2.4 再探实际问题与一元一次方程2+
第13讲 实际问题与一元一次方程(2) (原卷版)

第13讲实际问题与一元一次方程〔2〕一、知识梳理工程问题:工作量=工效·工时工时工作量工效=工效工作量工时=. 【例1】某制造工厂方案假设干天完成一批玩具的订货任务,如果每天生产玩具20个,那么就比订货任务少生成100个;如果每天生产玩具23个,那么就可超过订货任务20个,求原方案几天完成任务?【变式训练1】.现有120台大小两种型号的挖掘机同时工作,大型挖掘机每小时可挖掘土方360立方米,小型挖掘机每小时可挖掘土方200立方米,20小时共挖掘土方704000立方米,求大小型号的挖掘机各多少台?【例2】.整理一批图书,由一个人做需要120h 完成,先方案由一局部人先做12h ,然后再增加5人与他们一起做8个小时,完成这项工作.假设这些人的工作效率相同,具体应该先安排多少人工作?【变式训练2】.一项工程,甲队单独施工需要15天完成,乙队单独施工需要9天完成.现在由甲队先工作3天,剩下的由甲、乙两队合作,还需要几天才能完成任务?【例3】.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?【变式训练3】.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有40名工人,每人每天可以生产1000个口罩面或1200根耳绳.一个口罩面需要配两根耳绳,为使每天生产的口罩面与耳绳刚好配套,应安排多少名工人生产口罩面?二、课堂训练1.某车间生产一种零件,该零件由甲乙两种配件组成,现有7名工人,每人每天可制作甲配件900个或者乙配件1200个.应怎样安排人力,才能使每天制作的甲乙配件的个数相等?2.一项工程,甲队单独完成需要40天,乙队单独完成需要50天,现甲队单独做4天后两队合作. 〔1〕求甲、乙两队合作多少天才能完成该工程.〔2〕在〔1〕的条件下,甲队每天的施工费为3000元,乙队每天的施工费为3500元,求完成此项工程需付给甲乙两队共多少元.3.“机器人〞的研发和运用,有效地节省了劳动力.某制造“机器人〞的车间有28名工人,每人每天可以生产“机器人〞的机壳500个或机脚800个.1个机壳需要配4个机脚,为使每天生产的机壳和机脚刚好配套.应安排生产机壳和机脚的工人各多少名?三、课后稳固1.中国宝武马鞍山钢铁集团第二炼铁厂接到一批原料加工任务425吨,现打算调用甲、乙两条生产线完成.甲生产线平均每天比乙生产线多加工5吨.假设甲生产线独立加工20天后,乙生产线参加,两条生产线又联合加工5天,刚好全部加工完毕.甲生产线加工一吨需用电40度,乙生产线加工一吨需用电25度.求完成这批加工任务需用电多少度?2.为打造运河风光带,现有一段河道治理任务由A、B两个工程队完成.A工程队单独治理该河道需16天完成,B 工程队单独治理该河道需24天完成,现在A工程队单独做6天后,B工程队参加合作完成剩下的工程,问B工程队工作了多少天?3.某车间有84名工人,每人每天可以生产16个大齿轮或10个小齿轮,1个大齿轮和2个小齿轮配成一套,为使每天生产的大齿轮和小齿轮刚好配套,应安排生产大齿轮和小齿轮的工人各多少名?一共可以配成多少套?。
人教版数学七年级上册《实际问题与一元一次方程》(第2课时)

人教版数学七年级上册
生动有趣的课程,搭配各个互动环节助理您教学成功
感谢所有辛勤付出的人民教师
前言
学习目标
1.会通过列方程解决 “销售盈亏问题”; 2.掌握列方程解决实际问题的一般步骤; 3.理解销售问题中的有关概念及相关数量关系.
重点难点
重点:建立模型解决实际问题的一般方法。 难点:列方程解决 “销售盈亏问题”
利润=售价-成本=120-128=-8(元)
(1 - 0.25) y = 60 y-0.25y=60 0.75y=60 y=80
亏损
用方程解决实际问题的步骤
审:理解并找出实际问题中的等量关系; 设:用代数式表示实际问题中的基础数据; 列:找到所列代数式中的等量关系,以此为依据列出方程; 解:求解; 验:考虑求出的解是否具有实际意义; 答:实际问题的答案.
若盈利利润率为正,若亏损利润率为负。
如何判断盈亏
盈利 亏损 不盈不亏
售价- 进价> 0 售价- 进价< 0 售价- 进价= 0
情景思考(销售盈亏问题)
一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25% ,另一件亏损25% , 卖这两件衣服总的是盈利还是亏损或是不盈不亏?
分析:
【解题关键】先大体估算盈亏,在通过准确计算.
售,为了吸引顾客进行打折出售,售后核算仍可获利20%,则折扣为( )
A.九折
B.八五折
C.八折
D.七五折
课堂测试
合并同类项法则
系数化为1
等式性质2
不要漏
不要漏
1)移动 不
2)注意 1)
2)字母
解的分子
情景引入
人教版初中数学目录(新课标)

初中人教版数学目录作者:沙纳盛七年级上--------------------------------第一章有理数1.1 正数和负数1.2 有理数1.3 有理数的加减法1.4 有理数的乘除法1.5 有理数的乘方数学活动小结复习题1第二章一元一次方程2.1 从算式到方程2.2 从古老的代数说起──一元一次方程的讨论(一)2.3 从“买布问题”说起──一元一次方程的讨论(二)2.4 再探实际问题与一元一次方程数学活动小结复习题2第三章图形认识初步3.1 多姿多彩的图形3.2 直线、射线、线段3.3 角的度量3.4 角的比较与运算数学活动小结复习题3第四章数据的收集与整理4.1 喜爱哪种动物的同学最多──全面调查举例4.2 调查中小学生的视力情况──抽样调查举例4.3 课题学习调查“你怎样处理废电池?”数学活动小结复习题4 七年级下---------------------------------第五章相交线与平行线5.1 相交线5.2 平行线5.3 平行线的性质5.4 平移数学活动小结复习题5第六章平面直角坐标系6.1 平面直角坐标系6.2 坐标方法的简单应用数学活动小结复习题6第七章三角形7.1 与三角形有关的线段7.2 与三角形有关的角7.3 多边形及其内角和7.4 课题学习镶嵌数学活动小结复习题7第八章二元一次方程组8.1 二元一次方程组8.2 消元8.3 再探实际问题与二元一次方程组数学活动小结复习题8第九章不等式与不等式组9.1 不等式9.2 实际问题与一元一次不等式9.3 一元一次不等式组9.4 课题学习利用不等关系分析比赛数学活动小结复习题9第十章实数10.1 平方根10.2 立方根10.3 实数数学活动小结复习题10八年级上---------------------------------第十一章一次函数11.1变量与函数信息技术应用用计算机画函数图象11.2一次函数阅读与思考科学家如何测算地球的年龄11.3用函数观点看方程(组)与不等式数学活动小结复习题11第十二章数据的描述12.1几种常见的统计图象12.2用图表描述数据信息技术应用利用计算机画统计图阅读与思考作者可能是谁12.3课题学习从数据谈节水数学活动小结复习题12第十三章全等三角形13.1全等三角形13.2三角形全等的条件阅读与思考为什么要证明13.3角的平分线的性质数学活动小结复习题13第十四章轴对称14.1轴对称14.2轴对称变换信息技术应用探索轴对称的性质14.3等腰三角形实验与探究三角形中边与角之间的不等关系数学活动小结复习题14第十五章整式15.1整式的加减15.2整式的乘法15.3乘法公式阅读与思考杨辉三角15.4整式的除法15.5因式分解观察与猜想x2+(p+q)x+pq型式子的因式分解数学活动小结复习题15八年级下--------------------------------第十六章分式16.1分式16.2分式的运算阅读与思考容器中的水能倒完吗16.3分式方程数学活动小结复习题16第十七章反比例函数17.1反比例函数信息技术应用探索反比例函数的性质17.2实际问题与反比例函数阅读与思考生活中的反比例关系数学活动小结复习题17第十八章勾股定理18.1勾股定理阅读与思考勾股定理的证明18.2勾股定理的逆定理数学活动小结复习题18第十九章四边形19.1平行四边形阅读与思考平行四边形法则19.2特殊的平行四边形实验与探索巧拼正方形19.3梯形观察与猜想平面直角坐标系中的特殊四边形19.4课题学习重心…数学活动小结复习题19第二十章数据的分析20.1数据的代表20.2数据的活动信息技术应用用计算机求几种统计量阅读与思考数据波动的几种度量20.3课题学习体质健康测试中的数据分析数学活动小结复习题20九年级上--------------------------------第二十一章二次根式21.1二次根式21.2二次根式的乘除21.3次根式的加减阅读与思考海伦──秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1一元二次方程22.2降次──解一元二次方程阅读与思考黄金分割数22.3实际问题与一元二次方程观察与猜想发现一元二次方程根与系数的关系数学活动小结复习题22第二十三章旋转23.1图形的旋转23.2中心对称信息技术应用探索旋转性质23.3课题学习图案设计数学活动小结复习题23第二十四章圆24.1圆24.2与圆有关的位置关系24.3正多边形和圆阅读与思考圆周率π24.4弧长和扇形面积实验与探究设计跑道数学活动小结复习题24第二十五章概率初步25.1概率25.2用列举法求概率阅读与思考概率与中奖25.3利用频率估计概率阅读与思考布丰投针实验25.4课题学习键盘上字母的排列规律数学活动小结复习题25九年级下--------------------------------第二十六章二次函数26.1二次函数实验与探究推测植物的生长与温度的关系26.2用函数观点看一元二次方程信息技术应用探索二次函数的性质26.3实际问题与二次函数数学活动小结复习题26第二七章相似27.1图形的相似27.2相似三角形观察与猜想奇妙的分形图形27.3位似信息技术应用探索位似的性质数学活动小结复习题27第二十八章锐角三角函数28.1锐角三角函数阅读与思考一张古老的三角函数表28.2解直角三角形数学活动小结复习题28第二十九章投影与视图29.1投影29.2三视图阅读与思考视图的产生与应用29.3课题学习制作立体模型数学活动小结复习题29。
初一数学一元一次方程知识点归纳总结

2.1从算式到方程
2.1.1一元一次方程
含有未知数的等式叫做方程。
只含有一个未知数(元),未知数的指数都是1(次),这样的方程叫做一元一次
方程。
分析实际问题中的数量关系,利用其中的相等关系列出方程,是数学解决实际问题的一种方法。
解方程就是求出使方程中等号左右两边相等的未知数的'值,这个值就是方程
的解。
2.1.2等式的性质
等式的性质1 等式两边加(或减)同一个数(或式子),结果仍相等。
等式的性质2 等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2从古老的代数书说起--一元一次方程的讨论⑴
把等式一边的某项变号后移到另一边,叫做移项。
2.3从买布问题说起--一元一次方程的讨论⑵
方程中有带括号的式子时,去括号的方法与有理数运算中括号类似。
解方程就是要求出其中的未知数(例如x),通过去分母、去括号、移项、合并、系数化为1等步骤,就可以使一元一次方程逐步向着x=a的形式转化,这个过程
主要依据等式的性质和运算律等。
去分母:
⑴具体做法:方程两边都乘各分母的最小公倍数
⑵依据:等式性质2
⑶注意事项:①分子打上括号
②不含分母的项也要乘
2.4再探实际问题与一元一次方程。
2.4再探一元一次方程与实际问题(一)

练一练
2.“衣衣不舍”时装店老板在另一次买卖中,同 时以135元的价格卖出两件上衣,,其中一件盈利25 %,另一件亏本10%,商家在这次买卖是盈了或是 亏了,还是不盈不亏?
想一想
“衣衣时装店”老板去进货,某种衣服的批发价 每件为100元, (批发件数不得小于10件),厂家推 出两种优惠批发方法. (1) “十件按原价,其余按原价的8.5折优惠”; (2)“全部按原价的8.9 折优惠”.
假如你是老板,你会选择哪种优惠方法?
点滴收获
实际问题
设未知数,列方程
数学问题 (一元一次方程)
解方程
实际问题 的答案
检验
数学问题的解
再 见
销售情景
例题小结
“衣衣不舍”时装店,老板以60元 的同样价格卖了两件衣服,其中一件盈 利25%,另一件亏损25%.商家在这次 买卖是盈了或是亏了,还是不盈不亏?
售价
利润=售价-进价
与
列方程 解方程
进价
利润=进价×利润率
实际问题的解
ห้องสมุดไป่ตู้
练一练
1.“衣衣不舍”时装店老板在一次买卖中,同时卖出 两件上衣,每件都是135元,若按成本计算,其中一 件盈利25%,另一件亏本25%,则在这次买卖中他 是盈了或是亏了,还是不盈不亏?
盈或亏跟什么有关系?
售价 与 进价
当售价 大于 进价时 盈利 当售价 小于 进价时 亏损 当售价 等于 进价时 不盈不亏
某服装店老板将一件进价是100元 的衣服, 卖了为120元. (1)这位老板在这次买卖中有利润吗? 20 = 120 - 100
利润 售价 进价 利润=售价-进价
(2)利润占进价的百分之几? 20 20% = 100 ×100%
2023最新-《一元一次方程与实际问题》教学设计【优秀3篇】

《一元一次方程与实际问题》教学设计【优秀3篇】在教学工作者实际的教学活动中,通常会被要求编写教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
我们该怎么去写教学设计呢?问渠那得清如许,为有源头活水来,以下是漂亮的编辑帮大家整理的《一元一次方程与实际问题》教学设计【优秀3篇】,欢迎借鉴,希望大家能够喜欢。
实际问题与一元一次方程教学设计篇一【教学目标】1、进一步掌握列一元一次方程解应用题的方法步骤.2、通过分析工作量中的相等关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.3、培养学生自主探究和合作交流的意识和能力,体会数学的应用价值.【教学重点】会运用一元一次方程解决工程问题。
【教学难点】分析工作量中的相等关系,进一步经历运用方程解决实际问题的过程,体会方程模型的作用.【教学过程】一、复习导入1、一件工作,甲单独做20小时完成,乙单独做12小时完成。
那么两人合作多少小时完成?思考:(1)两人合作32小时完成对吗?为什么?(2)甲每小时完成全部工作的;乙每小时完成全部工作的;甲x小时完成全部工作的;乙x小时完成全部工作的。
2、整理一块地,由一个人做要80小时完成。
那么4个人做需要多少小时完成?分析:一个人做1小时完成的工作量是;一个人做x小时完成的工作量是;4个人做x小时完成的工作量是。
3、一项工作,12个人4个小时才能完成。
若这项工作由8个人来做,要多少小时才能完成呢?(1)人均效率(一个人做一小时的工作量)是。
(2)这项工作由8人来做,x小时完成的工作量是。
总结:一个工作由m个人n小时完成,那么人均效率是。
二、合作探究例1整理一批图书,由一个人做要40小时完成。
现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体应先安排多少人工作分析:这里可以把工作总量看作1请填空:人均效率(一个人做1小时完成的工作量)为,由x人先做4小时,完成的工作量为,再增加2人和前一部分人一起做8小时,完成的工作量为,这项工作分两段完成任务,两段完成任务的工作量之和为。
初中数学知识点大全(完整版)

第一册第一章有理数1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。
以前学过的0以外的数叫做正数。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2有理数1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。
数轴的作用:所有的有理数都可以用数轴上的点来表达。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度不能改变。
一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
1.2.3相反数只有符号不同的两个数叫做互为相反数。
数轴上表示相反数的两个点关于原点对称。
在任意一个数前面添上“-”号,新的数就表示原数的相反数。
1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。
一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。
在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。
比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。
⑵两个负数,绝对值大的反而小。
1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。
⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。
⑶一个数同0相加,仍得这个数。
两个数相加,交换加数的位置,和不变。
加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。
加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。
有理数减法法则:减去一个数,等于加这个数的相反数。
人教版初中数学七年级上册教学课件销售中的盈亏

售价-进价=利润
平价销售问题
服装厂
每件150元
商店
每件200元
消费者
在这个过程中,每件衣服的进价是
150 元,标价是 200 元,售价是 200 元、
利润是 50 元,利润率约是33.3%。
打折销售问题
服装厂
每件150元
商店
每件200元
八折优惠
消费者
在这个过程中,每件衣服的进
价是150 元,标价是200 元,售价是
一件衣服的进价为50元, 售价为80元,若按原价的8 折出售,利润是______ 14 元, 利润率是__________ 28% 。
一种商品进价为100元, 按进价增加25%定出价 格,后因库存积压减价, 按价格的92%出售,每 15 件还能盈利__元 .
某服装店出售一种优惠卡, 花200元买这种卡后,可凭卡在 这家商店按8折购物.小芳购卡 后买了一件原价1200元的西装. 她买卡购物是否合算?为什么?
2.4 再探实际问题与一元一次方程
——探究一:销售中的盈亏
某商场
在某一时间
内以每件60
元的价格卖出两件衣服,其中一件盈利25%,
另一件亏损25%,卖这两件衣服总的是盈利
还是亏损,或者是不盈不亏?
基本概念导航
进价: 商店购进商品时的价格 标价:
售价:
利润:
(或称成本价) 商店销售商品时标出的价格 (或称原价、定价) 商店销售商品时的售出价格 (或称成交价、卖出价) 商店在销售过程中的纯收入
160 元,利润是 10 元,利润率约 是 6.7% 。
某商场
在某一时间
内以每件60
元的价格卖出两件衣服,其中一件盈利25%,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解: 设照明时间为t小时,则节能灯的总费用为[60+0.5×0.011t]元; 白炽灯的总费用为[3+0.5×0.06t]元; 如果两个总费用相等,则有 60+0.5×0.011t =3+0.5×0.06t 解此方程得:t≈2327(小时) 因此我们可以取t=2000小时和t=2500小时,分别计算节能 灯和白炽灯的总费用 当t=2000时, 节能灯的总费用为:60+0.5×0.011t =60+0.5×0.011×2000=71; 白炽灯的总费用为:3+0.5×0.06t =3+0.5×0.06×2000=63; 当t=2500时, 节能灯的总费用为:60+0.5×0.011×2500=73.75; 白炽灯的总费用为:3+0.5×0.06×2500=78; 因此由方程的解和试算判断: 在t<2327小时时,选择白炽灯优惠一些; 在t=2327小时时,两种等的总费用一样; 在t>2327小时而不超过使用寿命时,选择节能灯优惠一些.
例2 小明想在两种灯中选购一种,其中一种是11瓦(即 0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06 千瓦)的白炽灯,售价3元.两种灯的照明效果一样,使用 寿命也相同(3000小时以上).节能灯售价较高,但是较 省电;白炽灯售价低,但是用电多.如果电费是0.5元/(千 瓦时),选哪种灯可以节省电费(灯的售价加电费)? 问题: 如果灯的使用寿命都是3000小时,而计划照明 3500小时,则需要购买两个灯,试设计你认为能省钱 的选灯方案. 你的方案 参考方案:买白炽灯和节能灯各一只,用白炽灯照明 的总费用 500小时,节能灯照明3000小时. 是多少? 在这种方案中的总费用为:
60+0.5×0.011×3000+3+0.5×0.06×500 =60+16.5+3+15 =94.5(元)
作业:P98/6、7
孝感市文昌中学
程世富例1 两种移Fra bibliotek电话计费方式表
(2)对于某个本地通话时间,会出现两种计费方式的收费一 样的情况吗? 怎么计 全球通 神州行 解:(1) 算交费 200分 130元 120元 300分 170元 180元
问题:什么情况 全球通 神州行 下用“全球通” 月租费 50元/月 0 优惠一些?什么 本地通话费 0.40元/分 0.60元/分情况下用“神 州行”优惠一 (1)一个月内在本地通话200分和300分,按两种计费方式 各须交费多少元? 些?
(2)设累计通话t分钟,则用“全球通”要收费(50+0.4t) 元,用“神州行”要收费0.6t。如果两种收费一样,则 交费=月租费+当月通话时间×单价(元/分) 0.6t=50+0.4t 解此方程得: 0.2t=50 ∴ t=250 答:如果一个月内通话250分,那么两种计费方式相同.
例2 小明想在两种灯中选购一种,其中一种是11瓦(即0.011千 瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白炽灯, 售价3元.两种灯的照明效果一样,使用寿命也相同(3000小时 以上).节能灯售价较高,但是较省电;白炽灯售价低,但是用电多. 如果电费是0.5元/(千瓦时),选哪种灯可以节省电费(灯的售价 加电费)? 由两组数值可以说明,照明时 分析:问题中有基本等量关系: 费用=灯的售价+电费; 间不同,为了省钱而选择用哪 如果取t=2500呢? 电费=0.5×灯的功率(千瓦) ×照明时间(时). 种灯的答案也不同. 请你算一算节能灯与 (1)设照明时间为t小时,则 白炽灯哪个费用较低? 总费用 售价 电费
节能灯 白炽灯
60+0.5×0.011t 3+0.5×0.06t
60元 3元
0.5×0.011t 0.5×0.06t
(2)用特殊值试探:
如果取 t=2000时, 节能灯的总费用为:60+0.5×0.011t =60+0.5×0.011×2000=71; 白炽灯的总费用为:3+0.5×0.06t =3+0.5×0.06×2000=63;