Capon-波束形成matlab仿真(附源代码)教学内容
波束形成Matlab程序

1?均匀线阵方向图%8阵元均匀线阵方向图,来波方向为clc; clear all; close all;0度imag=sqrt(_1);element_num=8;% 阵元数为8d_lamda=1/2;%阵元间距d与波长lamda的关系theta=li nspace(-pi/2,pi/2,200);theta0=0;% 来波方向w=exp(imag*2*pi*dl_lamda*sin(theta0)*[0:eleme nt_nu m-1]');for j=1:le ngth(theta)a=exp(imag*2*pi*dd_l amda*si n(theta(j))*[0:eleme nt_nu m-1]'); p(j)=w'*a;end figure;plot(theta,abs(p)),grid on xlabel('theta/radia n')ylabel('amplitude')title('8 阵元均匀线阵方向图')°2 8阵元均匀线阵方向图7654321-15 -1 -0 5 0 06thetaradian1 158当来波方向为45度时,仿真图如下8阵元均匀线阵方向图如下,来波方向为0 度,20log (dB)8阵元均苛銭阵方向图来波方向为0度随着阵元数的增加,波束宽度变窄,分辨力提高:仿真图如下Q d pE =ro 二2. 波束宽度与波达方向及阵元数的关系clcclear allclose allima=sqrt(-1);element_num1=16; %阵元数element_num2=128;element_num3=1024;lamda=0.03; %波长为0.03 米d=1/2*lamda; % 阵元间距与波长的关系theta=0:0.5:90; forj=1:length(theta);fai(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_n um1*d));psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_n um2*d));beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_ num3*d));endfigure; plot(theta,fai,'r',theta,psi,'b',theta,beta,'g'),grid on xlabel('theta'); ylabel('Width in radians')title(' 波束宽度与波达方向及阵元数的关系') 仿真图如下:。
Capon 波束形成matlab仿真(附源代码)

Capon波束形成阵列N=16,信号0-30θ︒=,干扰为160θ︒=,219θ︒=,345θ︒=,干扰功率分别为:40dB,35dB,50dB。
Capon波束形成后的方向图和功率谱如下:为了比较接收数据直接估计噪声协方差矩阵和利用干扰+噪声估计协方差矩阵的Capon 波束形成的差异,进行如下仿真:可以看出利用干扰+噪声估计协方差矩阵的方向图性能较优于接收数据直接估计噪声协方差矩阵的方向图。
代码:clc;clear all ;close all;ima=sqrt(-1);element_num=8; %阵元数d_lamda=1/2; %阵元间距与波长的关系theta=-90:0.5:90; %范围theta0=-30; %来波方向theta1=60; %干扰方向1theta2=19; %干扰方向2theta3=45; %干扰方向3L=1000; %采样单元数for i=1:L;amp0=10*randn(1);%信号的幅度随机产生,保证信号之间是不相关的amp1=100*randn(1);%输入阵列的噪声amp2=sqrt(10^3.5)*randn(1);%输入阵列的噪声amp3=sqrt(10^5)*randn(1);%输入阵列的噪声ampn=3;%噪声x(:,i)=amp0*exp(ima*2*pi*1/2*sin(theta0*pi/180)*[0:element_num-1]')+...amp1*exp(ima*2*pi*1/2*sin(theta1*pi/180)*[0:element_num-1]')+...amp2*exp(ima*2*pi*1/2*sin(theta2*pi/180)*[0:element_num-1]')+...amp3*exp(ima*2*pi*1/2*sin(theta3*pi/180)*[0:element_num-1]')+...ampn*(randn(element_num,1)+ima*randn(element_num,1));endRx=1/L*x* x';R=inv(Rx);steer=exp(ima*2*pi*1/2*sin(theta0*pi/180)*[0:element_num-1]');w=R*steer/(steer'*R*steer);%Capon最优权矢量for j=1:length(theta);a=exp(ima*2*pi*d_lamda*sin(theta(j)*pi/180)*[0:element_num-1]');f(j)=w'*a;p(j)=1/(a'*R*a);endF=20*log10(abs(f)/(max(abs(f))));P=20*log10(abs(p)/(max(abs(p))));%此处是功率的对数形式figure;% subplot(121)plot(theta,F),grid on,hold onplot(theta0,-80:0,'.')plot(theta1,-80:0,'.')plot(theta2,-80:0,'.')plot(theta3,-80:0,'.')xlabel('theta/o');ylabel('F/dB');title('Capon beamforming方向图') % axis([-90 90 -50 0]);% subplot(122)figure;plot(theta,P),grid onxlabel('theta/o');ylabel('功率/dB');title('Capon beamforming功率谱')。
波束形成Matlab程序

1•均匀线阵方向图%8阵元均匀线阵方向图,来波方向为0度clc;clear all;close all;imag=sqrt(_1);element_num=8;% 阵元数为8d_lamda=1/2;%阵元间距d与波长lamda的关系theta=li nspace(-pi/2,pi/2,200);theta0=0;%来波方向w=exp(imag*2*pi*dl_lamda*si n(theta0)*[0:eleme nt_nu m-1]');for j=1:le ngth(theta)a=exp(imag*2*pi*dd_l amda*si n(theta(j))*[0:eleme nt_nu m-1]'); p(j)=w'*a;endfigure;plot(theta,abs(p)),grid onxlabel('theta/radia n')ylabel('amplitude')title('8阵元均匀线阵方向图')8阵元均匀线阵方向图当来波方向为45度时,仿真图如下:8阵元均匀线阵方向图如下,来波方向为0度,20log (dB )8阵元均苛銭阵方向图来波方向为0度 S =-s ==d E B随着阵元数的增加,波束宽度变窄,分辨力提高:仿真图如下: Qp=二 d E ro2. 波束宽度与波达方向及阵元数的关系clcclear allclose allima=sqrt(-1);element_num1=16; %阵元数element_num2=128;element_num3=1024;lamda=0.03; %波长为0.03 米d=1/2*lamda; %阵元间距与波长的关系theta=0:0.5:90;for j=1:length(theta);fai(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_n um1*d));psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_n um2*d));beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_ num3*d));endfigure; plot(theta,fai,'r',theta,psi,'b',theta,beta,'g'),grid on xlabel('theta');ylabel('Width in radians')title(' 波束宽度与波达方向及阵元数的关系') 仿真图如下:。
自适应波束形成与Matlab程序代码注解

1.均匀线阵方向图(1)matlab 程序clc;clear all;close all;imag=sqrt(-1);element_num=32;%阵元数为8d_lamda=1/2;%阵元间距d与波长lamda的关系theta=linspace(-pi/2,pi/2,200);theta0=0;%来波方向w=exp(imag*2*pi*d_lamda*sin(theta0)*[0:element_num-1]');for j=1:length(theta)a=exp(imag*2*pi*d_lamda*sin(theta(j))*[0:element_num-1]');p(j)=w'*a;endpatternmag=abs(p);patternmagnorm=patternmag/max(max(patternmag));patterndB=20*log10(patternmag);patterndBnorm=20*log10(patternmagnorm);figure(1)plot(theta*180/pi,patternmag);grid on;xlabel('theta/radian')ylabel('amplitude/dB')title([num2str(element_num) '阵元均匀线阵方向图','来波方向为' num2str(theta0*180/pi) '度']);hold on;figure(2)plot(theta,patterndBnorm,'r');grid on;xlabel('theta/radian')ylabel('amplitude/dB')title([num2str(element_num) '阵元均匀线阵方向图','来波方向为' num2str(theta0*180/pi) '度']);axis([-1.5 1.5 -50 0]);(2)仿真结果A.来波方向为0°归一化B.来波方向为45°C.随着阵元数的增加,波束宽度变窄,分辨力提高,仿真图如下:2.波束宽度与波达方向及阵元数的关系(1)matlab 程序clc;clear all;close all;imag=sqrt(-1);element_num1=16;element_num2=128;element_num3=1024;lambda=0.1;d=0.5*lambda;theta=0:0.5:90;for j=1:length(theta)fai(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lambda/(element_num1*d)); psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lambda/(element_num2*d)); beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lambda/(element_num3*d)); endfigureplot(theta,fai,'r',theta,psi,'b',theta,beta,'g');grid on;xlabel('theta');ylabel('width in radians');title('波束宽度与达波方向及阵元数目的关系');legend('N=16','N=128','N=1024');(2)仿真结果结果3. 当阵元间距/2d λ>时,会出现栅瓣,导致空间模糊(1)仿真结果4. 类似于时域滤波,天线方向图是最优权的傅立叶变换(1)matlab 程序clc;clear all;close all;imag=sqrt(-1);element_num=32;source_num=1;d_lambda=0.5;theta=linspace(-pi/2,pi/2,200);theta0=0;w=exp(imag*2*pi*d_lambda*sin(theta0)*[0:element_num-1]');for j=1:length(theta)a=exp(imag*2*pi*d_lambda*sin(theta(j))*[0:element_num-1]'); p(j)=w'*a;endpatternmag=abs(p);patternmagnorm=patternmag/max(max(patternmag));patterndB=20*log10(patternmag);patterndBnorm=20*log10(patternmagnorm);figure(1)subplot(1,2,1);plot(theta,patterndBnorm);grid on;xlabel('theta/radian');ylabel('amplitude/dB');axis([-2.0 2.0 -50 0]);subplot(1,2,2);pfft=fftshift(fft(w,256));pfftmag=abs(pfft);pfftmagnorm=pfftmag/max(max(pfftmag));pfftdB=20*log10(pfftmagnorm);pfftdBnorm=20*log10(pfftmagnorm);plot(linspace(-pi/2,pi/2,256),pfftdBnorm);grid on;xlabel('theta/radian');ylabel('FFT_amplitude/dB');axis([-2.0 2.0 -50 0]);(2)仿真结果5.最大信噪比准则方向图和功率谱(1)matlab 程序clc;clear all;close all;imag=sqrt(-1);element_num=8;%阵元数为8d_lambda=0.5;%间距为半波长theta=-90:0.5:90;%扫描围theta0=0;%来波方位theta1=20;%干扰方向L=512;%采样点数for i=1:Lamp0=10*randn(1);amp1=200*randn(1);ampn=1;s(:,i)=amp0*exp(imag*2*pi*0.5*sin(theta0*pi/180)*[0:element_num-1]');j(:,i)=amp1*exp(imag*2*pi*0.5*sin(theta1*pi/180)*[0:element_num-1]');n(:,i)=ampn*exp(randn(element_num,1)+imag*randn(element_num,1)); endRs=1/L*s*s';%信号自相关矩阵Rnj=1/L*(j*j'+n*n'); %干扰+噪声的自相关矩阵[V,D]=eig(Rs,Rnj); %(Rs,Rnj)的广义特征值和特征向量[D,I]=sort(diag(D)); %特征向量排序Wopt=V(:,I(8));%最优权矢量for j=1:length(theta)a=exp(imag*2*pi*d_lambda*sin(theta(j)*pi/180)*[0:element_num-1]');f(j)=Wopt'*a;p(j)=a'*Rs*a+a'*Rnj*a;endF=20*log10(abs(f)/max(max(abs(f))));P=20*log10(abs(p)/max(max(abs(p))));subplot(1,2,1)plot(theta,F);grid on;hold on;plot(theta0,-80:0,'.');plot(theta1,-80:0,'.');xlabel('theta/0');ylabel('F in dB');title('max-SNR 方向图');axis([-90 90 -80 0]);hold on;subplot(1,2,2);plot(theta,P,'r');grid on;xlabel('theta/0'); ylabel('功率 in dB'); title('max-SNR 功率谱'); grid on;axis([-90 90 -80 0]); (2)仿真结果6.ASC旁瓣相消----MSE准则(1) matlab 程序clc;close all;clear all;imag=sqrt(-1);M=32;%辅助天线数目d_lambda=0.5;%阵元间距theta0=-30;%来波方向theta1=60;%干扰方向L=512;%采样单元数s=zeros(1,512); %预划分一个区域for ii=1:Lamp0=1*randn(1);%信号的幅度随机产生,保证信号之间是不相关的amp1=200*randn(1);ampn=1;jam(:,ii)=amp1*exp(imag*2*pi*d_lambda*sin(theta1*pi/180)*[0:M-1]' )+ampn*(randn(M,1)+imag*randn(M,1)); %干扰+噪声s(ii)=amp0*exp(imag*2*pi*d_lambda*sin(theta0*pi/180))+amp1*exp(im ag*2*pi*d_lambda*sin(theta1*pi/180))+ampn*(randn(1,1)+imag*randn( 1,1));%接收信号(信号+干扰+噪声)s0(ii)=amp0*exp(imag*2*pi*d_lambda*sin(theta0*pi/180));endRx=1/L*jam*jam';r_xd=1/L*jam*s';Wopt=pinv(Rx)*r_xd;delta=s0-(s-Wopt'*jam);delta1=abs(mean(delta.^2)-(mean(delta)).^2);theta=linspace(-pi/2,pi/2,200);for jj=1:length(theta)a=exp(imag*2*pi*d_lambda*sin(theta(jj))*[0:M-1]');f(jj)=Wopt'*a;endF=20*log10(abs(f)/max(max(abs(f))));figure(1)plot(theta*180/pi,F);grid on;hold on;plot(theta0,-50:0,'.');plot(theta1,-50:0,'.'); xlabel('theta/°');ylabel('F/dB');title('MSE准则下的方向图'); axis([-90 90 -50 0]);(2)仿真结果7.线性约束最小方差(LCMV)准则(1)matlab 程序clc;clear all;close all;imag=sqrt(-1);element_num=8;%阵元数d_lambda=0.5;%阵元间距与波长的关系theta=-90:0.5:90; %搜索围theta0=0; %三个信号源的来波方向theta1=30;theta2=60;L=512;%采样单元数for i=1:Lamp0=10*randn(1);amp1=100*randn(1);amp2=10*randn(1);ampn=10;x(:,i)=amp0*exp(imag*2*pi*d_lambda*sin(theta0*pi/180)*[0:element_num-1]')+am p1*exp(imag*2*pi*d_lambda*sin(theta1*pi/180)*[0:element_num-1]')+amp2*exp(im ag*2*pi*d_lambda*sin(theta2*pi/180)*[0:element_num-1]')+ampn*(randn(element_ num,1)+imag*randn(element_num,1));endRx=1/L*x*x';steer1=exp(imag*2*pi*d_lambda*sin(theta0*pi/180)*[0:element_num-1]');steer2=exp(imag*2*pi*d_lambda*sin(theta1*pi/180)*[0:element_num-1]');steer3=exp(imag*2*pi*d_lambda*sin(theta2*pi/180)*[0:element_num-1]');C=[steer1 steer2 steer3];F=[1 0 1]';%把三个方向都作为来波方向w=inv(Rx)*C*(inv(C'*inv(Rx)*C))*F;for j=1:length(theta)a=exp(imag*2*pi*d_lambda*sin(theta(j)*pi/180)*[0:element_num-1]');f(j)=w'*a;p(j)=1/(a'*inv(Rx)*a);endF=20*log10(abs(f)/(max(max(abs(f)))));subplot(1,2,1)plot(theta,F);grid on;hold on;plot(theta0,-20:0,'.');plot(theta1,-20:0,'.');plot(theta2,-20:0,'.');xlabel('theta/°');ylabel('F/dB');title('Capon beamforming 方向图');axis([-90 90 -20 0]);P=20*log10(abs(p)/(max(max(abs(p))))); subplot(1,2,2)plot(theta,P);grid on;hold on;plot(theta0,-20:0,'.');plot(theta1,-20:0,'.');plot(theta2,-20:0,'.');xlabel('theta/°');ylabel('P/dB');title('Capon beamforming 功率谱');axis([-90 90 -20 0]);(2)仿真结果8.Capon beamforming(1)matlab 程序clc;clear all;close all;imag=sqrt(-1);element_num=8;%阵元数d_lambda=0.5;%阵元间距与波长的关系theta=-90:0.5:90; %搜索围theta0=0; %三个信号源的来波方向theta1=20;theta2=60;L=1000;%采样单元数for i=1:Lamp0=10*randn(1);amp1=200*randn(1);amp2=200*randn(1);ampn=3;x(:,i)=amp0*exp(imag*2*pi*d_lambda*sin(theta0*pi/180)*[0:element_num-1]')+am p1*exp(imag*2*pi*d_lambda*sin(theta1*pi/180)*[0:element_num-1]')+amp2*exp(im ag*2*pi*d_lambda*sin(theta2*pi/180)*[0:element_num-1]')+ampn*(randn(element_ num,1)+imag*randn(element_num,1));endRx=1/L*x*x';R=inv(Rx);steer=exp(imag*2*pi*d_lambda*sin(theta0*pi/180)*[0:element_num-1]');w=R*steer/(steer'*R*steer);%最优权矢量for j=1:length(theta)a=exp(imag*2*pi*d_lambda*sin(theta(j)*pi/180)*[0:element_num-1]');f(j)=w'*a;p(j)=1/(a'*R*a);endF=20*log10(abs(f)/(max(max(abs(f)))));subplot(1,2,1)plot(theta,F);grid on;hold on;plot(theta0,-50:0,'.');plot(theta1,-50:0,'.');plot(theta2,-50:0,'.');xlabel('theta/°');ylabel('F/dB');title('Capon beamforming 方向图');axis([-90 90 -50 0]);P=20*log10(abs(p)/(max(max(abs(p))))); subplot(1,2,2)plot(theta,P);grid on;hold on;xlabel('theta/°');ylabel('P/dB');title('Capon beamforming 功率谱');axis([-90 90 -90 0]);(2)仿真结果9.不同方法估计协方差矩阵的Capon波束形成(1)matlab 程序clc;clear all;close all;imag=sqrt(-1);element_num=8;%阵元数为8d_lambda=0.5;%间距为半波长theta=-90:0.5:90;%扫描围theta0=0;%来波方向theta1=50;%干扰方向L=1024;%采样单元数for i=1:Lamp0=10*randn(1);amp1=50*randn(1);ampn=0.5;s(:,i)=amp0*exp(imag*2*pi*d_lambda*sin(theta0*pi/180)*[0:element_num-1]');j(:,i)=amp1*exp(imag*2*pi*d_lambda*sin(theta1*pi/180)*[0:element_num-1]'); n(:,i)=ampn*exp(imag*2*pi*randn(1)*[0:element_num-1]');endRx=1/L*(s+j+n)*(s+j+n)';%接收信号自相关矩阵Rnj=1/L*(j+n)*(j+n)';%%干拢+噪声的自相关矩阵e=exp(imag*2*pi*d_lambda*sin(theta0*pi/180)*[0:element_num-1]'); Wopt_Rx=inv(Rx)*e/(e'*inv(Rx)*e);%采用接收信号的权矢量Wopt_Rnj=inv(Rnj)*e/(e'*inv(Rnj)*e);%采用干拢+噪声信号的权矢量for j=1:length(theta)a=exp(imag*2*pi*d_lambda*sin(theta(j)*pi/180)*[0:element_num-1]');f1(j)=Wopt_Rx'*a;f2(j)=Wopt_Rnj'*a;endF1=20*log10(abs(f1)/max(max(abs(f1))));F2=20*log10(abs(f2/max(max(abs(f2)))));figure;plot(theta,F1,theta,F2,'r');grid on;hold on;plot(theta0,-50:0,'.');plot(theta1,-50:0,'.');xlabel('theta/°');ylabel('F(1,2)/dB');title('不同方法估计协方差矩阵的Capon波束形成');axis([-90 90 -60 0]);(2)仿真结果10.多点约束的Capon波束形成和方向图(1)matlab 程序clc;clear all;close all;imag=sqrt(-1);element_num=8;d_lambda=0.5;theta=-90:0.3:90;theta0=0;theta1=20;theta2=50;L=512;Rx=zeros(element_num,element_num);%产生协方差矩阵for i=1:Lamp0=10*randn(1);amp1=10*randn(1);amp2=50*randn(1);ampn=0.5*randn(1);%噪声的幅度随机产生,保证噪声与信号之间是不相关的j(:,i)=amp1*exp(imag*2*pi*d_lambda*sin(theta1*pi/180)*[0:element_num-1]') +amp2*exp(imag*2*pi*d_lambda*sin(theta2*pi/180)*[0:element_num-1]')+ampn*exp (imag*2*pi*randn(1)*[0:element_num-1]');x(:,i)=amp0*exp(imag*2*pi*d_lambda*sin(theta0*pi/180)*[0:element_num-1]') +j(:,i);%表示接收信号endRx=1/L*x*x';R=inv(Rx);w=amp0*exp(imag*2*pi*d_lambda*sin(theta0*pi/180)*[0:element_num-1]')+amp1*ex p(imag*2*pi*d_lambda*sin(theta1*pi/180)*[0:element_num-1]')+amp2*exp(imag*2* pi*d_lambda*sin(theta2*pi/180)*[0:element_num-1]');for j=1:length(theta)a=exp(imag*2*pi*d_lambda*sin(theta(j)*pi/180)*[0:element_num-1]');f(j)=w'*a;p(j)=1/(a'*R*a);endF=20*log10(abs(f)/max(max(abs(f))));P=20*log10(abs(p)/max(max(abs(p))));figure;subplot(1,2,1);plot(theta,F);grid on;hold on;plot(theta0,-50:0,'.');plot(theta1,-50:0,'.');plot(theta2,-50:0,'.');xlabel('theta/°');ylabel('F/dB');title('Capon beamforming方向图'); axis([-90 90 -50 0]);subplot(1,2,2);plot(theta,P);hold on;grid on;plot(theta0,-90:0,'.');plot(theta1,-90:0,'.');plot(theta2,-90:0,'.');xlabel('theta/°');ylabel('P/dB');title('Capon beamforming功率谱');(2)仿真结果11.自适应波束形成方向图(1)matlab 程序clc;clear all;close all;imag=sqrt(-1);element_num=8;c=3e8;f=5e8;lambda=c/f;d_lambda=0.5;theta=-90:0.5:90;theta0=0;theta1=45;theta2=60;L=2048;for i=1:Lamp0=10*randn(1);amp1=100*randn(1);amp2=100*randn(1);ampn=10;x(:,i)=amp0*exp(imag*2*pi*d_lambda*sin(theta0*pi/180)*[0:element_num-1]')+am p1*exp(imag*2*pi*d_lambda*sin(theta1*pi/180)*[0:element_num-1]')+amp2*exp(im ag*2*pi*d_lambda*sin(theta2*pi/180)*[0:element_num-1]')+ampn*(randn(element_ num,1)+imag*randn(element_num,1));endRx=1/L*x*x';steer1=exp(imag*2*pi*d_lambda*sin(theta0*pi/180)*[0:element_num-1]');steer2=exp(imag*2*pi*d_lambda*sin(theta1*pi/180)*[0:element_num-1]');steer3=exp(imag*2*pi*d_lambda*sin(theta2*pi/180)*[0:element_num-1]');C=[steer1 steer2 steer3];F=[1 0 0]';w=inv(Rx)*C*(inv(C'*inv(Rx)*C))*F;for j=1:length(theta)a=exp(imag*2*pi*d_lambda*sin(theta(j)*pi/180)*[0:element_num-1]');f(j)=w'*a;p(j)=1/(a'*inv(Rx)*a);endF=20*log10(abs(f)/(max(max(abs(f)))));subplot(1,2,1)plot(theta,F);grid on;hold on;plot(theta0,-50:0,'.');plot(theta1,-50:0,'.');plot(theta2,-50:0,'.');xlabel('theta/°');ylabel('F/dB');title('自适应波束形成方向图');axis([-90 90 -50 0]);P=20*log10(abs(p)/(max(max(abs(p))))); subplot(1,2,2)plot(theta,P);grid on;hold on;xlabel('theta/°');ylabel('P/dB');title('功率谱');axis([-90 90 -50 0]);(2)仿真结果(3)GUI界面。
自适应波束形成与Matlab程序代码注解

xlabel('theta/radian')
ylabel('amplitude/dB')
title([num2str(element_num)'阵元均匀线阵方向图','来波方向为'num2str(theta0*180/pi)'度']);
axis([-1.5 1.5 -50 0]);
(2)仿真结果
A.来波方向为0°
不归一化
归一化
B.来波方向为45°
不归一化
归一化
C.随着阵元数的增加,波束宽度变窄,分辨力提高,仿真图如下:
非归一化
归一化
不归一化
归一化
2.波束宽度与波达方向及阵元数的关系
(1)matlab 程序
clc;
clearall;
closeall;
imag=sqrt(-1);
element_num1=16;
psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lambda/(element_num2*d));
beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lambda/(element_num3*d));
end
gridon;
xlabel('theta/radian')
ylabel('amplitude/dB')
title([num2str(element_num)'阵元均匀线阵方向图','来波方向为'num2str(theta0*180/pi)'度']);
Capon-波束形成matlab仿真(附源代码)教学内容

Ca p o n - 波束形成ma t l a b 仿真(附源代码)Capon波束形成阵列N=16,信号o -30 ,干扰为! 60 , 2 19 , 3 45 ,干扰功率分别为:40dB,35dB,50dB。
Capon波束形成后的方向图和功率谱如下:-10-20-30E -40B0 1D0Capon beamForming \门;[7Capon beftinfonning 勺牛吃fo o o -7-6-9Co o o o o o12 3 4 5-BO-80-100 3 -60 40 '20 0 20 4Q &0tTieta>o-60 40 -20 0 20 40 60 00 100ttiefa/o为了比较接收数据直接估计噪声协方差矩阵和利用干扰+噪声估计协方差矩阵的Capon波束形成的差异,进行如下仿真:可以看出利用干扰+噪声估计协方差矩阵的方向图性能较优于接收数据直接估计噪声协方差矩阵的方向图。
代码:clc;clear all ;close all;ima=sqrt(-1);eleme nt_num=8; %阵元数d_lamda=1/2; %阵元间距与波长的关系theta=-90:0.5:90; %范围theta0=-30; %来波方向theta仁60; %干扰方向1theta2=19; %干扰方向2theta3=45; %干扰方向3■30買E-O-so-90-80 ^0 -40 -20 0 20 40 GO B0theta/O不冋方也佶计协方垫年阵的Capon泼束形成5_-L=1000; %采样单元数for i=1:L;amp0=10*ra ndn( 1);%信号的幅度随机产生,保证信号之间是不相关的amp1=100*ra ndn (1);%输入阵列的噪声amp2=sqrt(10A3.5)*ra ndn( 1);%输入阵列的噪声amp3=sqrt(10A5)*ra ndn⑴;%输入阵列的噪声amp n=3;% 噪声x(:,i)=amp0*exp(ima*2*pi*1/2*si n(theta0*pi/180)*[0:eleme nt_num-1]')+...amp1*exp(ima*2*pi*1/2*si n(theta1*pi/180)*[0:eleme nt_num-1]')+...amp2*exp(ima*2*pi*1/2*si n(theta2*pi/180)*[0:eleme nt_num-1]')+...amp3*exp(ima*2*pi*1/2*si n(theta3*pi/180)*[0:eleme nt_num-1]')+...amp n*(ra ndn (eleme nt_nu m,1)+ima*ra ndn (eleme nt_nu m,1));endRx=1/L*x* x';R=i nv(Rx);steer=exp(ima*2*pi*1/2*si n(theta0*pi/180)*[0:eleme nt_num-1]');w=R*steer/(steer'*R*steer);%Capon 最优权矢量for j=1:le ngth(theta);a=exp(ima*2*pi*d_lamda*si n( theta(j)*pi/180)*[0:eleme nt_num-1]');f(j)=w'*a;p(j)=1/(a'*R*a);endF=20*log10(abs(f)/(max(abs (f))));P=20*log10(abs(p)/(max(abs(p))));%此处是功率的对数形式figure;% subplot(121)plot(theta,F),grid on,hold onplot(theta0,-80:0,'.')plot(theta1,-80:0,'.')plot(theta2,-80:0,'.')plot(theta3,-80:0,'.') xlabel('theta/o'); ylabel('F/dB');title('Capon beamforming方向图') % axis([-90 90 -50 0]); % subplot(122)figure;plot(theta,P),grid on xlabel('theta/o'); ylabel('功率/dB'); title('C apon beamformi ng 功率谱')。
波束形成 Matlab程序教学文稿

波束形成M a t l a b程序1.均匀线阵方向图%8阵元均匀线阵方向图,来波方向为0度clc;clear all;close all;imag=sqrt(-1);element_num=8;%阵元数为8d_lamda=1/2;%阵元间距d与波长lamda的关系theta=linspace(-pi/2,pi/2,200);theta0=0;%来波方向w=exp(imag*2*pi*d_lamda*sin(theta0)*[0:element_num-1]'); for j=1:length(theta)a=exp(imag*2*pi*d_lamda*sin(theta(j))*[0:element_num-1]'); p(j)=w'*a;endfigure;plot(theta,abs(p)),grid onxlabel('theta/radian')ylabel('amplitude')title('8阵元均匀线阵方向图')当来波方向为45度时,仿真图如下:8阵元均匀线阵方向图如下,来波方向为0度,20log(dB)随着阵元数的增加,波束宽度变窄,分辨力提高:仿真图如下:2.波束宽度与波达方向及阵元数的关系clcclear allclose allima=sqrt(-1);element_num1=16; %阵元数element_num2=128;element_num3=1024;lamda=0.03; %波长为0.03米d=1/2*lamda; %阵元间距与波长的关系theta=0:0.5:90;for j=1:length(theta);fai(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num1*d)); psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num2*d)); beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num3*d)); endfigure;plot(theta,fai,'r',theta,psi,'b',theta,beta,'g'),grid onxlabel('theta');ylabel('Width in radians')title('波束宽度与波达方向及阵元数的关系')仿真图如下:3. 当阵元间距 /2dλ> 时,会出现栅瓣,导致空间模糊。
Capon波束形成器的仿真

Capon 波束形成器的仿真一、原理1、波束形成的定义波束形成就是从传感器阵列重构源信号,然后通过增加期望信源的贡献和抑制掉干扰源来实现的。
实际上波束形成可以看成空域(或时域)滤波器。
2、波束形成器的最佳权向量的推导首先,假定一天线阵列中个阵元的接收信号向量为()n x ,权向量为12[,,,]M w w w =w ,由于阵列的输出是对阵元的接收信号向量在个阵元上个分量的加权和,所以阵列的输出可写作:*1()()()MHmm m n n w x n ===∑y w x再令空间远场期望信号为()d t ,J 个干扰信号为()j i t ,1,2,,j J =,每个阵元上的加性白噪声为()k n t ,他们都具有相同的方差2n σ。
在这些假设条件下,第k 个阵元上的接收信号可以表示为1()()()()()()j Jk k d k i j k j x t a d t a i t n t θθ==++∑111212()()()()()()(),(),()()()()J d i i J M M x t d t n t x t i t n t a a a i t n t x t θθθ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤=+⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 矩阵形式如下:1()()()()()()()()j Jd i j j t t t a d t a i t n t θθ==+=++∑x As n由以上可知:N 个快拍的波束形成器的输出为()()(1,2,,)H y t w x t t N ==输出的平均功率为2211222222111111()()()111()()()()()j N N H t t N J NNH Hd j i t j t t P w y t w x t N N w a d t i t w a w n t N N N θθ========⎡⎤=++⎢⎥⎣⎦∑∑∑∑∑∑当N →∞时,上式变为{}{}{}{}22222221()()()()()()()()jHHHJHHdj i nj P w E y t w E x t x t w wRwE d t w a E i t w a wθθσ=====++∑为了保证来自方向d θ的期望信号的正确接收,并完全抑制其它J 个干扰,关于权向量的约束条件应为:()1H d w a θ=和()0j H i w a θ=加上约束条件后{}222()()n P w E d t w σ=+波束形成器最佳权向量的确定以叙述为:在置零约束条件的约束下,求满足{}{}2min ()min HwwE y t w Rw =的权向量w 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C a p o n-波束形成m a t l a b仿真(附源代
码)
Capon波束形成
阵列N=16,信号
0-30
θ︒
=,干扰为
160
θ︒=,
219
θ︒
=,
345
θ︒
=,干扰功率分别为:40dB,35dB,50dB。
Capon波束形成后的方向图和功率谱如下:
为了比较接收数据直接估计噪声协方差矩阵和利用干扰+噪声估计协方差矩阵的Capon波束形成的差异,进行如下仿真:
可以看出利用干扰+噪声估计协方差矩阵的方向图性能较优于接收数据直接估计噪声协方差矩阵的方向图。
代码:
clc;
clear all ;
close all;
ima=sqrt(-1);
element_num=8; %阵元数
d_lamda=1/2; %阵元间距与波长的关系
theta=-90:0.5:90; %范围
theta0=-30; %来波方向
theta1=60; %干扰方向1
theta2=19; %干扰方向2
theta3=45; %干扰方向3
L=1000; %采样单元数
for i=1:L;
amp0=10*randn(1);%信号的幅度随机产生,保证信号之间是不相关的 amp1=100*randn(1);%输入阵列的噪声
amp2=sqrt(10^3.5)*randn(1);%输入阵列的噪声
amp3=sqrt(10^5)*randn(1);%输入阵列的噪声
ampn=3;%噪声
x(:,i)=amp0*exp(ima*2*pi*1/2*sin(theta0*pi/180)*[0:element_num-1]')+... amp1*exp(ima*2*pi*1/2*sin(theta1*pi/180)*[0:element_num-1]')+...
amp2*exp(ima*2*pi*1/2*sin(theta2*pi/180)*[0:element_num-1]')+...
amp3*exp(ima*2*pi*1/2*sin(theta3*pi/180)*[0:element_num-1]')+...
ampn*(randn(element_num,1)+ima*randn(element_num,1));
end
Rx=1/L*x* x';
R=inv(Rx);
steer=exp(ima*2*pi*1/2*sin(theta0*pi/180)*[0:element_num-1]');
w=R*steer/(steer'*R*steer);%Capon最优权矢量
for j=1:length(theta);
a=exp(ima*2*pi*d_lamda*sin(theta(j)*pi/180)*[0:element_num-1]');
f(j)=w'*a;
p(j)=1/(a'*R*a);
end
F=20*log10(abs(f)/(max(abs(f))));
P=20*log10(abs(p)/(max(abs(p))));%此处是功率的对数形式
figure;
% subplot(121)
plot(theta,F),grid on,hold on
plot(theta0,-80:0,'.')
plot(theta1,-80:0,'.')
plot(theta2,-80:0,'.')
plot(theta3,-80:0,'.')
xlabel('theta/o');
ylabel('F/dB');
title('Capon beamforming方向图') % axis([-90 90 -50 0]);
% subplot(122)
figure;
plot(theta,P),grid on
xlabel('theta/o');
ylabel('功率/dB');
title('Capon beamforming功率谱')。