第51届IMO(国际奥林匹克数学竞赛)试题及答案

合集下载

第一届imo数学竞赛试题答案

第一届imo数学竞赛试题答案

第一届imo数学竞赛试题答案第一届国际数学奥林匹克竞赛(IMO)是在1959年在罗马尼亚举行的。

由于时间跨度较长,具体的试题和答案可能需要通过历史资料查询。

不过,我可以提供一个示例答案,以展示IMO题目的类型和解答风格。

假设第一届IMO中有一道题目如下:题目:证明对于任意的正整数\( n \),\( 1^2 + 2^2 + 3^2 + \ldots +n^2 \) 的和等于 \( \frac{n(n + 1)(2n + 1)}{6} \)。

解答:我们可以使用数学归纳法来证明这个公式。

基础情况:当 \( n = 1 \) 时,左边的和为 \( 1^2 = 1 \),右边的表达式为\( \frac{1(1 + 1)(2 \times 1 + 1)}{6} = \frac{6}{6} = 1 \)。

因此,当 \( n = 1 \) 时,等式成立。

归纳步骤:假设对于某个正整数 \( k \),等式成立,即:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 = \frac{k(k + 1)(2k + 1)}{6} \]我们需要证明当 \( n = k + 1 \) 时,等式仍然成立:\[ 1^2 + 2^2 + 3^2 + \ldots + k^2 + (k + 1)^2 = \frac{(k +1)((k + 1) + 1)(2(k + 1) + 1)}{6} \]根据归纳假设,我们可以将左边的和替换为:\[ \frac{k(k + 1)(2k + 1)}{6} + (k + 1)^2 \]接下来,我们简化这个表达式:\[ \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6k^2 + 12k + 6}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6(k^2 + 2k + 1)}{6} \]\[ = \frac{k(k + 1)(2k + 1) + 6(k + 1)^2}{6} \]可以看到,这个表达式与我们想要证明的等式右边相等,因此等式对于 \( n = k + 1 \) 也成立。

高中数学数学 Olympiad 高级复习 题集附答案

高中数学数学 Olympiad 高级复习 题集附答案

高中数学数学 Olympiad 高级复习题集附答案高中数学数学Olympiad高级复习题集附答案一、数学Olympiad简介数学Olympiad,即数学奥林匹克,是一项全球性的数学竞赛活动,旨在挑战学生的数学思维和解决问题的能力。

作为高中生,参加数学Olympiad是一个很好的锻炼机会,通过解决复杂的数学问题,提高自己的数学水平和思维能力,也为将来的学术和职业发展打下坚实的基础。

二、Olympiad题集优势Olympiad题集作为备考工具的选择,有以下几个优势:1.题型全面:Olympiad题集涵盖了数学Olympiad常见的各类题型,包括几何、代数、组合数学等,可以全面复习,提高各个领域的解题能力。

2.难度适中:Olympiad题集中的题目难度分布较为合理,不仅包含基础题目,还有一些挑战性较高的题目,可以提高学生的解题技巧和思考能力。

3.附带答案:Olympiad题集一般附有详细的解答和答案解析,学生可以进行对照学习,并及时纠正错误,提高解题效率和准确性。

三、如何高效复习Olympiad题集1.制定合理计划:根据自身时间和能力的安排,制定合理的复习计划,合理分配时间,坚持按计划复习。

2.系统学习知识点:根据Olympiad题集的组成,系统地学习各个领域的数学知识点,理解概念,掌握重要的定理和公式。

3.做题总结经验:做完一套题之后,及时总结解题经验和技巧,归纳规律,加深对知识点的理解,提高解题速度和准确性。

4.多练习真题:除了Olympiad题集提供的试题,还可以多做一些真实的Olympiad竞赛题目,熟悉竞赛的题型和时间要求,提高应试能力。

5.参加辅导班或小组讨论:加入数学Olympiad辅导班或组织与同学一起讨论解题思路和方法,相互帮助,共同进步。

四、给出的Olympiad题集简要介绍以下是一些常见的数学Olympiad题集,供同学们参考。

请注意,这里只是提供了一些常见题集的简要介绍,具体选用哪一本还需根据个人需要和实际情况做出选择。

IMO历届试题

IMO历届试题

IMO历届试题2010年第51届国际奥林匹克数学竞赛(IMO)试题及答案1.△ABC的内心为I,三角形内一点P满足∠PBA+∠PCA=∠PBC+∠PCB.求证,AP ≥AI,而且等号当且仅当P=I时成立.证:∠PBC+∠PCB= 12(∠ABC+∠ACB)=∠IBC+∠ICB,故∠PBI=∠PCI,从而P,B,C,I四点共圆.但由内外角平分线相垂直知B,C,I与BC 边上的旁切圆心T 共圆,且IT是这个圆的直径,IT的中点O为圆心.由于A,I,T共线(∠BAC的平分线),且P在圆周上,AP+PO≥AO=AI+IO,PO=IO,故AP≥AI.等号当且仅当P为线段AO与圆周的交点即P=I时成立.2.正2006 边形P 的一条对角线称为好的,如果它的两端点将P 的边界分成的两部分各含P的奇数条边.P的边也是好的.设P被不在P的内部相交的2003 条对角线剖分为三角形.试求这种剖分图中有两条边为好的等腰三角形个数的最大值.解:对于剖分图中的任一三角形ABC,P的边界被A,B,C分为3段,A-B段所含P 的边数记作m(AB).由于m(AB)+ m(BC)+ m(CA)=2006,故等腰三角形若有两条好边,它们必是两腰.称这样的等腰三角形为好三角形.考虑任一好三角形ABC(AB=AC).A-B 段上若有别的好三角形,其两腰所截下的P 的边数为偶数.由于剖分图中的三角形互不交叉,而A-B 段上P 的边数为奇数,故A-B 段上必有P的一边α不属于更小的腰段,同理A-C段上也有P的一边β不属于更小的腰段,令△ABC 对应于{α,β}.由上述取法,两个不同的好三角形对应的二元集无公共元,因此好三角形不多于20062=1003 个.设P=A1A2…A2006,用对角线A1A2k+1(1≤k≤1002)及A2k+1A2k+3(1≤k≤1001)所作的剖分图恰有1003 个好三角形.因此,好三角形个数的最大值是1003.3.求最小实数M ,使得对一切实数 a ,b ,c 都成立不等式2222222222|()()()|()ab a b bc b c ca c a M a b c -+-+-++≤解:222222()()()ab a b bc b c ca c a -+-+-()()()()a b b c c a a b c =----++.设a b x b c y c a z a b c s -=-=-=++=,,,,则22222221()3a b c x y z s ++=+++.原不等式成为22222()9||(0)M x y z s xyzs x y z +++++=≥.x y z ,,中两个同号而与另一个反号.不妨设 x y ,≥0.则2221||()2z x y x y x y =+++,≥,2()4x y xy +≥.于是由算术-几何平均不等式222222223()(())2x y z s x y s +++++≥=22222111(()()())222x y x y x y s ++++++6223414())42()||162||8x y s x y s xyzs +=+≥(≥即9232M =时原不等式成立.等号在21s x y ===,,2z =-,即::(23):2:(23)a b c =+-时达到,故所求的最小的9232M =.4.求所有的整数对(x y ,),使得212122x x y +++=.解:对于每组解(x y ,),显然0x ≥,且()x y -,也是解.0x =时给出两组解(02)±,.设x y ,>0,原式化为12(21)(1)(1)x x y y ++=+-.1y +与1y -同为偶数且只有一个被4整除.故3x ≥,且可令12x y m ε-=+ ,其中m 为正的奇数,1ε=±.代入化简得2212(8)x m m ε--=-.若1ε=,2801m m -=≤,.不满足上式.故必1ε=-,此时22212(8)2(8)x m m m -+=--≥,解得3m ≤.但1m =不符合,只有3m =,4x =,23y =.因此共有4组整数解(02)(423)±±,,,.5.设()P x 为n 次(n >1)整系数多项式,k 是一个正整数.考虑多项式()(((())))Q x P P P x = ,其中 P 出现k 次.证明,最多存在 n 个整数t ,使得()Q t t =.证:若Q 的每个整数不动点都是 P 的不动点,结论显然成立.设有整数0x 使得00()Q x x =,00()P x x ≠.作递推数列 1()(012)i i x P x i +== ,,.它以 k 为周期.差分数列1(12)i i i x x i -∆=-= ,,的每一项整除后一项.由周期性及10∆≠,所有||i ∆ 为同一个正整数u .令121111min{}m k m m m m m m x x x x u x x x x x x -++-==-=-= ,,,,,.数列的周期为 2.即0x 是 P 的2-周期点.设 a 是P 的另一个2-周期点,() b P a =(允许b =a ).则0a x -与1b x -互相整除,故01||||a x b x -=-,同理01||||b x a x -=-.展开绝对值号,若二者同取正号,推出01x x =,矛盾.故必有一个取负号而得到01a b x x +=+.记01x x C +=,我们得到:Q 的每个整数不动点都是方程 ()P x x C +=的根.由于P 的次数n 大于 1,这个方程为n 次.故得本题结论.6.对于凸多边形P 的每一边b ,以b 为一边在P 内作一个面积最大的三角形.证明,所有这些三角形的面积之和不小于P 的面积的两倍.证:过P 的每个顶点有唯一的直线平分P 的面积,将该直线与P 的边界的另一交点也看作 P 的顶点(允许若干个相继顶点共线).每两条面积平分线都交于 P 内.P 可 看成一个 2n 边形122-12n n A A A A ,每条对角线i i n A A +是P 的面积平分线(i =1,2,…,n ,2i n i A A +=).设i i n A A +与11i i n A A +++交于 i O (i n i O O +=),由面积关系得到,11()()i i i i i n i n S O A A S O A A ++++=△△,11i i i i i i n i i n O A O A O A O A ++++= ,故i i n i iO A O A +和11i i n i i O A O A +++中必有一个不小于 1,于是以 1i i A A +为一边在 P 内作的面积最大的三角形的面积11111()max{()()}2()i i i n i i i n i i i i i S A A S A A A S A A A S O A A +++++++≥△,△≥△.对于每条有向线段i i n A A +,P 内部的每一点T 或在它的左侧或在它的右侧.由于T 在11n A A + 和12111n n n A A A A +++= 的相反侧,故必有i 使得T 在i i n A A + 和11i i n A A +++的相反侧,从而T在1i i i O A A +△或1i i n i n O A A +++△中.即211ni i i i O A A P +=⊇ △.于是221111()2()2()nnii i i i i i S A AS O A A S P ++==∑∑≥△≥P 中同一边上的各个1()i i S A A +之和就是该边上的面积最大的内接三角形面积.。

2024年全国中学生数学奥林匹克竞赛(预赛)加试参考答案与评分标准(A卷)(2)

2024年全国中学生数学奥林匹克竞赛(预赛)加试参考答案与评分标准(A卷)(2)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛加试(A 卷)参考答案及评分标准说明:1.评阅试卷时,请严格按照本评分标准的评分档次给分.2.如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,10分为一个档次,不得增加其他中间档次.一.(本题满分40分)给定正整数r .求最大的实数C ,使得存在一个公比为r 的实数等比数列1{}n n a ,满足n a C 对所有正整数n 成立.(x 表示实数x 到与它最近整数的距离.)解:情形1:r 为奇数.对任意实数x ,显然有12x ,故满足要求的C 不超过12. 又取{}n a 的首项112a ,注意到对任意正整数n ,均有1n r 为奇数,因此1122n n r a .这意味着12C 满足要求.从而满足要求的C 的最大值为12. …………10分 情形2:r 为偶数.设*2()r m m N .对任意实数 ,我们证明1a 与2a 中必有一数不超过21m m ,从而21m C m . 事实上,设1a k ,其中k 是与1a 最近的整数(之一),且102. 注意到,对任意实数x 及任意整数k ,均有x k x ,以及x x .若021m m ,则121m a k m . 若1212m m ,则22221m m m m ,即21m m r m m ,此时 2121m a a r kr r r m . …………30分 另一方面,取121m a m ,则对任意正整数n ,有1(2)21n n m a m m ,由二项式展开可知11(211)(1)2121n n n m m a m K m m ,其中K 为整数,故21n m a m .这意味着21m C m 满足要求. 从而满足要求的C 的最大值为212(1)m r m r .综上,当r 为奇数时,所求C 的最大值为12;当r 为偶数时,所求C 的最大值为2(1)r r . …………40分二.(本题满分40分)如图,在凸四边形ABCD 中,AC 平分BAD ,点,E F 分别在边,BC CD 上,满足||EF BD .分别延长,FA EA 至点,P Q ,使得过点,,A B P 的圆1 及过点,,A D Q 的圆2 均与直线AC 相切.证明:,,,B P Q D 四点共圆.(答题时请将图画在答卷纸上)证明:由圆1 与AC 相切知180BPA BAC CAD CAF PAC ,故,BP CA 的延长线相交,记交点为L .由||EF BD 知CE CF CB CD.在线段AC 上取点K ,使得CK CE CF CA CB CD ,则||,||KE AB KF AD . …………10分由ABL PAL KAF ,180180BAL BAC CAD AKF ,可知ABL KAF ∽,所以KF AB AL KA. …………20分 同理,记,DQ CA 的延长线交于点L ,则KE AD AL KA. 又由||,||KE AB KF AD 知KE CK KF AB CA AD,即KE AD KF AB . 所以AL AL ,即L 与L 重合.由切割线定理知2LP LB LA LQ LD ,所以,,,B P Q D 四点共圆.…………40分三.(本题满分50分)给定正整数n .在一个3n ×的方格表上,由一些方格构成的集合S 称为“连通的”,如果对S 中任意两个不同的小方格,A B ,存在整数2l ≥及S 中l 个方格12,,,lA C C CB ==,满足iC 与1i C +有公共边(1,2,,1i l −).求具有下述性质的最大整数K :若将该方格表的每个小方格任意染为黑色或白色,总存在一个连通的集合S ,使得S 中的黑格个数与白格个数之差的绝对值不小于K .解:所求最大的K n =.对一个由小方格构成的集合S ,记b S 是S 中的黑格个数,w S 是S 中的白格个数. 用[,]i j 表示第i 行第j 列处的方格,这里13i ≤≤,1j n ≤≤.对于两个方格[,]A i j =,[,]B i j ′′=, 定义它们之间的距离为(,)||||d A B i i j j ′′=−+−.首先,如果将方格表按国际象棋棋盘一样黑白间隔染色,我们证明对任意连通的集合S ,均有||b w S S n −≤,这表明K n ≤.设[1,1]是黑格,并记{0,1}ε∈,满足(mod 2)n ε≡.先证b w S S n −≤.可不妨设S 包含所有黑格,这是因为若S 不包含所有黑格, 取不属于S 的黑格A 满足(,)d A S 最小,这里(,)min (,)B Sd A S d A B ∈=.易知(,)1d A S =或2.若(,)1d A S =,取{}S S A ′=,则S 仍是连通的,且b w S S ′′−更大. 若(,)2d A S =,则存在与A 相邻的白格C ,而C 与S 中某个方格B 相邻,取{,}S S A B ′= ,则S 仍是连通的,且bw S S ′′−不变. 因而可逐步扩充S ,使得S 包含所有黑格,保持S 的连通性,且b w S S −不减.考虑白格集合{[,]|}k W i j i j k =+=,3,5,,1k n ε++,每个k W 中至少有一个方格属于S ,否则不存在从黑格[1,1]A S =∈到黑格[3,1]B n ε=−+的S 中路径.故1()2w S n ε≥+,而1(3)2b S n ε=+,故b w S S n −≤. …………10分 类似可证w b S S n −≤.同上,可不妨设S 包含所有白格, 从而1(3)2w S n ε=−. 再考虑黑格集合{[,]|}k B i j i j k =+=, 4,6,,2k n ε+−,每个k B 中至少有一个黑格属于S ,否则不存在从白格[1,2]A =到白格[3,]B n ε=−的S 中路径. 从而1()2b S n ε≥−,故w b S S n −≤. …………20分 下面证明K n =具有题述性质,即对任意的染色方案,总存在连通的集合S , 使得b w S S n −≥.设表格中共有X 个黑格和Y 个白格,在第二行中有x 个黑格和y 个白格. 于是3X Y n +=, x y n +=.故()()()()2X y Y x X Y x y n −+−=+−+=.由平均值原理可知max{,}X y Y x n −−≥.不妨设X y n −≥.取S 为第二行中的y 个白格以及所有X 个黑格.由于S 包含第二行中所有方格,因而S 是连通的. 而b S X =,w S y =,b w S S X y n −=−≥.综上所述,max K n =. …………50分四.(本题满分50分)设,A B 为正整数,S 是一些正整数构成的一个集合,具有下述性质:(1) 对任意非负整数k ,有k A S ;(2) 若正整数n S ,则n 的每个正约数均属于S ;(3) 若,m n S ,且,m n 互素,则mn S ;(4) 若n S ,则An B S .证明:与B 互素的所有正整数均属于S .证明:先证明下述引理.引理:若n S ,则n B S .引理的证明:对n S ,设1n 是n 的与A 互素的最大约数,并设12n n n ,则2n 的素因子均整除A ,从而12(,)1n n .由条件(1)及(2)知,对任意素数|p A 及任意正整数k ,有k p S .因此,将11k A n 作标准分解,并利用(3)知11k A n S .又2|n n ,而n S ,故由(2)知2n S .因112(,)1k A n n ,故由(3)知112k A n n S ,即1k A n S .再由(4)知k A n B S (对任意正整数k ). ① …………10分设n B C D ,这里正整数C 的所有素因子均整除A ,正整数D 与A 互素,从而(,)1C D .由(1)及(2)知C S (见上面1k A n S 的证明). 另一方面,因(,)1D A ,故由欧拉定理知()1D D A .因此()()(1)()0(mod )D D A n B A n n B D ,但由①知()D A n B S ,故由(2)知D S .结合C S 及(,)1C D 知CD S ,即n B S .引理证毕. …………40分回到原问题.由(1),取0k 知1S ,故反复用引理知对任意正整数y ,有1By S .对任意*,(,)1n n B N ,存在正整数,x y 使得1nx By ,因此nx S ,因|n nx ,故n S .证毕. …………50分。

高中数学竞赛-历届IMO试题(1-46届)及答案

高中数学竞赛-历届IMO试题(1-46届)及答案

高中数学竞赛-历届IMO试题(1-46届)及答案1.求证(21n+4)/(14n+3) 对每个自然数 n都是最简分数。

2.设√(x+√(2x-1))+√(x-√(2x-1))=A,试在以下3种情况下分别求出x的实数解:(a) A=√2;(b)A=1;(c)A=2。

3.a、b、c都是实数,已知 cos x的二次方程a cos2x +b cos x +c = 0,试用a,b,c作出一个关于cos 2x的二次方程,使它的根与原来的方程一样。

当a=4,b=2,c=-1时比较 cos x和cos 2x的方程式。

4.试作一直角三角形使其斜边为已知的c,斜边上的中线是两直角边的几何平均值。

5.在线段AB上任意选取一点M,在AB的同一侧分别以AM、MB为底作正方形AMCD、MBEF,这两个正方形的外接圆的圆心分别是P、Q,设这两个外接圆又交于M、N,(a.) 求证 AF、BC相交于N点;(b.) 求证不论点M如何选取直线MN 都通过一定点 S;(c.) 当M在A与B之间变动时,求线断 PQ的中点的轨迹。

6.两个平面P、Q交于一线p,A为p上给定一点,C为Q上给定一点,并且这两点都不在直线p上。

试作一等腰梯形ABCD(AB平行于CD),使得它有一个内切圆,并且顶点B、D分别落在平面P和Q 上。

1.找出所有具有下列性质的三位数 N:N能被11整除且 N/11等于N的各位数字的平方和。

2.寻找使下式成立的实数x:4x2/(1 - √(1 + 2x))2< 2x + 93.直角三角形ABC的斜边BC的长为a,将它分成 n 等份(n为奇数),令α为从A点向中间的那一小段线段所张的锐角,从A到BC 边的高长为h,求证:tan α = 4nh/(an2 - a).4.已知从A、B引出的高线长度以及从A引出的中线长,求作三角形ABC。

5.正方体ABCDA'B'C'D'(上底面ABCD,下底面A'B'C'D')。

第49届国际数学奥林匹克(IMO)试题及解答

第49届国际数学奥林匹克(IMO)试题及解答

第49届国际数学奥林匹克(IMO)试题及解答
马德里
【期刊名称】《上海中学数学》
【年(卷),期】2008(000)009
【摘要】@@ 试题rn1.已知H是锐角三角形ABC的垂心,以边BC的中点为圆心,过点H的圆与直线BC相交于两点A1,A2;以边CA的中点为圆心,过点H的圆与直线CA相交于两点B1,B2;以边AB的中点为圆心,过点H的圆与直线AB相交于两点C1,C2,证明:六点A1,A2,B1,B2,C1,C2共圆.(俄罗斯提供)
【总页数】3页(P3-5)
【作者】马德里
【作者单位】无
【正文语种】中文
【相关文献】
1.第51届国际数学奥林匹克(IMO)竞赛试题 [J],
2.第49届国际数学奥林匹克(IMO)试题及解答 [J],
3.第47届国际数学奥林匹克(IMO)中国代表队选拔考试试题 [J], 无
4.第46届国际数学奥林匹克(IMO)试题 [J], 王建伟
5.第46届国际数学奥林匹克(IMO)试题解答 [J], 王建伟
因版权原因,仅展示原文概要,查看原文内容请购买。

(共8套)世界少年奥林匹克数学竞赛真题附答案 六年级至四年级专版(全)

(共8套)世界少年奥林匹克数学竞赛真题附答案 六年级至四年级专版(全)

(共8套)世界少年奥林匹克数学竞赛真题 六年级至四年级专版(全)绝密★启用前世界少年奥林匹克数学竞赛(中国区)选拔赛地方海选赛(2016年10月)选手须知:1、本卷共三部分,第一部分:填空题,共计50分;第二部分:计算题,共计12分;第三部分:解答题,共计58分。

2、答题前请将自己的姓名、学校、赛场、参赛证号码写在规定的位置。

3、比赛时不能使用计算工具。

4、比赛完毕时试卷和草稿纸将被收回。

六年级试题(A卷)(本试卷满分120分 ,考试时间90分钟 )一、填空题。

(每题5分,共计50分)1、有甲、乙两个两位数,甲数的27等于乙数的 23,这个两位数的差最多是 。

2、如果15111111111111111*=++++,242222222222*=+++,33*=3+33+333,那么7*4= 。

3、由数字0,2,8(既可全用也可不全用)组成的非零自然数,按照从小到大排列,2008排在第 个。

4、如图,正方形的边长是2(a+b ),已知图中阴影部分B 的面积是7平方厘米,则阴影部分A 和C 面积的和是 平方厘米。

5、一辆出租车与一辆货车同时从甲地出发,开往乙地出租车4小时到达,货车6小时到达,已知出租车 比货车每小时多行35千米。

甲乙两地相距 千米6、一个长方体铁块,被截成两个完全相同的正方体铁块,两个正方体铁块的棱长之和比原来长方体铁块的棱长之和增加了16厘米,则原来长方体铁块的长是 。

7、四袋水果共46个,如果第一袋增加1个,第二袋减少2个,第三袋增加1倍,第四袋减少一半,那么四袋水果的个数就相等了,则第四袋水果原先有 个。

8、有23个零件,其中有一个次品,不知它比正品轻还是重,用天平最少 次可以找出次品。

9、123A5能被55整除,则A= 。

10、在一次数学游戏中,每一次都可将黑板上所写的数加倍或者擦去它的末位数,假定一开始写的数是458,那么经过 次上述变化得到14.二、计算题。

(每题6分,共计12分)11、123200112320012002200220022002++++12、6328862363278624⨯-⨯省 市 学校 姓名 赛场 参赛证号∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕∕〇∕∕∕∕∕∕ 密 〇 封 〇 装 〇 订 〇 线 ∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕〇∕∕∕∕∕∕密 封 线 内 不 要 答 题a +六年级 第3页 六年级 第4页三、解答题。

第51届IMO预选题(四)

第51届IMO预选题(四)

行染色 : 对于每个 ( ≤i 、 0 、 ≤2 一1 , i “ )第
行 的第 个方 格 和第 行 的第 i 个 方格 的 +
颜色相同( 在一 行 中方格 的 编号是 在模 2 意
下 面证 明 : / 6时 , 当 ' t > I 原方 程无解 .
当 t6时 , >
mI 3 2× =m( “ ’ 一 2 一1 m .
数 论 部 分
1 求最 小 的 正整 数 / 使 得 存 在 n个 不 . 7 , ,
同 的正整 数 s , , , , 足 s … s 满
参 考 答 案
1假设 正 整数 n满 足条 件 , . 且设
sl< ( = 一
2川 一 1: m + :2 × 3 +3 .

个 有理 系数 多项式 的平 方 租 假 设存 在 四个 有 理 系数 多 项 式 、 、 f( 4 可能 某些项 是 0 , ) 满足
+ f( 7= 2 )+ )+ )+ 2 ) /( /( f( .
于 是 , 种情形 统 一为求 方程 两 3 2X3 2 一lP+ 7 + = ( q=/ , ) 的非负 整数解 .
2, … , 3, 5, 6, , O, 7, 3, 3 3 3 … 4 6
4 设 a b 整 数 , )=似 + , 于 . 、是 P( 对 任 意 一个 正整 数 , 如果对 所有 整数 m、 k有
n ( ,)一P 后 )= n ( lP( 孔 ( ) = I m一后 , > )
l 8
中 等 数 学
第5届 I 1 MO预 选 题 ( ) 四
李 建 泉
( 天津师范大学数学教育科学 与数学 奥林 匹克研究所 ,03 7 30 8 ) 中图分类号 : 4 4 7 G 2 .9 文献标识码 : A 文章 编号 : 0 5—6 1 (0 1 1 0 1 0 10 4 6 2 1 ) 1— 0 8— 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档