博弈论试题1

合集下载

博弈论综合测试1-8

博弈论综合测试1-8

综合测试(一)一、填空题1.思维的逻辑形式是由( )和( )组成的。

在“如果p,那么q”中,“p”和“q”是( )项,“如果,那么”是( )。

2.由属概念过渡到种概念的逻辑方法是( );由种概念过渡到属概念的逻辑方法是( )。

3.一个命题的主项和谓项都周延,则这个命题是( )命题,一个命题的主项和谓项都不周延,则这个命题是( )命题。

4.当SAP假时,S与P的外延关系可能是( )关系、( )关系或( )关系。

5.我跑遍了杭州所有的书店都没有买到这本书,最后在“高教”书店才买到。

这句话违反了( )律的要求。

6.根据对当关系,SEP真,能推出“并非SAP”( ),SIP( )。

7.若有效三段论的前提中有O命题,则该三段论要么是第( )格,要么是第( )格。

8.若以“p←(┐q∨┐r)”和“┐(q∧r)”为前提进行假言推理,能必然推出结论。

二、单项选择题1.学校可以划分为大学、中学、小学和体育学校、业余学校。

这句话犯的划分错误是()。

A.多出子项B.子项相容C.概念含混D.划分不全2.若SOP为假,S与P的外延关系是()。

A.全同关系B.全异关系C.属种关系D.交叉关系3.“北京在上海的北面”和“北京是大城市”这两个命题()。

A.两个都是关系命题B.两个都是性质命题C.前者是关系命题,后者是性质命题D.前者是性质命题,后者是关系命题4.根据矛盾律的要求,若说“他既懂物理学又懂化学”,则不能说()。

A.“他或者懂物理学,或者懂化学”B.“并非他既懂物理学又懂化学”C.“他或者不懂物理学,或者懂化学”D.“他或者懂物理学,或者不懂化学”5.由PIS可以推出()。

A.SEP B.PES C.并非SEP D.PAS6.下列推理形式正确的是()。

A.p→q B.p→┐q ┐p所以q ┐q所以pC.┐p∨q D.p∨┐q∨r p所以q p∨r所以┐q7.由“如果p则q,如果r则s,p或r”,可推出()。

A.q∨s B.┐q∨┐s C.┐q∨s D.q∨┐s8.从“凡是正确的推理都是形式有效的推理”可以得出()。

博弈论考试题及答案

博弈论考试题及答案

博弈论考试题及答案一、单项选择题(每题2分,共10题,共20分)1. 博弈论中,参与者在决策时不知道其他参与者的选择,这种博弈类型被称为:A. 完全信息博弈B. 不完全信息博弈C. 零和博弈D. 非零和博弈答案:B2. 在博弈论中,以下哪个概念描述的是参与者在博弈中所追求的目标?A. 纳什均衡B. 帕累托最优C. 占优策略D. 博弈收益答案:D3. 囚徒困境中,两个参与者如果都选择合作,他们将获得的收益是:A. 最大的B. 最小的C. 中等的D. 不确定的答案:A4. 以下哪个选项不是博弈论中的均衡概念?A. 纳什均衡B. 子博弈完美均衡C. 贝叶斯均衡答案:D5. 在博弈论中,如果一个策略在任何情况下都是最优的,那么这个策略被称为:A. 占优策略B. 纳什均衡C. 帕累托最优D. 混合策略答案:A6. 博弈论中的“混合策略”是指:A. 参与者随机选择纯策略B. 参与者总是选择相同的策略C. 参与者只选择一种策略D. 参与者不进行策略选择答案:A7. 在博弈论中,如果一个参与者的策略选择不依赖于其他参与者的策略选择,这种策略被称为:A. 占优策略B. 独立策略C. 混合策略D. 纳什均衡答案:A8. 博弈论中,以下哪个概念描述的是所有参与者都不可能通过单方面改变策略来提高自己的收益?A. 帕累托最优B. 纳什均衡C. 占优策略答案:B9. 在博弈论中,如果一个参与者的策略在其他所有参与者的策略给定时是最优的,这种策略被称为:A. 占优策略B. 纳什均衡C. 最优反应D. 混合策略答案:C10. 博弈论中的“动态博弈”是指:A. 参与者同时做出决策的博弈B. 参与者按顺序做出决策的博弈C. 参与者只进行一次决策的博弈D. 参与者不进行决策的博弈答案:B二、多项选择题(每题3分,共5题,共15分)1. 以下哪些是博弈论中的基本类型?A. 合作博弈B. 非合作博弈C. 完全信息博弈D. 不完全信息博弈答案:A, B, C, D2. 在博弈论中,以下哪些是描述均衡的概念?A. 纳什均衡B. 帕累托最优C. 占优策略均衡D. 混合策略均衡答案:A, C, D3. 以下哪些是博弈论中可能的结果?A. 帕累托最优B. 纳什均衡C. 占优策略均衡D. 混合策略均衡答案:A, B, C, D4. 在博弈论中,以下哪些是描述策略的概念?A. 纯策略B. 混合策略C. 占优策略D. 最优反应答案:A, B, C, D5. 以下哪些是博弈论中可能的决策顺序?A. 同时决策B. 顺序决策C. 重复决策D. 单次决策答案:A, B, C, D三、简答题(每题5分,共2题,共10分)1. 请简述博弈论中的“纳什均衡”是什么?答案:纳什均衡是指在一个博弈中,每个参与者都选择了自己的最优策略,并且这些策略在其他参与者的策略给定时是最优的,没有任何一个参与者可以通过单方面改变策略来提高自己的收益。

博弈论期末考试试题及答案

博弈论期末考试试题及答案

博弈论期末考试试题及答案# 博弈论期末考试试题及答案一、选择题(每题2分,共20分)1. 博弈论中,参与者在没有沟通的情况下进行决策,这种博弈被称为:A. 完全信息博弈B. 不完全信息博弈C. 零和博弈D. 非零和博弈答案:B2. 纳什均衡是博弈论中的一个概念,它描述了一种什么样的状态?A. 所有参与者都获得最大收益的状态B. 至少有一个参与者能获得更大收益的状态C. 没有参与者能通过单方面改变策略来获得更大收益的状态D. 所有参与者都获得相同收益的状态答案:C3. 以下哪个不是博弈论中的策略类型?A. 纯策略B. 混合策略C. 随机策略D. 确定性策略答案:D4. 博弈论中的囚徒困境指的是:A. 参与者合作可以获得最优结果B. 参与者背叛可以获得最优结果C. 参与者合作可以获得次优结果,但背叛可以获得最优结果D. 参与者背叛可以获得次优结果,但合作可以获得最优结果答案:C5. 以下哪个不是博弈论中的基本概念?A. 参与者B. 策略C. 收益D. 概率答案:D...二、简答题(每题10分,共30分)1. 解释什么是博弈论,并给出一个实际生活中的例子。

答案:博弈论是研究具有冲突和合作特征的决策者之间互动的数学理论。

在实际生活中,博弈论的一个例子是拍卖。

在拍卖中,买家(参与者)需要决定出价(策略)以赢得商品(收益),同时考虑其他买家的出价策略。

2. 描述纳什均衡的概念,并解释为什么它在博弈论中如此重要。

答案:纳什均衡是指在非合作博弈中,每个参与者选择自己的最优策略,并且考虑到其他参与者的策略选择时,没有参与者能通过单方面改变策略来获得更大的收益。

纳什均衡在博弈论中非常重要,因为它提供了一种预测参与者行为的方法,即在均衡状态下,参与者没有动机去改变他们的策略。

3. 什么是完全信息博弈和不完全信息博弈?它们之间有什么区别?答案:完全信息博弈是指所有参与者都完全知道博弈的结构和其他参与者的收益函数。

而不完全信息博弈是指至少有一个参与者对博弈的结构或其它参与者的收益函数不完全了解。

博弈论复习题(1)

博弈论复习题(1)

1.设一四阶段两博弈方之间的动态博弈如图所示。

试找出全部子博弈,讨论该博弈中的可信性问题,求子博弈完美纳什均衡策略组合和博弈的结果。

2.假设一个工会是一个寡头垄断市场中所有企业唯一的劳动力供给者,就像汽车工人联合会对于通用、福特、克莱斯勒等大的汽车厂家。

令博弈各方行动的时间顺序如下:(1)工会确定单一的工资要求w ,适用于所有的企业(2)每家企业i 了解到w ,然后同时分别选择各自的雇佣水平L i ;(3)工会的收益为(w-w α)L ,其中w α为工会成员到另外的行业谋职可取得的收入,L=L 1+…L n 为工会在本行业企业的总就业水平;企业i 的利润为π(w ,L i ),其中决定企业i 利润水ABB A h g (2,4)(8,5)(3,6)(4,3)b (5,3)a c d f e平的要素如下。

所有企业都有同样的生产函数:产出等于劳动力q i=L i。

市场总产出为Q=q1+…+q n时的市场出清价格为p(Q)=a-Q。

为使问题简化,假设企业除了工资支出外没有另外的资本。

求出此博弈的子博弈精炼解。

在子博弈精炼解中,企业的数量是如何影响工会的效应的?为什么?(吉本斯2.2节 2.7答案)3.下图所示的同时行动博弈重复进行两次,并且第二阶段开始前双方可观测到第一阶段的结果,不考虑贴现因素。

变量x大于4,因而(4,4)在一次性博弈中并不是一个均衡收益。

对什么样的x,(双方参与者同时采取)下述战略是一个子博弈完美纳什均衡?第一阶段选择Q i,如果第一阶段的结果为(Q1,Q2),在第二阶段选择P i;如果第一阶段的结果为(y,Q2),其中y≠Q1,第二阶段选择R i;如果第一阶段的结果为(Q1,z),其中z≠Q1,第二阶段选择S i;如果第一阶段结果为(y,z),其中y≠Q1,且z≠Q2,则在第二阶段选P iP2 Q2 R2 S2P1Q1R1S1(2.10吉本斯)思路:逐个分析上述的四种情形:第一种情形,第一阶段选择Qi,第二阶段选择Pi,即双方均采取合作的策略,得益均为6;第二种情形和第三种情形下,实际上有一方是采取了不合作,其得益为x,另一方即利益受损方得益为2;第四种情形实际上是双方都不采取合作的策略,而根据题目要求,对于x,下述战略是一个子博弈精炼纳什均衡,所以x必须小于双方均合作时的收益6,否则第一种情形不会出现,因为既然x>6了,双方均会选择不合作而使情形一不会出现。

博弈论习题[1]

博弈论习题[1]
一、完全信息静态博弈
习题 2
解: 令(L,M,R)是参与人 A 的 战 略 ;( U,M,D)是参与人 B 的战略。从表 1A.2 中可以看出,对 于参与人 B 而言,M 战略是严格劣于 R 战略,按照重复提出的占有均衡剔除 M 战略,则得出 如表(a)博弈。在表(a)博弈,参与人 A 的 M 和 D 战略严格劣于 U 战略,重复剔除 M 和 D 战略,得出表(b)博弈。该博弈为单人决策,则重复剔除的占优均衡为(U,L)。
r3 ( A, A, A) = r3 ( A, A, B) = r3 (A, A, C) = {A, B, C} r3 ( A, B, A) = r3 ( A, B, B) = r3 (A, B, C) = {A, C} r3 ( A, C, A) = r3 ( A, C, B) = r3 ( A, C, C) = {C} r3 (B, A, A) = r3 (B, A, B) = r3 (B, A, C) = {A, C} r3 (B, B, A) = r3 (B, B, B) = r3 (B, B, C) = {B, C} r3 (B, C, A) = r3 (B, C, B) = r3 (B, C, C) = {C} r3 (C, A, A) = r3 (C, A, B) = r3 (C, A, C) = {C} r3 (C, B, A) = r3 (C, B, B) = r3 (C, B, C) = {C} r3 (C, C, A) = r3 (C, C, B) = r3 (C, C, C) = {A, B, C}
(0,0)律师得到 100 (0,0)律师得到 100)
通过上面的支付矩阵,我们可以得出答案,只有 A 和 B 都做出选择得到 50 的时候,他
们才能得到钱,不多一分也不少分,如果有一方想多得,二者将一分也得不到,钱全部归律

“博弈论”习题及参考答案

“博弈论”习题及参考答案

《博弈论》习题一、单项选择题1.博弈论中,局中人从一个博弈中得到的结果常被称为()。

A. 效用B. 支付C. 决策D. 利润2.博弈中通常包括下面的内容,除了()。

A.局中人B.占优战略均衡C.策略D.支付3.在具有占优战略均衡的囚徒困境博弈中()。

A.只有一个囚徒会坦白B.两个囚徒都没有坦白C.两个囚徒都会坦白D.任何坦白都被法庭否决了4.在多次重复的双头博弈中,每一个博弈者努力()。

A.使行业的总利润达到最大B.使另一个博弈者的利润最小C.使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是()。

A. 策略组合B. 策略C. 信息D. 行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时的博弈具有()。

A.囚徒困境式的均衡B.一报还一报的均衡C.占优策略均衡D.激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为()。

A.一报还一报的策略B.激发策略C.双头策略D.主导企业策略8.在囚徒困境的博弈中,合作策略会导致()。

A.博弈双方都获胜B.博弈双方都失败C.使得先采取行动者获胜D.使得后采取行动者获胜9.在什么时候,囚徒困境式博弈均衡最可能实现()。

A. 当一个垄断竞争行业是由一个主导企业控制时B.当一个寡头行业面对的是重复博弈时C.当一个垄断行业被迫重复地与一个寡头行业博弈时D. 当一个寡头行业进行一次博弈时10.一个企业采取的行为与另一个企业在前一阶段采取的行为一致,这种策略是一种()。

A.主导策略B.激发策略C.一报还一报策略D.主导策略11.关于策略式博弈,正确的说法是()。

A. 策略式博弈无法刻划动态博弈B. 策略式博弈无法表明行动顺序C. 策略式博弈更容易求解D. 策略式博弈就是一个支付矩阵12.下列关于策略的叙述哪个是错误的():A. 策略是局中人选择的一套行动计划;B. 参与博弈的每一个局中人都有若干个策略;C. 一个局中人在原博弈中的策略和在子博弈中的策略是相同的;D. 策略与行动是两个不同的概念,策略是行动的规则,而不是行动本身。

博弈数学测试题及答案

博弈数学测试题及答案

博弈数学测试题及答案一、选择题(每题2分,共20分)1. 以下哪个不是博弈论中的基本概念?A. 纳什均衡B. 混合策略C. 马尔可夫链D. 纯策略答案:C2. 在零和博弈中,以下哪个说法是正确的?A. 参与者的收益总和为零B. 参与者的损失总和为零C. 参与者的总收益为零D. 参与者的总损失为零答案:A3. 以下哪个不是博弈论中的策略类型?A. 纯策略B. 混合策略C. 静态策略D. 动态策略答案:D4. 博弈论中的“囚徒困境”主要说明了什么?A. 合作总是最优选择B. 个体理性可能导致集体非理性C. 集体理性总是最优选择D. 个体非理性可能导致集体理性答案:B5. 在博弈论中,以下哪个不是纳什均衡的特点?A. 每个参与者都选择了自己的最优策略B. 每个参与者的策略都是对其他参与者策略的最佳响应C. 参与者可以通过改变策略来获得更好的结果D. 所有参与者都达到了自己可能的最大收益答案:C6. 以下哪个是博弈论中的合作博弈?A. 囚徒困境B. 石头剪刀布C. 公共品博弈D. 零和博弈答案:C7. 在博弈论中,哪个术语描述了参与者在没有沟通的情况下做出决策?A. 沟通博弈B. 非合作博弈C. 同时博弈D. 顺序博弈答案:C8. 以下哪个不是博弈论中的结果类型?A. 帕累托效率B. 纳什均衡C. 社会福利最大化D. 个人最优答案:D9. 在博弈论中,以下哪个不是博弈的分类?A. 完全信息博弈B. 不完全信息博弈C. 静态博弈D. 动态博弈答案:C10. 以下哪个是博弈论中的“重复博弈”?A. 参与者只进行一次决策B. 参与者进行多次决策C. 参与者在博弈中没有记忆D. 参与者在博弈中不能交流答案:B二、填空题(每空1分,共10分)1. 博弈论是由数学家______提出的。

答案:约翰·冯·诺伊曼2. 博弈论中的“纳什均衡”是由______命名的。

答案:约翰·纳什3. 在博弈论中,如果参与者的策略选择是相互独立的,这种博弈被称为______博弈。

博弈论十五道题以及答案

博弈论十五道题以及答案

博弈论十五道题以及答案1.博弈理论在哪些方面扩展了传统的新古典经济学?2.法律和信誉是维持市场有序运行的两个基本机制。

请结合重复博弈理论谈谈信誉机制发生作用的几个条件。

3.经济发展史表明,在本来不认识的人之间建立相互之间的信任关系是经济发展的关键。

为什么?4.在传统社会中,即使没有法律,村民之间也可以建立起高度的信任。

请结合博弈理论解释其原因。

5.在旅游地很容易出现假货,而在居民小区的便利店则很少出现假货,请结合博弈论的相关理论进行解释。

6.你如何理解“Credible threats or promises about future behavior can influence current behavior”这句话的?7.有效的法律制度对经济发展具有什么作用?请结合博弈理论谈谈你的理解。

8.试用博弈理论解释家族企业为什么难以实行制度化管理?9.固定资产投资为什么可以作为一种可置信的承诺?10.以汽车保险为例谈谈因为信息不对称所可能产生的道德风险问题,并提出一种解决道德风险的方案。

11.以公司为例,谈谈所有者与经营者的分离可能产生的道德风险问题。

12.在波纳佩岛上,谁能种出特别大的山药,谁的社会地位就高,谁就能赢得人们的尊敬并可担任公共职务。

请结合信号传递模型谈谈波纳佩岛上的这种奇异风俗。

13.一位男生在女朋友过生日时送给女朋友三百元人民币,他的女朋友往往感觉受到了侮辱。

而他女朋友可能会欣然接受父母亲的现金礼物。

请解释其中可能的原因。

14.<圣经>(旧约)中记载了两个母亲争夺一个孩子的故事。

一次,两个女人为争夺一个婴儿争扯到所罗门王殿前,她们都说婴儿是自己的,请所罗门王作主。

所罗门王稍加思考后作出决定:将婴儿一刀劈为两段,两位妇人各得一半。

这时,其中一位妇人立即要求所罗门王将婴儿判给对方,并说婴儿不是自己的,应完整归还给另一位妇人,千万别将婴儿劈成两半。

听罢这位妇人的求诉,所罗门王立即作出最终裁决——婴儿是这位请求不杀婴儿的妇人的,应归于她。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Introduction to Game Theory Problem Set 1
Shanghai University of Finance and Economics
Professor Derek Tai-wei Liu
1. Player A offers player B a gamble. For a price, he would throw a dice and pay player B $6 if it comes up 1. If it comes up 3 or 5, he will pay $3. But if it comes 2, 4 or 6, he pays nothing. At what price would this gamble be fair?
2. a) In the game Matching Pennies, suppose player 1 thinks player 2 plays Heads with probability .7 and Tails with probability .
3. What is the expected utility to player l from playing Heads, and what is his expected utility from playing Tails? What pure strategy should player 1 choose, given these beliefs? Find beliefs player 1 could have about player 2's strategy that would rationalize player 1’s other pure strategy.
b) Think about the steps you used in part (a) to compute player 1's expected utility, given her beliefs about player 2's strategy. Why is this procedure legitimate?
c) A casino offers the following gamble: a fair coin is flipped over and over until it comes up heads. If the coin comes up heads for the first time on flip n (which happens with probability 1/2n), you win $2n and the game ends. What is the expected value of this gamble? How much would you pay to take this gamble? Explain one reason why someone might pay less than the expected value.
d) A bookie offers the following lottery: If the high temperature in Los Angeles on January 28, 2012 is at least 45o F more than the high temperature in Chicago on January 28, you win $1. Otherwise, you win $0. How much would you pay for this gamble? Argue that this is a reasonable assessment of your subjective probability estimate of the event that the high temperature in LA exceeds the high in Chicago by at least 45o F on January 28.
3. Write down the strategic form of Rock, scissors, Paper and find all Nash equilibria. (In the game, each player has three choices: Rock, Scissors, and Paper. The game is zero-sum. Rock beats Scissors, Scissors beat Paper, and 'Paper beats Rock. If both players make the same choice they tie.)
4. For each of the following simultaneous games, identify any dominant
strategies and Nash Equilibrium. In cases where both players have dominant strategies, is the outcome of playing them Pareto Efficient?
Pareto Efficient: A strategy is Pareto Efficient if there is no other strategy in which a player is better off without making other players worse off.
1 Practice:
1. Player A offers player B a gamble. For a price, he would throw a dice and pay player B $6 if it comes up 1. If it comes up 3 or 5, he will pay $3. But if it comes 2, 4 or 6, he pays nothing. At what price would this gamble be fair?
2. For each of the following simultaneous games, identify any dominant strategies and Nash Equilibrium. In cases where both players have dominant strategies, is the outcome of playing them Pareto Efficient? Pareto Efficient: A strategy is Pareto Efficient if there is no other strategy in which a player is better off without making other players worse off.
5. ("Borrowed" from Myerson, 1991; and Moulin, 1983) Chair, Ranking
Member, and Scrub are voting in a committee to choose among three options, A, B, and C. Each player submits a secret vote for one option. If any option gets two or more votes, it is the outcome. Otherwise, if there is a (three-way) tie, Chair invokes her prerogatives and chooses her most preferred option (A) as the outcome. Are there any strictly or weakly dominated strategies? Solve the game using iterated deletion of weakly dominated strategies. Would the Chair be better off if she could commit to choose an option besides her favorite in the event of a tie?
(The table is read as follows: If option A is the outcome, Chair's payoff is 8,
Ranking Member's payoff is 0, and Scrub's payoff is 4. If option B is the outcome, Chair's payoff is 4, Ranking Member's payoff is 8, and Scrub's payoff is 0, etc.)。

相关文档
最新文档