻底,每个多项式都不能分解时,分解因式就结束了.(3)有时多项式既不能提公因式,也不能运用平方差或完全平方公式分解,则需根据多项式的特点作适当变形后再进行因式分解.(三)课后作业基础型 自主突破1.下列多项式是完全平方式的是( )A .244a a --B .23216a a -+C .224a a ++D .2816a a -+2.已知224x mx -+ 是完全平方式,则m 的值为( )A .1B .2C .±1D .±23. 计算x =156,y =144,则221122x xy y ++ 的值是( ) A .150 B .450 C .45000 D .900004.分解因式2(1)2(1)1a a ---+ 的结果是( )A .(1)(2)a a --B .2(1)a -C .2(1)a +D .2(2)a -5. 计算:222172173417-⨯+ =_____________.能力型 师生共研7. 若224222()8()160x y x y +-++= ,则22x y + 的值为( ).A .4B .2C .± 2D .± 48. 已知△ABC 三边a 、b 、c 满足等式2220a ab b bc c ac -+-+-=,则△ABC 是 三角形.学情分析两班共有学生110人,两班中绝大部分同学都能跟上现有的进度,上课发言积极,部分同学表现的比较出色,但也有个别同学的理解能力和接受能力不尽人意。

北师大版本八年级数学下第四章因式分解全章教案(可编辑修改word版)

北师大版本八年级数学下第四章因式分解全章教案(可编辑修改word版)

北师大版本八年级数学下第四章因式分解全章教案1 因式分解【知识与技能】使学生了解因式分解的意义,理解因式分解的概念;通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力.【过程与方法】认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能利用这种关系寻求因式分解的方法;通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识.【情感态度】培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度.【教学重点】因式分解的概念.【教学难点】难点是理解因式分解与整式乘法的相互关系,并利用它们之间的相互关系寻求因式分解的方法.一.情景导入,初步认知下题简便运算怎样进行?问题1:736×95+736×5问题2:-2.67× 132+25×2.67+7×2.67【教学说明】对乘法公式进行分析,为因式分解作铺垫.二.思考探究,获取新知问题:(1)993-99 能被99 整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。

993-99 = 99×992-99 = 99(992-1)∴993-99 能被99 整除.(2)993-99 能被100 整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。

小明是这样做的:993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99- 1)= 99×98×100所以993-99 能被100 整除.想一想:(1)在回答993-99 能否被100 整除时,小明是怎么做的?(2)请你说明小明每一步的依据.(3)993-99 还能被哪些正整数整除?为了回答这个问题,你该怎做?【教学说明】老师点拨:回答这个问题的关键是把993-99 化成了怎样的形式?【归纳结论】以上三个问题解决的关键是把一个数式化成了几个数的积的形式.可以了解:993-99 可以被98、99、100 三个连续整数整除.将99 换成其他任意一个大于 1 的整数,上述结论仍然成立吗?学生探究发现:用a 表示任意一个大于1 的整数,则:a3-a=a×a2-a=a×(a2-1)=a ×(a+1)(a-1)=(a-1)×a×(a+1)① 能理解吗?你能与同伴交流每一步怎么变形的吗?② 这样变形是为了达到什么样的目的?【教学说明】经历从分解因数到分解因式的类比过程,探究概念本质属性.【归纳结论】把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式.三.运用新知,深化理解1.下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.答案:(2)(3)是因式分解.2.试将下列各式化成几个整式的积的形式(1)3x2-2x= - (2)m2-4n2 =答案:(1)x(3x-2) (2)(m+2n)(m-2n)3.分解因式.4m2-4m= 2a3+2a= y2+4y+4=答案:4m(m-1) 2a(a2+1) (y+2)2 4.如果a+b=10,ab=21,则a2b+ab2 的值为.答案:210.5.如果a-3b=-3,那么5-a+3b 的值是()A.0B.2C.5D.8答案:D.6.9993-999 能被998 整除吗?能被1000 整除吗?解:9993-999=999(9992-1)=999(999+1)(999-1)=999×1000×998 所以9993- 999 能被998 整除,能被1000 整除。

《因式分解法(第2课时)选择合适的方法解一元二次方程 word版 公开课一等奖教案

《因式分解法(第2课时)选择合适的方法解一元二次方程 word版 公开课一等奖教案

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料.这些资料因为用的比拟少,所以在全网范围内,都不易被找到.您看到的资料,制作于2021年,是根据最|新版课本编辑而成.我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品.本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最|终形成了本作品.本作品为珍贵资源,如果您现在不用,请您收藏一下吧.因为下次再搜索到我的时机不多哦!一元二次方程的解法因式分解法第2课时选择适宜的方法解一元二次方程教学目标能掌握解一元二次方程的四种方法以及各种解法的要点 ,会根据不同的方程特点选用恰当的方法,使解题过程简单合理,通过揭示各种解法的本质联系,渗透降次化归的思想方法 .重难点关键1. 重点:会根据不同的方程特点选用恰当的方法,使解题过程简单合理 .2. 难点:通过揭示各种解法的本质联系,渗透降次化归的思想 .教学过程一、用不同的方法解一元二次方程3x2 -5x -2 =0(配方法,公式法,因式分解法)教师点评:三种不同的解法表达了同样的解题思路:把一元二次方程"降次"转化为一元一次方程求解 .二、把以下方程的最|简洁解法选填在括号内 .(A)直接开平方法 (B) 配方法 (C) 公式法 (D)因式分解法(1)7x -3 =2x2 ( )(2)4(9x -1)2 =25 ( )(3)(x +2)(x -1) =20 ( )(4) 4x2 +7x =2 ( )(5) x2 +2x -4 =0 ( )小结:一元二次方程解法的选择顺序一般为因式分解法、公式法,假设没有特殊说明一般不采用配方法 .其中,公式法是一般方法,适用于解所有的一元二次方程,因式分解法是特殊方法,在解符合方程左边易因式分解,右边为0的特点的一元二次方程时,非常简便 .三、将以下方程化成一般形式,再选择恰当的方法求解 .(1)3x2 =x +4(2)(2x +1)(4x -2) =(2x -1)2 +2(3)(x +3)(x -4) =6(x +1)2 -2(x -1)2说明:将一元二次方程化成一般形式不仅是解一元二次方程的根本技能,而且能为解法的选择提供根底 .四、阅读材料,解答问题:材料:为解方程(x2 -1)2 -5(x2 -1) +4 =0,我们可以视(x2 -1)为一个整体,然后设x2 -1 =y,原方程可化为y2 -5y +4 =0 ,解得y1 =1,y2 =4 .当y1 =1时,x2 -1 =1即x2 =2,x =±√2 .当y2 =4时,x2 -1 =4即x2 =5, x =±√5 .原方程的解为x1 =√2 ,x2 = -√2 ,x3 =√5, x4 = -√5解答问题:(1)填空:在由原方程得到y2 -5y +4 =0的过程中利用_______法,到达了降次的目的,表达_______的数学思想 .(2)解方程x4 -x2 -6 =0五、小结(1)说说你对解一元一次方程、二元一次方程组、一元二次方程的认识 (消元、降次、化归的思想)(2)三种方法(配方法、公式法、因式分解法)的联系与区别:联系:①降次,即它的解题的根本思想是:将二次方程化为一次方程,即降次.②公式法是由配方法推导而得到.③配方法、公式法适用于所有一元二次方程,因式分解法适用于某些一元二次方程.区别:①配方法要先配方,再开方求根.②公式法直接利用公式求根.③因式分解法要使方程一边为两个一次因式相乘,另一边为0,•再分别使各一次因式等于0.六、作业:本课教学反思本节课主要采用过程教案法训练学生的听说读写.过程教案法的理论根底是交际理论,认为写作的过程实质上是一种群体间的交际活动,而不是写作者的个人行为.它包括写前阶段,写作阶段和写后修改编辑阶段.在此过程中,教师是教练,及时给予学生指导,更正其错误,帮助学生完成写作各阶段任务.课堂是写作车间, 学生与教师, 学生与学生彼此交流, 提出反应或修改意见, 学生不断进行写作, 修改和再写作.在应用过程教案法对学生进行写作训练时, 学生从没有想法到有想法, 从不会构思到会构思, 从不会修改到会修改, 这一过程有利于培养学生的写作能力和自主学习能力.学生由于能得到教师的及时帮助和指导,所以,即使是英语根底薄弱的同学,也能在这样的环境下,写出较好的作文来,从而提高了学生写作兴趣,增强了写作的自信心.这个话题很容易引起学生的共鸣,比拟贴近生活,能激发学生的兴趣, 在教授知识的同时,应注意将本单元情感目标融入其中,即保持乐观积极的生活态度,同时要珍惜生活的点点滴滴.在教授语法时,应注重通过例句的讲解让语法概念深入人心,因直接引语和间接引语的概念相当于一个简单的定语从句,一个清晰的脉络能为后续学习打下根底.此教案设计为一个课时,主要将安妮的处境以及她的精神做一个简要概括,下一个课时那么对语法知识进行讲解.在此教案过程中,应注重培养学生的自学能力,通过辅导学生掌握一套科学的学习方法,才能使学生的学习积极性进一步提高.再者,培养学生的学习兴趣,增强教案效果,才能防止在以后的学习中产生两极分化.在教案中任然存在的问题是,学生在"说〞英语这个环节还有待提高,大局部学生都不愿意开口朗读课文,所以复述课文便尚有难度,对于这一局部学生的学习成绩的提高还有待研究.。

册亨县四中八年级数学下册第四章因式分解3公式法第2课时用完全平方公式进行因式分解教案新版北师大版

册亨县四中八年级数学下册第四章因式分解3公式法第2课时用完全平方公式进行因式分解教案新版北师大版
14.2 乘法公式
教学目标
1.知识与技能
会推导平方差公式,并且懂得运用平方差公式进行简单计算.
2.过程与方法
经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.
3.情感、态度与价值观
通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性.
学生通过讨论、交流可以得出,等腰三角形底边上的中线的左右两部分经翻折可以重合,等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上的高)所在的直线就是它的对称轴.
最后教师拓展补充等腰三角形还有以下性质:(1)等腰三角形两腰上的中线、高线相等.(2)等腰三角形两个底角的平分线相等.(3)等腰三角形底边上任一点到两腰的距离之和等于一腰上的高.
等腰三角形的性质的证明.
多媒体课件、剪刀、尺子
教师出示一些几何图形,包括圆、长方形、正方形、等腰梯形、一般三角形、等腰三角形、等边三角形等.
让学生抢答哪些是轴对称图形,并且提问什么是轴对称图形,什么样的三角形才是轴对称图形.
教师引入:我们知道,有两条边相等的三角形是等腰三角形,下面我们利用轴对称的知识来研究等腰三角形.(板书课题)
解 : 4x2+8x+11=〔2x+2〕2+7
∵〔2x+2〕2+7≥0∴无论x取何值,这个代数式的值都是正值
[教学说明]
在综合应用提公因式法和公式法分解因式时,一般按以下两步完成 :
〔1〕有公因式 , 先提公因式 ;
〔2〕再用公式法进行因式分解.
四.师生互动,课堂小结
从今天的课程中 , 你学到了哪些知识 ? 掌握了哪些方式 ?你认为分解因式中的平方差公式以及完全平方公式与乘法公式有什么关系 ?

《公式法》因式分解PPT课件(第2课时)

《公式法》因式分解PPT课件(第2课时)

B. + −
C. − +
D. − + +
D

课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考


(2020•眉山)已知 + = − − ,则 −
. 4

的值为


解析:由 +

+






= − − ,
− + + = ,


即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章因式分解
3.公式法(二)
一、学生起点分析
学生的知识技能基础:学生在七年级下册第一章中已经学习过完全平方公式,将其逆用就是本节课所涉及的主体知识.对于公式逆用,学生已经不是第一次接触了,在上一节课中学生已经经历过将平方差公式逆用的过程,应该说是比较熟悉的。

学生活动经验基础:通过上节课的学习,学生积累了一定的学习经验。

本节课的学习模式与前者基本相同:公式倒用,分析公式的结构特征,整体思想换元进行分解因式以及要求分解彻底。

这些活动方法是学生非常熟悉的观察、对比、讨论等方法,学生有较好的活动经验.
二、教学任务分析
学生在学习了用平方差公式进行因式分解的基础上,本节课又安排了用完全平方公式进行因式分解,旨在让学生能熟练地应对各种形式的多项式的因式分解,为下一章分式的运算以及今后的方程、函数等知识的学习奠定一个良好的基础。

本节课的具体教学目标为:
1.知识与技能:使学生了解运用公式法分解因式的意义;会用公式法(直接用公式不超过两次)分解因式(指数是正整数);使学生清楚地知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式或完全平方公式进行分解因式.
2.过程与方法:经历通过整式乘法的完全平方公式逆向得出运用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力。

3.情感与态度:培养学生灵活的运用知识的能力和积极思考的良好行为,体会因式分解在数学学科中的地位和价值。

三、教学过程分析
本节课设计了七个教学环节:复习回顾——学习新知——落实基础——范例学习——随堂练习——自主小结——作业布置.
第一环节 复习回顾
活动内容:
活动目的:回顾完全平方公式,直入主题将完全平方公式倒置得新的分解因式方法.
注意事项:在上一课时平方差公式倒置学习的基础上,学生比较容易理解和接受此课时的学习铺垫内容.
第二环节 学习新知
活动内容:
活动目的:总结归纳完全平方公式的基本特征,讲授新知形如222b ab a +±的多项式称为完全平方式.
注意事项:举例说明便于学生理解.同时归纳总结,由分解因式与整式乘法的互
逆关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

第三环节 落实基础
活动内容:
1.判别下列各式是不是完全平方式.
2.请补上一项,使下列多项式成为完全平方式.
结论:找完全平方式可以紧扣下列口诀:首平方、尾平方,首尾相乘两倍在中央;
完全平方式可以进行因式分解,
a 2–2a
b +b 2=(a –b )2 a 2+2ab +b 2=(a+b )2
活动目的:加深学生对完全平方式特征的理解,为后面的分解因式做能力铺垫. 注意事项:由于有了七年级的整式乘法的学习基础,同时对照口诀,大多数学生能顺利识别完全平方式,但少部分同学由于对完全平方公式的特征的理解模糊,不能很好地掌握完全平方公式,这需要老师更加耐心地引导和启发. 第四环节 范例学习
活动内容:
例1.把下列各式因式分解:
活动目的:(1)培养学生对平方差公式的应用能力;
(2)让学生理解在完全平方公式中的a 与b 不仅可以表示单项式,也
2222222222(1)(2)2(3)2(4)2(5)2x y x xy y x xy y x xy y x xy y +++-++--+-;;;;.
()()()()()22222222421_____249______3_____414_____4
52_____x y a b x y a b x x y ++++-+++++;;;;.
229124)2(b ab a +-49
14)1(2++x x 9)(6))(3(2++-+n m n m 2
2)())(2(2)2)(4(n m n m m n n m +++---
可以表示多项式.
注意事项:灵活掌握完全平方式的特征成为运用公式法进行分解因式的关键,在运用整体法时,注意去括号后的符号变化和系数变化。

活动内容:
例2.把下列各式因式分解:
活动目的:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,使学生清楚地了解提公因式法(包括提取负号)是分解因式首先考虑的方法,再考虑用完全平方公式分解因式.
注意事项:在综合应用提公因式法和公式法分解因式时,一般按以下两步完成:
(1)有公因式,先提公因式;(2)再用公式法进行因式分解.
第五环节 随堂练习
活动内容:
1.判别下列各式是不是完全平方式,若是说出相应的a 、b 各表示什么?
2、把下列各式因式分解:
(1)m 2–12mn +36n 2 (2)16a 4+24a 2b 2+9b 4
(3)–2xy –x 2–y 2 (4)4–12(x –y )+9(x –y )2
活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的特征是否清楚,对完全平方公式分解因式的运用是否得当,因式分解的步骤是否真正了解,以便教师能及时地进行查缺补漏.
注意事项:当完全平方公式中的a 与b 表示两个或两个以上字母时,学生运用起来有一定的困难,此时,教师应结合完全平方公式的特征给学生以有效的学法指导.
xy
y x 44)2(22+--22363)1(ay axy ax ++22222
22(1)69(2)14(3)24(4)441(5)14(6)4129x x a x x x x m m y xy x -++-++-+--+;
;;;
;.
第六环节自主小结
活动内容:从今天的课程中,你学到了哪些知识?掌握了哪些方法?你认为分解因式中的平方差公式以及完全平方公式与乘法公式有什么关系?
结论:由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.
活动目的:通过学生的回顾与反思,强化学生对整式乘法的完全平方公式与因式分解的完全平方公式的互逆关系的理解,发展学生的观察能力和逆向思维能力,加深对类比数学思想的理解.
注意事项:学生认识到了以下事实:
第七环节作业布置
P103 习题4.5:第1题,第2题
四、教学设计反思
本节课我们学习了运用公式法分解因式的第二种方法,即逆用完全平方公式分解因式的方法,使用该方法的关键就是观察完全平方式的结构特征:两数的平方和与这两个数的乘积的2倍,具体应用时要特别关注第二项的符号。

把一个多项式进行因式分解的一般方法是:先看有无公因式可提取,然后再尝试用公式法分解因式,直到最终结果再也不能分解因式为止。

运算类型的课往往比较枯燥,学生容易产生浮躁的心理,不利于知识的掌握与运算能力的提高。

本节课的设计尽量做了平实无华,将新知教学层层深入,适当的巩固练习,每一个环节让学生感觉不吃力。

同时设计过程中注意题型的变化,引导学生暴露学习中的问题,这样易于激发学生的兴趣,使学生的思维不断被拓展,从而达到强化所学知识和提高能力的目的。

相关文档
最新文档