吉大15春学期《数字信号处理》在线作业二答案
数字信号处理教程课后习题及答案

分析:已知边界条件,如果没有限定序列类型(例如因果序列、反因果序列等), 则递推求解必须向两个方向进行(n ≥ 0 及 n < 0)。
解 : (1) y1 (0) = 0 时, (a) 设 x1 (n) = δ (n) ,
按 y1 (n) = ay1 (n − 1) + x1 (n) i) 向 n > 0 处递推,
10
T [ax1(n)+ bx2 (n)] =
n
∑
[ax1
(n
)
+
bx2
(n
)]
m = −∞
T[ax1(n) + bx2(n)] = ay1(n) + by2(n)
∴ 系统是线性系统
解:(2) y(n) =
[x(n )] 2
y1(n)
= T [x1(n)] = [x1(n)] 2
y2 (n) = T [x2 (n)] = [x2 (n)] 2
β α
n +1
β α β =
n +1− N −n0
N−
N
α −β
y(n) = Nα n−n0 ,
(α = β )
, (α ≠ β )
如此题所示,因而要分段求解。
2 .已知线性移不变系统的输入为 x( n ) ,系统的单位抽样响应
为 h( n ) ,试求系统的输出 y( n ) ,并画图。
(1)x(n) = δ (n)
当n ≤ −1时 当n > −1时
∑ y(n) = n a −m = a −n
m=−∞
1− a
∑ y(n) =
−1
a−m =
吉大18秋学期《数字信号处理》在线作业二(满分)

------------------------------------------------------------------------------------------------------------------------------ (单选题) 1: IIR系统并联型结构与级联型结构相比较,最主要的优点是( )A: 调整零点方便B: 结构简单,容易实现C: 无有限字长效应D: 无误差积累正确答案:(单选题) 2: LTI系统,输入x(n)时,输出y(n);输入为3x(n-2),输出为A: y(n-2)B: 3y(n-2)C: 3y(n)D: y(n)正确答案:(单选题) 3: 线性移不变系统的系统函数的收敛域为|Z|>2,则可以判断系统为()A: 因果稳定系统B: 因果非稳定系统C: 非因果稳定系统D: 非因果非稳定系统正确答案:(单选题) 4: 以N为周期的周期序列的离散付氏级数是()A: 连续的,非周期的B: 连续的,以N为周期的C: 离散的,非周期的D: 离散的,以N为周期的正确答案:(单选题) 5: 若一模拟信号为带限,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A: 理想低通滤波器B: 理想高通滤波器C: 理想带通滤波器D: 理想带阻滤波器正确答案:(单选题) 6: 如何将无限长序列和有限长序列进行线性卷积( )A: 直接使用线性卷积计算B: 使用FFT计算C: 使用循环卷积直接计算D: 采用分段卷积,可采用重叠相加法正确答案:(单选题) 7: 双线性变换法的最重要优点是( );主要缺点是( )A: 无频率混叠现象;模拟域频率与数字域频率间为非线性关系B: 无频率混叠现象;二次转换造成较大幅度失真C: 无频率失真;模拟域频率与数字域频率间为非线性关系D: 无频率失真;二次转换造成较大幅度失真正确答案:------------------------------------------------------------------------------------------------------------------------------ (单选题) 8: 已知某序列Z变换的收敛域为5>|z|>3,则该序列为()A: 有限长序列B: 右边序列C: 左边序列D: 双边序列正确答案:(单选题) 9: IIR滤波器必须采用( )型结构,而且其系统函数H(z)的极点位置必须在( ) A: 递归;单位圆外B: 非递归;单位圆外C: 非递归;单位圆内D: 递归;单位圆内正确答案:(单选题) 10: 对5点有限长序列[1 3 0 5 2]进行向左2点圆周移位后得到序列()A: [1 3 0 5 2]B: [5 2 1 3 0]C: [0 5 2 1 3]D: [0 0 1 3 0]正确答案:(多选题) 1: 下列序列中不属于周期序列的为()A: x(n) = δ(n)B: x(n) = u(n)C: x(n) = R4(n)D: x(n) = 1正确答案:(多选题) 2: 下面说法中不正确的是()A: 连续非周期信号的频谱为周期连续函数B: 连续周期信号的频谱为周期连续函数C: 离散非周期信号的频谱为周期连续函数D: 离散周期信号的频谱为周期连续函数正确答案:(多选题) 3: 以下对双线性变换的描述中正确的是( )A: 双线性变换是一种非线性变换B: 双线性变换可以用来进行数字频率与模拟频率间的变换C: 双线性变换把s平面的左半平面单值映射到z平面的单位圆内D: 以上说法都不对正确答案:(多选题) 4: 以下现象中()属于截断效应。
数字信号处理第2章习题答案

根据零、 极点分布可定性画幅频特性。 当频率由0到2π 变化时, 观察零点矢量长度和极点矢量长度的变化, 在极点 附近会形成峰。 极点愈靠进单位圆, 峰值愈高; 零点附近形 成谷, 零点愈靠进单位圆, 谷值愈低, 零点在单位圆上则 形成幅频特性的零点。 当然, 峰值频率就在最靠近单位圆的 极点附近, 谷值频率就在最靠近单位圆的零点附近。
故
X (z)z 1zN z 1 N (z 1 1 )zN z 1 N (z 1 1 )z2 1 N 1 zz N 1 1 2
[例2.4.4] 时域离散线性非移变系统的系统函数H(z)为
H(z) 1 , a和b为常数 (za)(zb)
(1) 要求系统稳定, 确定a和b的取值域。 (2) 要求系统因果稳定, 重复(1)。 解: (1) H(z)的极点为a、 b, 系统稳定的条件是收敛 域包含单位圆, 即单位圆上不能有极点。 因此, 只要满足 |a|≠1, |b|≠1即可使系统稳定, 或者说a和b的取值域为除单位圆 以的整个z平面。 (2) 系统因果稳定的条件是所有极点全在单位圆内, 所以a和b
采样间隔T=0.25 s, 得到 xˆ ( t ) , 再让 xˆ ( t ) 通过理想低通
滤波器G(jΩ), G(jΩ)用下式表示:
G(j)0.025
≤ 4π 4π
(1) 写出xˆ ( t )的表达式;
(2) 求出理想低通滤波器的输出信号y(t)。
解:(1)
x ˆ(t) [c2 o πn s)T (co 5πs n()T ](tn)T n
(3) 若y(n)=x(n)h(n), 则
Y(ej)1H(ej)X(ej) 2π
这是频域卷积定理或者称复卷积定理。
(4)
xe(n)12[x(n)x(n)]
《数字信号处理》复习思考题、习题(二)答案.doc

一、思考题1、C2、C3、D4、A5、D6、B7、D8、B9、C 10、A 11、C 12、C 13、A 14、A 15、B 16、C 17、A 18、C二、概念填空题1、(1)付氏级数(2) hd (n)(理想的单位脉冲响应)(3) R N(n)(N点矩形窗或N点矩形序列)(4) h (n)(单位脉冲响应)(5)吉布斯(6)波动(不平稳)(7)衰减(最小衰减)2、(8)(9)三角窗、汉宁窗、哈明窗、布莱克曼窗(10)过渡带(11)衰减3、(12)时(13) h (n)(数字滤波器单位脉冲响应)(14) h a(t)(模拟滤波器冲激响应)(15)频谱混叠(16 )折叠频率(兀/T)4、(17)偶对称(奇对称)(18)奇对称(偶对称)(19)〃二堕二1! (20)线性相位特性25、(21)时(22)窗函数(23)有限长(24)逼近6、(25)某种优化逼近方法(26)逼近(27)频率响应(28)最优三、判断说明题1、判断:正确简述:按照频率采样滤波器结构的推导,上述说法是正确的,这正是频率采样结构的一个优点。
但对于不同的频响形状,N个并联一阶节的支路增益H (k)不同。
2、判断:一致简述:由于对模拟滤波器而言,因果稳定系统传递函数H a(s)的极点均在S平面的左半平面,只要转换关系满足使S平面的左半平面转换到Z平面的单位圆内,就保证了转换后数字滤波器系统函数H (z) 的极点全部在Z平面的单位圆内,从而保证了系统的因果稳定性。
3、判断:不对简述:正确的表述应为:IIR滤波器只能采用递归型结构实现;FIR 滤波器一般采用非递归型结构实现,但也可使结构中含有递归支路。
就是说滤波器结构与特性没有必然的联系。
4、判断:一致简述:由于对模拟域而言,其频率轴就是S平面的虚轴j。
轴,而对数字域来说,其频率轴是z平面的单位圆,因此两者是一致的。
四、计算应用题1、解:1)容易将H (z)写成级联型的标准形式如下:)二(2 + 3广)(3-2广 + 广)H(Z一(4 —广)(1 + 0.9广—0.81厂2)0.5+ 3-2广+疽—— ________ z ______ * ___________________________________1 + 0.9/—0.81厂2显见,该系统的级联结构由一个直接II型一阶节和一个直接II型二阶节级联而成,因此容易画出该系统的级联型结构图如图A-1所示。
《数字信号处理》作业答案

第一章离散时间系统4.判断下列每个序列是否是周期的,若是周期的,试确定其周期。
(1)⎪⎭⎫ ⎝⎛-=873cos )(ππn A n x (2)⎪⎭⎫⎝⎛=n A n x π313sin )( (3))6()(π-=nj e n x解:(1)由⎪⎭⎫ ⎝⎛-=873cos )(ππn A n x 可得31473220==ππωπ,所以)(n x 的周期是14。
(2)由⎪⎭⎫⎝⎛=n A n x π313sin )(可得136313220==ππωπ,所以)(n x 的周期是6。
(3)由⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-==-6sin 6cos 6sin 6cos )()6(n j n n j n e n x nj πππ,所以)(n x 是非周期的。
6.试判断(1)∑-∞==nm m x n y )()(是否是线性系统?解:根据∑-∞==nm m x n y )()(可得 ∑-∞===nm m x n x T n y )()]([)(111,∑-∞===nm m xn x T n y)()]([)(222∑∑∑∑∑-∞=-∞=-∞=-∞=-∞=+=+=++=+nm n m n m nm nm n xb n x a n bx m ax n bx n ax T n x b n x a n by n ay )()()]()([)]()([)()()()(2121212121所以系统是线性的。
9.列出图P1-9系统的差分方程并按初始条件y(n)=0,n<0,求输入为x(n)=u(n)时的输出序列y(n),并画图。
解:x 1(n)=x(n)+x 1(n-1)/4 x 1(n)- x 1(n-1)/4=x(n) x 1(n-1)- x 1(n-2)/4=x(n-1) y(n)=x 1(n)+x 1(n-1) y(n-1)/4=x 1(n-1)/4+x 1(n-2)/4y(n)-y(n-1)/4=x(n)+x(n-1) y(n) =x(n)+x(n-1) +y(n-1)/4y(0)=u(0)=1y(1)=u(1)+u(0)+y(0)/4=2+1/4y(2)=u(2)+u(1)+y(1)/4=2+(2+1/4)/4=2(1+1/4)+(1/4)2 y(3)=u(3)+u(2)+y(2)/4==2(1+1/4+(1/4)2)+(1/4)3y(n)=2(1+1/4+……+(1/4)n-1)+(1/4)ny(n)=2(1-(1/4)n )/(1-1/4)+(1/4)n =[8/3-5/3(1/4)n ]u(n)11.有一理想抽样系统,抽样角频率为π6=Ωs ,抽样后经理想低通滤波器)(ωj H a 还原,其中:⎪⎩⎪⎨⎧≥<=πωπωω30321)(j H a令有两个输入信号)2cos()(1t t x a π=,)5cos()(12t t x a π=输出信号有没有失真?为什么?解:抽样频率大于两倍信号最大频率则无失真,)2cos()(1t t x a π=信号角频率为2π<3π,y a1(n)无失真。
数字信号处理习题及答案(精编文档).doc

【最新整理,下载后即可编辑】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用δ(n) 表示y (n )={2,7,19,28,29,15}2. ①求下列周期)54sin()8sin()4()51cos()3()54sin()2()8sin()1(n n n n n ππππ-②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫⎝⎛-= (2))81(j e)(π-=n n x解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他02n 0n 3,h(n)其他03n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=}23,4,7,4,23{0,h(n)*答案:x(n)=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15}③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=}{1,4,6,5,2答案:x(n)=4. 如果输入信号为,求下述系统的输出信号。
《数字信号处理》第二版课后答案

————第一章———— 时域离散信号与系统理论分析基础本章1.1节“学习要点”和1.2节“例题”部分的内容对应教材第一、二章内容。
为了便于归纳总结,我们将《数字信号处理(第二版)》教材中第一章和第二章的内容合并在一起叙述,这样使读者对时域离散线性时不变系统的描述与分析方法建立一个完整的概念,以便在分析和解决问题时,能全面考虑各种有效的途径,选择最好的解决方案。
1.1 学 习 要 点1.1.1 时域离散信号——序列时域离散信号(以下简称序列)是时域离散系统处理的对象,研究时域离散系统离不开序列。
例如,在时域离散线性时不变系统的时域描述中,系统的单位脉冲响应()n h 就是系统对单位脉冲响应()n δ的响应输出序列。
掌握()n δ的时域和频域特征,对分析讨论系统的时域特性描述函数()n h 和频域特性描述函数()ωj e H 和()z H 是必不可少的。
1. 序列的概念在数字信号处理中,一般用()n x 表示时域离散信号(序列)。
()n x 可看作对模拟信号()t x a 的采样,即()()nT x n x a =,也可以看作一组有序的数据集合。
要点 在数字信号处理中,序列()n x 是一个离散函数,n 为整数,如图1.1所示。
当≠n 整数时,()n x 无定义,但不能理解为零。
当()()nT x n x a =时,这一点容易理解。
当=n 整数时,()()nT x n x a =,为()t x a 在nT t =时刻的采样值,非整数T 时刻未采样,而并非为零。
在学习连续信号的采样与恢复时会看到,()n x 经过低通滤波器后,相邻的()T n nT 1~+之间的()t x a 的值就得到恢复。
例如,()n x 为一序列,取()()2n x n y =,n 为整数是不正确的,因为当=n 奇数时,()n y 无定义(无确切的值)。
2. 常用序列常用序列有六种:①单位脉冲序列()n δ,②矩形序列()n R N ,③指数序列()n u a n,④正弦序列()n ωcos 、()n ωsin ,⑤复指数序列nj eω,⑥周期序列。
数字信号处理 课后习题答案 第2章.docx

习题1.设X(e"。
)和r(e JC0)分别是印7)和)仞的傅里叶变换,试求下面序列的傅里叶变换:(1) x("-"o) (3) x(-n) (5) x(")y(")(7) x(2n)⑵ x*(〃)(4) x(") * v(«) (6) nx(n) (8) /(〃)解:⑴00 FT[X(/7-Z70)] = £x(〃一〃o)e—S令n r = n-n0,即〃=n' + n Q,贝!J00FT[x(n-n o y\=工》(〃')以"''*""="初。
乂(烈)00 00(2)FT[x («)] = £ x* (n)e*= [ £ 戏〃)攻以]* = X* (e「W=—00 w=—00(3)00FT[x(—")]= 〃)e*"令=一〃,则00FT[x(—”)]= Zx(〃')e" =X(e—〃")”'=—00(4)00 x(〃) *'(〃)= ^\x(jrT)y(n -m)W=-0000 00FT[x(n) * v(w)] = Z【Z x("y("-初)]e""' n=-<x> w=-oo k = n-m,贝U00 00FT[x(ri)*y(ri)]= £[ £x(初) k=—CD W=-0000 00k=-<x> m=—cc= X(e5(em)_00 00 1时[x(M)贝〃)]= Z》(〃)贝〃)e「9 = Zx(〃)[-Lf/(em'"'"d 渺]e-加""=—00 〃=—00 2l "1 00=—£ Y(e j0)')2l " n=—<x>1 伙=一L "口")*?®"、技或者FT[x{n)y{ny\ = —「171 »兀oo(6)因为X(e,")= »("初,对该式两边口求导,得到叫、)=-J £仗"如=-jFT[nx(n)]因此矶孙(〃)]=j至@3)dco00⑺ FT\x(2ri)\=加n=-(x)令n' = 2n ,则FT[X(2W)]= £x(z/)e 7 %W--00,且取偶数00 1 r r・l 八1°0 . 1 00 . 1£?kO + (T)“x(")厂=| 广伽+£ef ("广伽〃=—oo 匕匕〃=—oo 〃=—00=L「xa*+x(/*E)F7[x(2z?)] = | X(e‘2") + X(—e'尸)(8) F7[X2(»)]= J X2(77)6^»=-OO利用(5)题结果,令x{n) = y{n),则F巾2(”)] = _£x(em)*X(eS) = —「X®。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
奥鹏吉大15春学期《数字信号处理》在线作业二标准答案
一、单选题(共10 道试题,共40 分。
)
1. 下列哪个是数字信号的特征()
A. 时间离散、幅值连续
B. 时间离散、幅值量化
C. 时间连续、幅值量化
D. 时间连续、幅值连续
正确答案:B
2. 在数字信号处理中,FIR系统的最主要特点是:()
A. 实现结构简单
B. 容易实现线性相位
C. 运算量小
D. 容易实现复杂的频率特性
正确答案:B
3. 对于序列的傅立叶变换而言,其信号的特点是( )
A. 时域连续非周期,频域连续非周期
B. 时域离散周期,频域连续非周期
C. 时域离散非周期,频域连续非周期
D. 时域离散非周期,频域连续周期
正确答案:D
4. 序列实部的傅里叶变换等于序列傅里叶变换的()分量。
A. 共轭对称
B. 共轭反对称
C. 偶对称
D. 奇对称
正确答案:A
5. 设两有限长序列的长度分别是M与N,欲用DFT计算两者的线性卷积,则DFT的长度至少应取( )
A. M+N
B. M+N-1
C. M+N+1
D. 2(M+N)
正确答案:B
6. 基-2 FFT算法的基本运算单元为( )
A. 蝶形运算
B. 卷积运算
C. 相关运算。