4×4矩阵键盘51单片机识别实验与程序

合集下载

基于msc51单片机实现的四位4乘4矩阵键盘计算器的C语言程序及其PROTUES电路和仿真_课程设计报告

基于msc51单片机实现的四位4乘4矩阵键盘计算器的C语言程序及其PROTUES电路和仿真_课程设计报告

单片机原理及接口技术课程设计报告设计题目:计算器设计信息与电气工程学院二零一三年七月计算器设计单片机体积小,功耗小,价格低,用途灵活,无处不在,属专用计算机。

是一种特殊器件,需经过专门学习方能掌握应用,应用中要设计专用的硬件和软件。

近年来,单片机以其体积小、价格廉、面向控制等独特优点,在各种工业控制、仪器仪表、设备、产品的自动化、智能化方面获得了广泛的应用。

与此同时,单片机应用系统的可靠性成为人们越来越关注的重要课题。

影响可靠性的因素是多方面的,如构成系统的元器件本身的可靠性、系统本身各部分之间的相互耦合因素等。

其中系统的抗干扰性能是系统可靠性的重要指标。

数学是科技进步的重要工具,数据的运算也随着科技的进步越发变得繁琐复杂,计算器的出现可以大大解放人在设计计算过程中的工作量,使计算的精度、速度得到改善,通过msc51单片机,矩阵键盘和LED数码管可以实现简单的四位数的四则运算和显示,并当运算结果超出范围时予以报错。

注:这一部分主要描述题目的背景和意义,对设计所采取的主要方法做一下简要描述。

字数不要太多,300-500字。

另注:本文要当做模板使用,不要随意更改字体、字号、行间距等,学会使用格式刷。

文中给出的各项内容都要在大家的报告中体现,可采用填空的方式使用本模板。

1. 设计任务结合实际情况,基于AT89C51单片机设计一个计算器。

该系统应满足的功能要求为:(1) 实现简单的四位十进制数字的四则运算;(2) 按键输入数字,运算法则;(3) LED数码管移位显示每次输入的数据和运算结果;(4) 当运算结果超出范围时实现报错。

主要硬件设备:AT89C51单片机、LED数码管、矩阵键盘。

注:这一部分需要写明系统功能需求,用到的主要硬件(参考实验箱的说明书)。

2. 整体方案设计计算器以AT89C51单片机作为整个系统的控制核心,应用其强大的I/O功能和计算速度,构成整个计算器。

通过矩阵键盘输入运算数据和符号,送入单片机进行数据处理。

单片机课程设计---4×4矩阵式键盘识别显示电路的设计

单片机课程设计---4×4矩阵式键盘识别显示电路的设计

《单片机原理及应用》课程设计题目:4×4矩阵式键盘与单片机连接与编程专业:测控技术与仪器班级:机电082-1 姓名:学号:指导老师:组员:( 2011.7 .13)目录第1节引言 (2)1.1 4*4矩阵式键盘系统概述 (2)1.2 本设计任务和主要内容 (3)第2节系统主要硬件电路设计 (4)2.1 单片机控制系统原理 (4)2.2 单片机主机系统电路 (5)2.2.1 时钟电路 (8)2.2.2 复位电路 (8)2.2.3 矩阵式键盘电路 (8)2.3 译码显示电路 (9)第3节系统软件设计 (13)3.1 软件流程图 (13)3.2 系统程序设计 (14)第4节结束语 (17)参考文献 (18)第一节引言矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N个按键,即时在LED数码管上。

单片机控制的据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。

1.1 4*4矩阵式键盘识别显示系统概述矩阵式键盘模式以N个端口连接控制N*N个按键,实时在LED数码管上显示按键信息。

显示按键信息,既降低了成本,又提高了精确度,省下了很多的I/O端口为他用,相反,独立式按键虽编程简单,但占用I/O口资源较多,不适合在按键较多的场合应用。

并且在实际应用中经常要用到输入数字、字母、符号等操作功能,如电子密码锁、电话机键盘、计算器按键等,至少都需要12到16个按键,在这种情况下如果用独立式按键的话,显然太浪费I/O端口资源,为了解决这一问题,我们使用矩阵式键盘。

矩阵式键盘简介:矩阵式键盘又称行列键盘,它是用N条I/O线作为行线,N条I/O线作为列线组成的键盘。

在行线和列线的每个交叉点上设置一个按键。

这样键盘上按键的个数就为N*N个。

这种行列式键盘结构能有效地提高单片机系统中I/O口的利用率。

三分钟让你掌握51单片机的4×4键盘识别与74LS164驱动数码显示

三分钟让你掌握51单片机的4×4键盘识别与74LS164驱动数码显示
D2:MOV R6,#2
D1:MOV R7,#248
DJNZ R7,$
DJNZ R6,D1
DJNZ R5,D2
RET
;---------------------------------------
END
RET
;-------------------------
K_ED:;有键按下
MOV 60H,R2 ;保存按键号码
CALL DELAY ;消除抖动
WAIT:
MOV P1,#0F0H
MOV A,P1
CJNE A,#0F0H,WAIT ;等待释放
CLR A
RET
;-------------------------
D_TAB:;段码表
DB 03FH,006H,05BH,04FH
DB 066H,06DH,07DH,007H
DB 07FH,06FH,077H,07CH
DB 039H,05EH,079H,071H,000H
;---------------------------------------
K_SCAN:
KEY_TAB:;键码表
DB 07EH,0BEH,0DEH,0EEH
DB 07DH,0BDH,0DDH,0EDH
DB 07BH,0BBH,0DBH,0EBH
DB 077H,0B7H,0D7H,0E7H
;---------------------------------------
DELAY:;延时
MOV R5,#10
MOV DPTR,#D_TAB ;码表首地址
MOVC A,@A + DPTR
CPL A
MOV R2,#8
INI1:

基于51单片机的4-4矩阵键盘字符输入

基于51单片机的4-4矩阵键盘字符输入
};
void display(unsigned char num)
{
P0=table[num];
}
void init_led()
{
P0 = 0x00;
}
void main()
{
while(1)
{
P1 = 0xef;
temp = P1;
temp = temp0xf0;
if (temp != 0xf0)
{
temp = P1;
switch(temp)
{
case 0xee:
key=0;
break;
case 0xed:
key=1;
break;
case 0xeb:
key=2;
break;
case 0xe7:
key=3;
break;
default:
break;
}
display(key);
P1=0xfe;
}
P1 = 0xdf;
key=10;
break;
case 0xb7:
key=11;
break;
default:
break;
}
display(key);
}
P1=0x7f;
temp=P1;
temp=temp0x0f;
if(temp!=0x0f)
{
temp=P1;
switch(temp)
{
case 0x7e:
key=12;
break;
temp = P1;
temp = temp0x0f;
if(temp != 0x0f)
{
temp = P1;
switch(temp)

4×4矩阵键盘51单片机识别实验及程序

4×4矩阵键盘51单片机识别实验及程序

4×4矩阵键盘51单片机识别实验与程序1.实验任务如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F〞序号。

对应的按键的序号排列如图4.14.1所示图4.14.12.硬件电路原理图图4.14.23.系统板上硬件连线〔1.把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4*4行列式键盘〞区域中的C1-C4 R1-R4端口上;〔2.把“单片机系统〞区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块〞区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。

4.程序设计容〔1.4×4矩阵键盘识别处理(2.每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。

每个按键的状态同样需变成数字量“0〞和“1〞,开关的一端〔列线〕通过电阻接VCC,而接地是通过程序输出数字“0〞实现的。

键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还要消除按键在闭合或断开时的抖动。

两个并行口中,一个输出扫描码,使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。

5.程序框图图4.14.3C语言源程序*include <AT89*51.H>unsigned char code table[]={0*3f,0*06,0*5b,0*4f,0*66,0*6d,0*7d,0*07,0*7f,0*6f,0*77,0*7c,0*39,0*5e,0*79,0*71};unsigned char temp;unsigned char key;unsigned char i,j;void main(void) {while(1){P3=0*ff;P3_4=0;temp=P3;temp=temp & 0*0f; if (temp!=0*0f) {for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp & 0*0f; if (temp!=0*0f) {temp=P3;temp=temp & 0*0f; switch(temp){case 0*0e:key=7;break;case 0*0d:key=8;break;case 0*0b:key=9;break;case 0*07:key=10;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp & 0*0f; while(temp!=0*0f) {temp=P3;temp=temp & 0*0f; }}}P3=0*ff;P3_5=0;temp=P3;temp=temp & 0*0f; if (temp!=0*0f) {for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp & 0*0f; if (temp!=0*0f) {temp=P3;temp=temp & 0*0f; switch(temp){case 0*0e:key=4;break;case 0*0d:break;case 0*0b:key=6;break;case 0*07:key=11;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp & 0*0f; while(temp!=0*0f) {temp=P3;temp=temp & 0*0f; }}}P3=0*ff;temp=P3;temp=temp & 0*0f; if (temp!=0*0f) {for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp & 0*0f; if (temp!=0*0f) {temp=P3;temp=temp & 0*0f; switch(temp){case 0*0e:key=1;break;case 0*0d:key=2;break;case 0*0b:break;case 0*07:key=12;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp & 0*0f; while(temp!=0*0f) {temp=P3;temp=temp & 0*0f; }}}P3=0*ff;P3_7=0;temp=P3;temp=temp & 0*0f;if (temp!=0*0f) {for(i=50;i>0;i--) for(j=200;j>0;j--); temp=P3;temp=temp & 0*0f; if (temp!=0*0f) {temp=P3;temp=temp & 0*0f; switch(temp){case 0*0e:key=0;break;case 0*0d:key=13;break;case 0*0b:key=14;break;case 0*07:key=15;break;}temp=P3;P1_0=~P1_0;P0=table[key]; temp=temp & 0*0f; while(temp!=0*0f) {temp=P3;temp=temp & 0*0f; }}}}}。

基于51单片机4乘4矩阵键盘的设计

基于51单片机4乘4矩阵键盘的设计
case 0xbd:KEY=6;break;
case 0x7d:KEY=7;break;
case 0xeb:KEY=8;break;
case 0xdb:KEY=9;break;
case 0xbb:KEY=10;break;
case 0x7b:KEY=11;break;
case 0xe7:KEY=12;break;
控制任务:
编程实现4乘4的矩阵键盘控制连接在P0口和P1口上的16个LED,当按下某键并释放后只有对应的LED灯亮,例如按S0后D0亮,按S1后D1亮。
程序及仿真:
#include<reg51.h>
unsigned char code led[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};
b=P2;
a=a|b;
switch(a)
{
case 0xee:KEY=0;break;
case 0xde:KEY=1;break;
case 0xbe:KEY=2;break;
case 0x7e:KEY=3;break;
case 0xed:KEY=4;break;
case 0xdd:KEY=5;break;
{
P0=0xff;
P1=led[n-8];
}}
int main(void)
{
whilsplay(KEY);
}
return 0;
}
更多资源,请关注微博“风竹弈星”,私聊。
unsigned char KEY=0xff;
void keyscan(void)
{
unsigned char a,b;
P2=0xf0;//高四位作为输入(高电平),低四位输出低电平

51单片机4×4矩阵按键扫描方法

51单片机4×4矩阵按键扫描方法
{
key=0xf0;//低四位为0
if(key==0xf0)//若无变化,证明按键松开
return 0;//返回0
else//否则,按键未松开
return 1;//返回1
}
//*********主函数*********//
int main()
{
key=0xff;//按键初始化
led=0xff;//关闭LED灯
//送至led显示
/*
eg:如果是第三行第二列按键按下
则第3个、第6(2列+4)个LED灯亮
如下图所示(Proteus仿真电路图)
*/
}
}
led_arry[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//数组定义,便于显示
//******检测是否有按键按下*****//
uchar Check_Button()
{
key=0x0f;//高四位为0
if(key==0x0f)//若无变化,证明无按键按下
return 0;//返回0
else//否则
return 1;//返回1
}
//********行检测********//
uchar Line[]={0x0e,0x0d,0x0b,0x07}; //那个按键按下,检测出的状态则对应数组中的第几个数
void Check_Line()
{
uchar i;
key=0x0f;//高四位为0
/*****4×4按键扫描******/
/***编程要点
1.首先检测是否有按键按下
2.若有按键按下,即进行行检测,列检测
3.行检测:高4位设为0,低4位为1,进行检测0x0f

4×4矩阵式键盘识别源程序

4×4矩阵式键盘识别源程序

C语言源程序#include <AT89X51.H>unsigned char code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};unsigned char temp;unsigned char key;unsigned char i,j;void main(void){while(1){P3=0xff; /*第1行;一开始数码管全亮即是8*/ P3_4=0; /*决定第1行的标志*/temp=P3;temp=temp & 0x0f;if (temp!=0x0f) /*当P3无改变时跳过*/{for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=3;break;case 0x0d:key=2;break;case 0x0b:key=1;break;case 0x07:key=0;break;}temp=P3;/* P1_0=~P1_0原文多了这句*/P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f;}}}P3=0xff; /*第2行*/P3_5=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=7;break;case 0x0d:key=6;break;case 0x0b:key=5;break;case 0x07:key=4;break;}temp=P3;/* P1_0=~P1_0原文多了这句*/P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f;}}}P3=0xff; /*第3行*/P3_6=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=10;break;case 0x0d:key=9;break;case 0x0b:key=8;break;case 0x07:key=7;break;}temp=P3;/* P1_0=~P1_0原文多了这句*/P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f;}}}P3=0xff; /*第4行*/P3_7=0;temp=P3;temp=temp & 0x0f;if (temp!=0x0f){for(i=50;i>0;i--)for(j=200;j>0;j--);temp=P3;temp=temp & 0x0f;if (temp!=0x0f){temp=P3;temp=temp & 0x0f;switch(temp){case 0x0e:key=16;break;case 0x0d:key=13;break;case 0x0b:key=12;break;case 0x07:key=11;break;}temp=P3;/* P1_0=~P1_0原文多了这句*/P0=table[key];temp=temp & 0x0f;while(temp!=0x0f){temp=P3;temp=temp & 0x0f;}}}}}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4×4矩阵键盘51单片机识别实验与程序
1.实验任务
如图4.14.2所示,用AT89S51的并行口P1接4×4矩阵键盘,以P1.0-P1.3作输入线,以P1.4-P1.7作输出线;在数码管上显示每个按键的“0-F”序号。

对应的按键的序号排列如图4.14.1所示
图4.14.1
2.硬件电路原理图
图4.14.2
3.系统板上硬件连线
(1.把“单片机系统“区域中的P3.0-P3.7端口用8芯排线连接到“4X4行列式键盘”区域中的C1-C4 R1-R4端口上;
(2.把“单片机系统”区域中的P0.0/AD0-P0.7/AD7端口用8芯排线连接到“四路静态数码显示模块”区域中的任一个a-h端口上;要求:P0.0/AD0对应着a,P0.1/AD1对应着b,……,P0.7/AD7对应着h。

4.程序设计内容
(1.4×4矩阵键盘识别处理
(2.每个按键有它的行值和列值,行值和列值的组合就是识别这个按键的编码。

矩阵的行线和列线分别通过两并行接口和CPU通信。

每个按键
的状态同样需变成数字量“0”和“1”,开关的一端(列线)通过电
阻接VCC,而接地是通过程序输出数字“0”实现的。

键盘处理程序的
任务是:确定有无键按下,判断哪一个键按下,键的功能是什么;还
要消除按键在闭合或断开时的抖动。

两个并行口中,一个输出扫描码,
使按键逐行动态接地,另一个并行口输入按键状态,由行扫描值和回
馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。

5.程序框图
图4.14.3
C语言源程序
#include <AT89X51.H>
unsigned char code table[]={0x3f,0x06,0x5b,0x4f, 0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,
0x39,0x5e,0x79,0x71};
unsigned char temp;
unsigned char key;
unsigned char i,j;
void main(void)
{
while(1)
{
P3=0xff;
P3_4=0;
temp=P3;
temp=temp & 0x0f; if (temp!=0x0f) {
for(i=50;i>0;i--)
for(j=200;j>0;j--); temp=P3;
temp=temp & 0x0f; if (temp!=0x0f) {
temp=P3;
temp=temp & 0x0f; switch(temp)
{
case 0x0e:
key=7;
break;
case 0x0d:
key=8;
break;
case 0x0b:
key=9;
break;
case 0x07:
key=10;
break;
}
temp=P3;
P1_0=~P1_0;
P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) {
temp=P3;
temp=temp & 0x0f; }
}
}
P3=0xff;
P3_5=0;
temp=P3;
temp=temp & 0x0f; if (temp!=0x0f) {
for(i=50;i>0;i--)
for(j=200;j>0;j--); temp=P3;
temp=temp & 0x0f; if (temp!=0x0f) {
temp=P3;
temp=temp & 0x0f; switch(temp)
{
case 0x0e:
key=4;
break;
case 0x0d:
key=5;
break;
case 0x0b:
key=6;
break;
case 0x07:
key=11;
break;
}
temp=P3;
P1_0=~P1_0;
P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) {
temp=P3;
temp=temp & 0x0f; }
}
}
P3=0xff;
P3_6=0;
temp=P3;
temp=temp & 0x0f; if (temp!=0x0f)
{
for(i=50;i>0;i--)
for(j=200;j>0;j--); temp=P3;
temp=temp & 0x0f; if (temp!=0x0f) {
temp=P3;
temp=temp & 0x0f; switch(temp)
{
case 0x0e:
key=1;
break;
case 0x0d:
key=2;
break;
case 0x0b:
key=3;
break;
case 0x07:
key=12;
break;
}
temp=P3;
P1_0=~P1_0;
P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) {
temp=P3;
temp=temp & 0x0f; }
}
}
P3=0xff;
P3_7=0;
temp=P3;
temp=temp & 0x0f; if (temp!=0x0f) {
for(i=50;i>0;i--)
for(j=200;j>0;j--);
temp=P3;
temp=temp & 0x0f; if (temp!=0x0f) {
temp=P3;
temp=temp & 0x0f; switch(temp)
{
case 0x0e:
key=0;
break;
case 0x0d:
key=13;
break;
case 0x0b:
key=14;
break;
case 0x07:
key=15;
break;
}
temp=P3;
P1_0=~P1_0;
P0=table[key]; temp=temp & 0x0f; while(temp!=0x0f) {
temp=P3;
temp=temp & 0x0f; }
}
}
}
}。

相关文档
最新文档