推荐-手机无线充电系统课程设计报告1 精品
手机无线充电系统课程设计报告

国家电工电子实验教课中心电子系统课程设计设计报告设计题目:手机无线充电系统学院:电信学院专业:自动化(信号)学生姓名:李一芒学号:12301126任课教师:佟毅2015年04月20日目录1 设计任务要求 (2)2 设计方案及论证 . (4)任务剖析 (4)方案比较 . (7)3 制作及调试过程 . (17)3.1 制作与调试流程 (17)碰到的问题与解决方法 . (20)4 系统测试 . (20)4.1 测试方法 (20)测试数据 . (22)5 系统使用说明 . (24)5.1 系统外观及接口说明 (24)系统操作使用说明 . (25)6 总结 . (26)6.1 自己所做工作 (26)收获与领会 . (26)7 参照文件 . (27)1.设计任务要求(1)制作一个输入直流电压 12V,输出为 3.6V 手机电池充电(充满电压为 4.2V )的无线充电系统。
(2)发射器与接收器之间采纳电感线圈耦合方式进行无线能量传输。
(3)发射器采纳 12V直流单电源供电,接收器供电只好来自耦合线圈。
(4)接收器考虑给手机电池充电,输出电压变换范围 0~4.2V ,500mA恒流充电。
充电特征以下列图所示。
1.基本部分( 50分)( 1)接收器工作指示(20分)要求:接受器接收到能量后用发光二极管指示。
测试方法:发射器采纳12V 直流供电。
接收线圈凑近发射线圈时(距离和角度不限),察看接收器工作指示灯能否点亮。
( 2)接收器恒压功能(20 分)要求:当接收器不接负载时输出电压为± 0.1V 。
测试方法:发射器采纳12V 直流供电。
在接收器不接任何负载条件下,当接收线圈凑近发射线圈并固定不动时(距离和角度不限),丈量接收器输出电压能否为± 0.1V 。
稍微挪动接收线圈时,丈量该电压应保持在±0.1V 范围内。
( 3)接收器恒流功能(10分)要求:接收器带负载条件下,当输出电压在0~4VDC变化时输出电流稳固在10mA或大于10mA(当知足发挥部分时,可直接得分),要求恒流偏差小于5mA(两线圈距离和角度不限)。
手机无线充电器方案设计

手机无线充电器方案设计随着科技的不断发展,手机等通讯设备的种类不断增多,人类已经不再满足传统式的充电方式.这种方式的弊端就是循环使用充电设备会导致插头的损坏或者不牢固,产生漏电的危险.虽然现在已经出现了手机无线充电系统,但是还不够完善.本文通过对手机无线充电系统的剖析,让读者进一步的了解无线充电系统。
引言早在上个世纪末期,手机无线充电设备就已经诞生了.当时,它以小巧便携等特点受到了很多年轻人的关注.但是当时的手机充电系统还是存在着很多弊端,例如传输距离短,难以让不同厂商出产的手机充电设备兼容等因素导致手机无线充电系统并没有广泛应用.1,手机无线充电的发展史自从两个世纪前的三十年代,迈克尔·法拉第在试验的过程中发现了随着周围磁场的变化就会产生电流.时隔六十年后,尼古拉·特斯拉以爱迪生助手的身份在光谱辐射研究时成功申请了一个专利.当时的科技非常落后,所以最终以效率低且存在危险而放弃.又经过了一个世纪的滞后,香港城市大学电子工程学系许树源教授对手机无线充电系统又做出了贡献,但是此充电系统必须让手机和充电器相接触.2007年初,美国麻省理工学院的马林·索尔贾希克(MarinSoljacic)带领一些学生对无线充电又登上了一个更大的台阶,他们在两米以外成功通过无线电流点亮了一盏家用灯泡.最近,英国一家公司根据电磁感应发明了一种新型无线充电器,它看上去就像一块塑料鼠标垫,将手机等放在垫上就能充电,并且可以同时给多个手机设备充电。
2,手机无线充电的特点手机无线充电最大的优点就是不需要手机连线进行充电,它是利用磁共振在手机无线充电器和手机之间通过空气进行充电,手机与充电器相感应,那么线圈就会与电容器在手机充电器和手机之间形成磁共振.同时,无线充电可以节省空间,只要进入到无线充电器的覆盖区域就会进行自动充电.在未来的发展中,还可以发展为通过电脑对手机芯片的控制来进行充电,预计每秒中充电的电量是现在的一百五十倍.所以,这一系统可以在未来得到广泛应用.从根本上说,虽然这一系统对处在充电场的人生命没有危害的,其中的原因是电量是可以控制在同一频率的共振中的线圈进行传输.但对于这种新型的无线充电技术,很多人还会产生担忧,就像几年前对Wi-Fi和手机天线杆不放心一样.现阶段的手机无线充电技术只是刚刚的开始,并没有成熟的技术与先例.我们面临的缺点主要有距离短、功率小、效率差等因素.并且假如一些无安全保证的手机电池进入充电区可能会导致火灾意外,所以从最初出现无线充电设备到现在还没有成熟的技术.新设计的无线充电系统想要达到目标,那么解决效率与安全的问题势在必行。
手机无线充电电子课程设计

手机无线充电电子课程设计一、课程目标知识目标:1. 学生能够理解并掌握无线充电的基本原理,包括电磁感应、磁共振等关键概念。
2. 学生能够描述手机无线充电技术的演变,对比不同无线充电技术的优缺点。
3. 学生能够了解并解释无线充电系统中的关键元件,如发射器、接收器、线圈等。
技能目标:1. 学生能够运用所学的无线充电知识,设计并搭建简单的手机无线充电模型。
2. 学生能够运用电路仿真软件对无线充电电路进行分析,评估其性能和效率。
3. 学生能够通过小组合作,解决在无线充电设计过程中遇到的问题,提高团队协作能力。
情感态度价值观目标:1. 培养学生对电子科技的兴趣和热情,激发他们探索未知、创新实践的欲望。
2. 培养学生关注环保、节能意识,认识到无线充电技术在绿色能源领域的应用价值。
3. 培养学生具备良好的学习习惯和自主学习能力,形成严谨、务实、创新的学习态度。
课程性质:本课程为电子技术实践课程,以项目式教学为主,结合理论知识与动手实践,培养学生的电子技术素养。
学生特点:学生处于初中年级,具有一定的物理基础和电子技术知识,好奇心强,喜欢动手实践。
教学要求:教师应注重理论与实践相结合,引导学生主动探究,关注学生的学习过程,及时给予反馈和指导,以提高学生的实践能力和创新能力。
通过课程目标的分解,使学生在完成具体学习成果的过程中,达到课程目标的要求。
二、教学内容1. 无线充电基本原理- 电磁感应原理- 磁共振原理- 无线充电技术分类及特点2. 手机无线充电技术发展- 无线充电技术的演变- 不同无线充电技术的优缺点对比- 无线充电在手机中的应用案例3. 无线充电系统关键元件- 发射器与接收器- 线圈及其设计- 整流器、滤波器等辅助元件4. 无线充电电路设计与搭建- 电路设计原理- 电路搭建与调试- 仿真软件的应用与实践5. 无线充电项目实践- 小组合作设计与制作简易无线充电模型- 性能评估与优化- 解决实际问题,提高团队协作能力教学内容安排与进度:第一课时:无线充电基本原理及其分类第二课时:手机无线充电技术发展第三课时:无线充电系统关键元件第四课时:无线充电电路设计与搭建第五课时:项目实践与总结教学内容与教材关联:本教学内容与教材中“第十章 电子技术实践”相关章节紧密关联,涵盖了无线充电技术的基本概念、元件、电路设计和实践操作,确保了教学内容的科学性和系统性。
基于无线充电技术的智能手机充电器设计与实现

基于无线充电技术的智能手机充电器设计与实现1.介绍随着科技的飞速发展,无线充电技术在智能手机充电领域的研究与应用日益受到关注。
本文主要针对无线充电技术进行深入探讨,设计并实现一款基于该技术的智能手机充电器,旨在提升用户的充电体验,使之更为便捷。
2.无线充电技术的背景和原理2.1无线充电技术的发展历程无线充电技术作为一种绿色、环保的充电方式,自20世纪初以来,已经经历了百余年的发展。
从最初的无线电能传输实验,到无线电充电、电磁感应式无线充电,再到现在的磁耦合共振无线充电,无线充电技术不断发展,为智能手机等电子设备的充电提供了新的可能。
2.2无线充电技术的原理和工作方式无线充电技术原理主要基于电磁感应和磁共振原理。
充电底座与手机充电器通过磁共振实现能量传输,从而为手机电池充电。
充电过程中,发射端和接收端通过调整磁场来实现高效能量传递。
2.3目前存在的问题和挑战尽管无线充电技术取得了显著进展,但仍存在一些问题和挑战,如充电效率、充电距离、充电安全性等方面的限制。
此外,不同厂商之间的无线充电标准不统一,也给无线充电技术的推广带来了困难。
3.智能手机充电器设计要求与方案选择3.1设计要求分析与总结在设计基于无线充电技术的智能手机充电器时,需要考虑充电效率、充电安全性、用户体验等多方面因素。
通过对市场需求和用户需求的分析,总结出关键设计要求。
3.2方案选择与比较针对设计要求,本文选取了多种方案进行比较,包括不同类型的无线充电技术、充电底座形状和材质等。
通过对比分析,选定了最适合的方案进行后续设计与实现。
4.智能手机充电器硬件设计与实现4.1具体硬件组成部分介绍充电器硬件部分主要包括发射端和接收端。
发射端负责将电能转化为磁场能量,接收端则负责将磁场能量转化为电能,为手机电池充电。
4.1.1发射端设计与实现发射端设计主要包括磁共振单元、控制电路、电源模块等部分。
通过合理布局和选型,实现高效、稳定的磁场能量传输。
手机无线充电系统设计_毕业论文

手机无线充电系统设计目录内容摘要 (1)关键词 (1)Abstract (1)Key words (1)第一章绪论 (2)1.1 手机无线充电系统的概述 (2)1.2 手机无线充电系统的特点 (3)1.3 手机无线充电系统的目前状况 (4)第二章手机无线充电的分类 (5)2.1 电磁感应充电 (5)2.2 无线电波充电 (5)2.3 电磁共振充电 (6)第三章手机无线充电系统原理与结构 (7)3.1 手机无线充电系统原理 (7)3.2 手机无线充电系统设计 (9)第四章手机无线充电系统的展望 (14)4.1 手机无线充电系统标准化 (14)4.2 手机无线充电系统的未来市场 (15)结束语 (17)参考文献 (18)致谢 (19)内容摘要:随着现在科学技术的不断进步,手机等通讯设备的功能越来越多。
但是每款手机都有一款与之匹配的充电器。
这样既会因为循环使用导致插头的损坏或者不牢固,产生漏电的危险,还会浪费资源,增加产品的成本,不环保,给人们的生活带来很多不便。
虽然目前手机无线充电系统已经上市,但是有很多不足之处。
基于此,本论文通过对手机无线充电系统的分析与展望,让读者对手机无线充电系统的了解更进一步。
关键词:手机无线;充电系统;分析;展望。
Abstract:With the continuous advancement of science and technology, mobile phones and other communication devices more and more powerful.But every phone has a matching charger. So not only because of recycled lead to damage to the plug or not securely, resulting in the risk of leakage, but also a waste of resources to increase the cost of the product, environmental damage, caused much inconvenience to people's lives. Although wireless charging system for mobile phones already on the market, but there are a lot of inadequacies. Based on this, the paper by phone wireless charging system analysis and Prospects readers phone wireless charging system further.Keywords: Mobile wireless; charging system; analysis; outlook.第一章绪论1.1 手机无线充电系统的概述1.1.1引言随着社会的不断发展和信息化的加快,随时随地保持沟通交流对人们来说越来越重要,同时对移动通信设备的质量和服务要求也越来越高。
基于无线充电技术的智能手机充电器设计与实现

基于无线充电技术的智能手机充电器设计与实现随着智能手机的普及和使用频率的增加,用户对智能手机充电器的需求也不断提升。
现如今,无线充电技术的发展使得智能手机充电变得更加便捷和舒适。
本文将介绍基于无线充电技术的智能手机充电器的设计与实现。
首先,基于无线充电技术的智能手机充电器的设计需要考虑以下几个要素:充电效率、充电速度、充电安全和兼容性。
充电效率是指充电器将电能转化为无线充电信号传输给智能手机的能力。
为了提高充电效率,可以采用一些新兴的无线充电技术,如磁共振充电技术或谐振充电技术。
这些技术可以提供更高的充电效率,减少能量损耗。
充电速度是指智能手机通过无线充电器充电时所需的时间。
为了提高充电速度,可以设计更高功率的无线充电器。
然而,要注意不要使智能手机过度充电,以免对电池造成损害。
充电安全是指无线充电器在使用过程中的安全性。
无线充电技术可能会产生电磁辐射,而这对人体健康有潜在的风险。
因此,在设计无线充电器时,要确保辐射水平符合相关标准,并采取合适的辐射防护措施。
兼容性是指智能手机充电器能够与多种智能手机充电接口兼容。
现如今,不同品牌的智能手机可能使用不同的充电接口,如USB-C、Micro USB等。
为了提高兼容性,可以设计多功能的无线充电器,支持多种充电接口,并提供适配器。
基于以上要素,我们可以开始设计和实现基于无线充电技术的智能手机充电器。
首先,确定无线充电技术和功率级别。
然后,选择合适的电路设计和材料,使得无线充电器能够传输充电信号,并保证充电安全。
最后,进行测试和调整,确保充电器符合设计要求。
总结起来,基于无线充电技术的智能手机充电器设计与实现需要考虑充电效率、充电速度、充电安全和兼容性等因素。
通过合理选择无线充电技术、设计适配的电路和材料,并进行测试和调整,可以实现一款高效、安全和兼容的智能手机充电器。
这将极大地方便用户的充电需求,提高智能手机的使用体验。
手机万能充设计报告

手机万能充设计报告1.引言1.1 概述在当今社会,手机已经成为人们生活中不可或缺的重要物品。
随着手机功能的不断增加,充电需求也变得越来越大。
然而,市面上的充电器种类繁多,使用起来存在很多不便之处。
因此,为了解决这一问题,我们设计了手机万能充,它能够满足不同品牌、不同规格手机的充电需求,极大地方便了人们的生活。
本报告将对手机万能充的设计原理、功能和优势进行全面分析,以期为手机充电领域的发展提供新的思路和方向。
1.2 文章结构文章结构部分的内容:本文分为引言、正文和结论三大部分。
引言部分概述了手机万能充设计报告的背景和重要性,介绍了文章结构和目的。
正文部分包括手机万能充的原理、功能和优势,对手机万能充的设计进行了深入的剖析和讨论,展示了技术和功能上的特点和优势。
结论部分总结了手机万能充的设计特点,并展望了未来发展的方向,最后以结束语结束全文。
1.3 目的目的是通过对手机万能充设计的分析和总结,深入了解手机万能充的原理、功能和优势,为手机充电领域的发展提供参考和指导。
同时,通过对未来发展的展望,为手机万能充的进一步改进和创新提供思路和方向。
最终旨在推动手机充电技术的不断进步,为用户提供更便捷、高效、安全的充电体验。
2.正文2.1 手机万能充的原理手机万能充的原理是利用电流的传输和转换技术,将不同的电源接口通过转换器转换成手机充电接口所需的电流和电压,从而实现对手机的快速充电。
手机万能充的原理基于电能转换的物理原理,通过电子元件和电路技术实现对不同电源的适配和充电输出,保障手机充电安全稳定。
手机万能充的原理主要包括电源识别、电压转换、温度控制等技术,通过智能控制电路实现对不同手机的充电需求的识别和满足,确保充电效率和安全性。
通过手机万能充的原理,可以实现对多种类型手机的充电需求,提高用户的充电体验,实现便捷高效的手机充电。
2.2 手机万能充的功能手机万能充具有多种功能,可以满足用户在不同场景下对手机充电的需求。
基于电磁感应原理的手机无线充电技术设计应用

基于电磁感应原理的手机无线充电技术设计应用一、本文概述随着科技的飞速发展和人们生活节奏的加快,手机作为日常生活中不可或缺的通讯和娱乐工具,其电池续航能力和充电效率成为了消费者日益关注的焦点。
传统的有线充电方式虽然在一定程度上满足了充电需求,但其带来的插拔不便、线缆混乱等问题也日益凸显。
因此,基于电磁感应原理的手机无线充电技术应运而生,以其高效、便捷的特性,逐渐成为了手机充电技术的新趋势。
本文旨在探讨基于电磁感应原理的手机无线充电技术的设计与应用。
我们将简要介绍电磁感应的基本原理及其在无线充电技术中的应用。
我们将详细分析手机无线充电系统的基本架构和关键技术,包括发射器与接收器的设计、功率传输与控制策略等。
在此基础上,我们将探讨无线充电技术在手机领域的应用现状和未来发展趋势。
我们将对无线充电技术面临的挑战和解决方案进行讨论,以期为该领域的研究者和开发者提供有益的参考和启示。
通过本文的阐述,我们期望能够增进对手机无线充电技术的理解和认识,推动其在实际应用中的普及和优化,为人们的日常生活带来更多便利和乐趣。
二、电磁感应原理及其在手机无线充电中的应用电磁感应原理是无线充电技术的核心理论基础。
简而言之,电磁感应是指当一个导体回路中的磁通量发生变化时,会在该回路中产生感应电动势,从而驱动电流的产生。
这一原理最早由迈克尔·法拉第在19世纪初发现,并被广泛应用于电机、发电机以及各类电磁设备中。
在手机无线充电领域,电磁感应原理的应用主要体现在两个方面:无线充电发射器和接收器。
无线充电发射器通常包含一个或多个线圈,通过交流电(AC)驱动产生变化的磁场。
手机内置的接收器同样是一个线圈,当它与发射器的磁场对准时,线圈中就会产生感应电流。
这个感应电流随后被用来为手机电池充电。
无线充电的效率、速度和距离主要受到几个因素的影响,包括发射器和接收器线圈的大小、形状和位置,以及它们之间的磁场耦合效率。
为了提高充电效率,现代无线充电系统通常采用高频交流电(如MHz级别)来驱动发射器线圈,同时利用磁场共振技术来提高磁场耦合效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
国家电工电子实验教学中心电子系统课程设计设计报告设计题目:手机无线充电系统目录1.设计任务要求(1)制作一个输入直流电压12V,输出为3.6V手机电池充电(充满电压为4.2V)的无线充电系统。
(2)发射器与接收器之间采用电感线圈耦合方式进行无线能量传输。
(3)发射器采用12V直流单电源供电,接收器供电只能来自耦合线圈。
(4)接收器考虑给手机电池充电,输出电压变换范围0~4.2V,500mA恒流充电。
充电特性如下图所示。
1.基本部分(50分)(1)接收器工作指示(20分)要求:接受器接收到能量后用发光二极管指示。
测试方法:发射器采用 12V直流供电。
接收线圈靠近发射线圈时(距离和角度不限),观察接收器工作指示灯是否点亮。
(2)接收器恒压功能(20分)要求:当接收器不接负载时输出电压为 4.2V±0.1V。
测试方法:发射器采用 12V直流供电。
在接收器不接任何负载条件下,当接收线圈靠近发射线圈并固定不动时(距离和角度不限),测量接收器输出电压是否为 4.2V±0.1V。
轻微移动接收线圈时,测量该电压应保持在 4.2V±0.1V范围内。
(3)接收器恒流功能(10分)要求:接收器带负载条件下,当输出电压在 0~4VDC变化时输出电流稳定在10mA或大于10mA(当满足发挥部分时,可直接得分),要求恒流误差小于 5mA(两线圈距离和角度不限)。
测试方法:发射器采用 12V直流供电。
当接收线圈靠近发射器线圈时(距离和角度不限),测量恒流值是否大于10mA及是否满足恒流误差要求。
2.发挥部分(50分)(1)充电指示(20分)要求:当接收器给负载充电时,充电指示灯亮;充满后,充满指示灯亮。
测试方法:发射器采用 12V直流供电。
当接收器线圈靠近发射器线圈时(距离和角度不限),测量恒流充电阶段充电指示灯是否点亮;测量当恒流充电电流减小后充满指示灯是否点亮。
(2)扩大充电电流(30分)要求:尽可能提高恒流充电电流。
测试方法:当接收器线圈靠近发射器线圈时(距离和角度不限),测量所能达到的最大恒流指标,要求恒流误差小于 5mA,充满后输出电压为 4.1~4.2VDC(按下图计算得分)。
2 设计方案及论证2.1 任务分析1.发射模块:由振荡信号发生器和并联谐振功率放大器两部分组成; (1)功能和指标要求:1):发射器采用12V 直流单电源供电,产生一定频率变化的电流; 2):发射器与接收器之间采用电感线圈耦合方式进行无线能量传输;接收器感应到的变化的电流应满足一定的数值,以驱动充电电路正常工作。
(2)理论实现方法:利用将变化的电流转化成变化的磁场,通过并联谐振的方式,在接收端产生感应电流来实现能量的传输,但此方式有很大的能量衰耗,即接收端感应得到的能量并不大,所以需要在发射端采用功率放大电路提高功率,使得接收端感应产生的变化的电流达到满足要求一定数值;1):振荡信号发生器电路:采用NE555芯片构成振荡频率在一定范围内可以调节的信号发生器,为功放电路提供激励信号;频率CR R f )2(43.1211+=;V12+2): 并联谐振功率放大器电路:由功率放大器电路和LC 并联谐振回路构成。
采用LC 并联谐振电路满足发射器与接收器之间通过电感线圈耦合方式进行无线能量传输,频率11221C L f π=且需要满足21f f = :当功率放大器的并联谐振回路的谐振频率2f 与振荡信号发生器的频率1f 相同时,并联谐振功率放大器发生谐振,此时线圈中的电压和电流达最大值,从而产生最大的交变电磁场。
当发射线圈回路与接收线圈回路均处于谐振状态时,有最好的能量传输效果,即满足2233221其中,C L f f f π==发射端与接收端的谐振回路由于场效应管功率放大具有激励功率小,输出功率大,功耗低等特性,所以采用场效应管构成的功率放大电路来提高发射端的输出频率;2.接收模块:由并联谐振电路、整流及滤波电路、恒流电路、稳压电路和充电指示灯电路五部分组成;(1)功能和指标要求:1):通过感应产生满足一定数值要求的感应电流;2):将感应过来的交流电转化成直流电,接收器工作指示灯点亮。
;3):恒流:接收器带负载条件下,当输出电压在0~4VDC 变化时输出电流稳定在大于500mA ,要求恒流误差小于 5mA (两线圈距离和角度不限)。
4):稳压:当接收器不接负载时输出电压为 4.2V ±0.1V 。
5):当接收器给负载充电时,充电指示灯亮;充满后,充满指示灯亮。
(2)理论实现方法:利用将变化的磁场转化成变化的电流,通过并联谐振回路的方式,当发射线圈回路与接收线圈回路均处于谐振状态时,有最好的能量传输效果,在接收端产生感应电流; 通过单相桥式整流电路将交流电转化成直流电,再通过电容滤波电路进行滤波,去除交流分量,并利用产生的直流电压驱动发光二极管,实现接收器工作指示灯的点亮;利用LM317芯片进行恒流和稳压的实现;通过LM324电压比较器,将负载端的电压与充电的稳压值进行比较,实现充电指示灯和充满指示灯的点亮;1):并联谐振电路:与发射端的并联谐振电路构成谐振回路,当发射线圈回路与接收线圈回路均处于谐振状态时,有最好的能量传输效果,即满足:2231123221,21其中,C L f C L f f f ππ===发射端与接收端的谐振回路 2):整流及滤波电路:对交流电压变成直流电压,滤波电容在滤去交流分量,得到稳定的直流电压;由于二极管的单向导电性将交流电压变换成直流电压,但这部分直流电压仍含有很大的交流分量,再通过滤波电容的充放电过程,除去交流分量,得到平稳的直流分量;选择的二极管所能承受的最大电压要大于22U ,所能承受的电流要大于回路里面电路;电容充放电过程:C 越大, R L 越大, τ放电将越大,曲线越平滑,脉动越小。
3):恒流电路:利用LM317芯片实现;4):稳压电路:利用LM317芯片实现;5):充电指示灯电路:利用TL431提供基准电压,再利用LM324构成电压比较器在输出端点亮发光二极管,其中发光二极管串联一个电阻用来限制电流过大;2.2 方案比较一、设计方案一发射电路:发射电路由振荡信号发生器和谐振功率放大器两部分组成;由NE555构成振荡出一定频率的信号发生器,为功放电路提供激励信号;功率放大器由场效应管IRF840构成,当功率放大器的选频回路的谐振频率与激励信号频率相同时,功率放大器发生谐振,此时线圈中的电压和电流达最大值;接收电路:1):由并联谐振电路与发射端的并联谐振电路构成并联谐振回路,当发射线圈回路与接收线圈回路均处于谐振状态时,具有最好的能量传输效果;2):产生的交流电压经过整流及滤波电路转换成直流电压,电源工作的发光二极管指示灯并联在滤波电容的两端,指示电源工作;3):该直流电压驱动LM317芯片构成的恒流电路工作,保证了负载的恒流充电;4):TL431构成稳压电路,提供负载充电的稳压值并接到由一片LM324构成的电压比较器的同相端,而反相端接R2采样电阻的电压,这部分作为反馈电路,已达到负载充电时的稳压条件,反馈电路的工作原理:若充电负载两端电压小于稳压值时,由于反相端电压小于同相端的电压,电压比较器输出高电平,由于二极管导通时其两端电压恒定,所以R2端电压跟随电压比较器的输出电压而变大,直至R2端电压等于稳压值;若充电负载两端电压大于稳压值,由于反相端电压大于同相端的电压,电压比较器输出低电平,由于二极管导通时其两端电压恒定,所以R2端电压跟随电压比较器的输出电压而变小,直至R2端电压等于稳压值,由此,通过采样电阻R2的电压反馈,使得充电负载两端的电压恒定不变,已达到稳压的目的;5):TL431构成稳压电路,提供负载充电的稳压值并接到由一片LM324构成的电压比较器的同相端,而反相端接充电负载的电压,当负载充电时,由于反相端的电压小于同相端的电压,所以LM324构成的电压比较器输出高电平,点亮充电指示灯,当负载充满电后,由于反相端的电压不小于同相端的电压,电压比较器的输出电压发生跳变,熄灭充电指示灯;6):TL431构成稳压电路,提供负载充电的稳压值并接到由一片LM324构成的电压比较器的反相端,而同相端接充电负载的电压,当负载充电时,由于同相端的电压小于反相端的电压,所以LM324构成的电压比较器输出低电平,充满电指示灯不会亮,当负载充满电后,由于同相端的电压不小于反相端的电压,电压比较器的输出电压发生跳变,点亮充满电指示灯;二、设计方案二发射电路:由NE555构成振荡出一定频率的信号发生器,为功放电路提供激励信号;功率放大器由乙类互补推挽功率放大电路和场效应管构成功率放大电路组成,乙类互补推挽功率放大电路对一定频率的信号进行小功率放大后,再用小功率激励场效应管构成的大功率放大电路工作;当功率放大器的选频回路的谐振频率与激励信号频率相同时,功率放大器发生谐振,此时线圈中的电压和电流达最大值;接收电路:1):由并联谐振电路与发射端的并联谐振电路构成并联谐振回路,当发射线圈回路与接收线圈回路均处于谐振状态时,具有最好的能量传输效果;2):产生的交流电压经过整流及滤波电路转换成直流电压并驱动电源指示灯工作;3):由两片LM317芯片构成了恒流稳压功能的充电电路;4):TL431作为辅助电源,给两片LM324构成的电压比较器提供基准电压,两个电压比较器驱动充电指示灯和充满电指示灯工作;三、两种方案进行比较:1):发射电路:方案一的发射电路直接由场效应管IRF840进行功率发大,但由于场效应管栅极所加信号是一定频率的信号,所以仅在半个周期内对信号有功率放大作用,可能不够驱动充电电路恒流500mA以上的效果,所以第二种方案的发射电路采用乙类互补推挽功率放大电路将完整周期的信号先进行小功率放大,再利用小功率激励场效应管放大电路,在信号的完整周期里面输出大功率,使得功率放大的效果更好;2):接收电路:方案一由LM317构成的恒流电路实现恒流并采用了LM324构成的电压比较器,通过对采样电阻的电压反馈实现稳压,但是由于电压比较器反相和同相两端电压相差较小时,会有一定的误差产生,使实现的稳压有微小的变化,而方案二是由两片LM317构成的恒流稳压电路实现恒流稳压功能,不同于前一种方案通过电压比较器反馈电压实现稳压,它没有电压比较器带来的微小误差,稳压效果相对更好一些;所以由以上比较,我们组采用了第二种方案。
2.3 系统结构设计1、结构框图:2、系统原理: 发射电路:1):振荡信号发生器电路:采用NE555芯片构成振荡频率在一定范围内可以调节的信号发生器,为功放电路提供激励信号;频率CR R f )2(43.1211+=;VU cc 12+=2):乙类互补推挽和场效应管构成的功率放大电路:乙类互补推挽功率放大电路将555的一定频率的信号进行整个周期的小功率放大,然后此小功率激励场效应管大功率放大电路输出大功率;当功率放大器的并联谐振回路的谐振频率2f 与振荡信号发生器的频率1f 相同时,并联谐振功率放大器发生谐振,此时线圈中的电压和电流达最大值,从而产生最大的交变电磁场。